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INVARIANTS AND EXAMPLES OF GROUP ACTIONS ON
TREES AND LENGTH FUNCTIONS

by DAVID L. WILKENS

(Received 18th October 1989)

An action of a group G on a tree, and an associated Lyndon length function /, give rise to a hyperbolic length
function L and a normal subgroup K having bounded action. The Theorem in Section 1 shows that for two
Lyndon length functions /, /' to arise from the same action of G on some tree, L = L and K = K'. Moreover for
L non-abelian L = L' implies K = K'. That this is not so for abelian L is shown in Section 2 where two
examples of Lyndon length functions /, /' on an H.N.N. group are given, with their associated actions on trees,
for which L = V is abelian but
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Introduction

A group G acting as a group of isometries on an R-tree T has an associated
hyperbolic length function L:G-*U and, for each point ueT, a Lyndon length function
/U:G->R. It is shown in [8] that G has a maximal normal subgroup K which has
bounded action on T. Both L and K are determined by the Lyndon lengths /„ and these
results are brought together in the theorem in Section 1 where conditions are given for
two Lyndon lengths to arise from an action of G on some tree. A result of [1] shows
that a non-abelian L determines a Lyndon length function, and also the normal
subgroup K. In Section 2 properties of two examples of Lyndon length functions on an
H.N.N. group, and the associated group actions on trees, are given. The examples
illustrate that an abelian L may not determined a Lyndon length function nor the
maximal normal subgroup K associated with an action on a tree.

1. Invariants of actions

Let a group G act as a group of isometries on a metric tree (R-tree) T. The notation
used follows that of [7], where metric trees are defined, and frequent reference will also
be made to [1], where properties of more general A-trees are established (here A
denotes an ordered abelian group). We note that L and / used in [1] have been
interchanged.

A function l:G-*U is called an abstract Lyndon length function if it satisfies the
following axioms for all x, y, z e G:
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A2

A4 c(x, y) < c(x, z) implies c(x, y) = c(y, z),

where c(x, y) = ±(/(x) + l(y) - l(xy'l)).

For each point ueT a function lu:G-*U is defined by IJix) = d{u,xu), where d is the
metric on T. It is clear that lu satisfies the axioms listed above and so is a Lyndon length
function. The hyperbolic length function L:G-+M is defined by L(x) = inf{d{u,xu); ueT}.
The following property is part of Corollary 6.13 of [1].

Lemma. For any ueT, L(x) = max (0,lu(x
2) — /„(*)).

The subset N of G consists of the elements xeG with L(x) = 0. In Section 7 of [1], the
hyperbolic length L is defined to be abelian if L(xy) ^ ^x) + L(y) for all x,yeG. We note
that if L is abelian then N is a subgroup of G. If not, there exists x,yeN with xy$N, in
which case L(x) = L(_y) = 0 and L(xy)>0. In Theorem 7.8 of [1], for L non-abelian, a
formula is given expressing the Lyndon length /„ in terms of L, for some ueT.

By Corollary 2.4 of [8], for N^G, there is a maximal normal subgroup K of G
having bounded action on T; and for any ue7^ X = core Hu where

Hu = {a e G; lu(ax) = lu(x) for all x $ N}.

It follows that /CsJV.
For /:G-*IR an abstract Lyndon length function the associated hyperbolic length

function L:G->R is defined by L(x) = max (0,/(x2)-/(*)) and, for N#G, the maximal
normal subgroup K of G with bounded action is defined by K = coreH where
H = {aeG\ l(ax) = l{x) for all x$N}. By the lemma the condition Nj^G is equivalent to
L^O on G (i.e. there is some xeG with L(x)>0). For a Lyndon length function /':G-*K,
L' and K' are similarly defined.

Theorem. Let I, /':G^IR be Lyndon length functions with L, L'^0. If there exists an
action of G on a tree T, and points v, weT with I = /„, /' = lw then

(i) L = L',and (ii) K = K'.

Moreover if L is non-abelian then (i) implies (ii).

Proof. By the lemma and Corollary 2.4 of [8], L and K are invariants of the action
of G on T, and are determined by the Lyndon length function at any point of T. It
follows that L = L and K = K'.

If L = L' is non-abelian then by Theorem 7.8 of [1] a Lyndon length function /„ is
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determined by L, and /„ arises at some point u on any tree on which G acts having
hyperbolic length L = L'. Hence K = K' = core Hu.

For an abstract Lyndon length function /:G->R Chiswell [2] defines an associated
tree T, with a distinguished point ueT, and an action of G on T such that / = /„. We
recall some details of the construction. The points of T are equivalence classes [(x,r)]
for all xeG, 0^r<Ll(x), and u = [(x,0)]. Under the action of G the image xu = [(x,/(x))].
For v,weT, [u,w] denotes the segment of T from v to w. For x,yeG then
[u,xu] n [u,yw] = [M,u] where the distance d(u,v) = c(x~1,y~l)=j(l(x) + l(y) — l(x~ly)).

For an action of a group G on a tree T each element x $ N has a unique axis in X
The axis = {ueT; L(x) = lv(x)}, and is an isometric image of IR on which x acts by
translation through L(x). The existence of axes is established in Theorem 6.6 of [1] and
Theorem II.2.3 of [5], where it is also shown that the axis = Un£Z[x"t>, x" + 1u], where for
any ueT, [u,xu~\ n [u,x~lu] = [u,v~\. If T arises by Chiswell's construction from a length
/ then l(x) = d(u, xu), and the part of [u, xu] intersecting the axis for x, that is [u,xt>], is
the middle section of length L(x).

2. Two examples

The theorem raises the question of whether condition (i) implies condition (ii) if L is
abelian. The following examples of Lyndon lengths /, /' on a group G with L = L', but
Kj^K', show that this is not true in general.

Let G be the group with generators t, gh for ieZ and relations t~igi t=gi + 1, for ieZ.
Let N be the subgroup generated by the generators gh for ieZ. Then AT is a normal
subgroup of G, and G is an H.N.N. extension with base N and single stable letter t. Any
element x of G can be uniquely written as x = atr for some aeN, reZ.

Define l:G-*U by /(atr) = |H- ^ ' s eas ' 'y shown that / is a Lyndon length function. In
fact, in the notation of [6], / is an extension of /j=0 on N by l2 on G/N, an infinite
cyclic group, where /2(t

rA?) = \r\.
For the identity element leW, define m(l)=—oo. For a ^ l in AT, if a=g\\g\\...g\*,

£,= + 1, in reduced form, define wi(a) = 2max(i1,i2 i*). For all aeN and reZ define
ar = t~ratr. If a=g]\g\l g**, in reduced form, then by repeated application of the
relations, ar=g]\+tg]l+r...g

t£+r, and so m(ar) = m(a) + 2r.
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Define l':G^U by l'{atr) = max {m(a) + r, \r\}. It is shown in Theorem 2 of [3] that /' is
a Lyndon length function, and that N has unbounded lengths.

Proposition 1. The Lyndon length functions I, l':G-*M have L(at') = L'{af) = |r| with
K = N and K' = {1}.

Proof. For x = at' then x2 = at'at' = aa.rt
2r. Thus l(x2) = |2r| and Z(x) = \r\, and hence

by the lemma L(x) = max(O,/(x2)-Z(x)) = |r|.

From the definition of the function m above, if r^O then m(aa_r) = m(a) and if r ^
then m(aa_r) = m(a_r) = m(a)—2r. Thus for r^O, /'(x) = max (m(a) + r,r) and

/'(x2) = max (m(aa_r) + 2r, 2r) = max (m(a) + 2r, 2r).

The maximum will be achieved in the same position for l'(x2) and /'(x) and so
Z'(x2)-Z'(x) = r = (m(a) + 2r)-(m(a) + r) = 2r-r . For r^O, Z'(x) = max(m(a) + r, - r ) and
Z'(x2) = max (m(aa _r) + 2r, — 2r) = max ((m(a) - 2r) + 2r, - 2r) = max (m(a), - 2r). The maxi-
mum will be achieved in the same position for Z'(x2) and l'(x) and so I'(x2) — l'(x)= — r =
m(a)-(m{a) + r)= - 2 r - ( - r ) . We therefore have L'(x) = |r|.

The length function Z has zero length for all elements of N and so K = N.
For aeN, l'(t-'at') = l'(ar) = max{m(ar),0) = msLx(m(a) + 2r,0). So for a / 1 the lengths

l\t~'atr) are unbounded for r>0. Thus any non-trivial normal subgroup of G, contained
in N, will have unbounded lengths under I'. It follows that K' = {\}.

For an action of a group on a tree giving a non-abelian hyperbolic length function
Theorem 7.8 of [1] determines a Lyndon length function of the action solely in terms of
the hyperbolic length function. Since the maximal normal subgroup having bounded
action on a tree is an invariant of the action, and since Proposition 1 gives K^K' it
follows that the Lyndon length functions Z and Z' cannot arise from the same action of G
on some tree. A corresponding result to Theorem 7.8 for abelian hyperbolic length
functions is therefore not possible.

For the example of the Lyndon length function l:G->M it can be easily shown that
Chiswell's construction gives a tree T which is an isometric copy of R on which at' acts
by translation through r. T is the axis for all elements not in N. This is an example of
the case (n 4s#</>) described in part (b) of Theorem 7.5 of [1].

Chiswell's construction for Z':G->IR gives a tree T, with base point u, and an action of
G on T" such that l' = lu. This is the situation described in Theorem 5 of [4], where N
has unbounded lengths and so, by Theorem 3.2 of [7], fixes no point of T". It is also
described in case (e) of part (b) of Theorem 7.5 of [1], where it is shown that G fixes a
unique end of T'. We illustrate this result by considering the axes in T". Elements
x,y$N are said to be cyclically related if there exists r, s with x' = ys. An element has
the same axis as a power and so cyclically related elements have identical axes. A half-
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line in 7" is an isometric image of ( — oo,0]. For teG, l'(t) = L'(t) = l and so the axis for t
consists of \Jn€z\u,t"u]. By the left of this axis we mean the direction from u to t~", for

Proposition 2. Under the action of G on 7" two non cyclically related elements, not in
N, have axes that intersect in a half-line. In particular the axes for t and af (r>0) agree
from the left to the point r~(m<fl)/2)u.

Proof. We first consider the axes for t and af, with r>0. For /c>0, {atr)k =
arrafr...atr = aa_ra_2r...a_(k_1)rt*

r = bfs, writing b = aa_r...a_(k_1)r and s = /cr. Since
r > 0, m(b) = m(a). Let x = t" and y = {at')k = bf where n > 0 will be taken to be as large as
we like. The Lyndon lengths /'(x) = n and

m(b)+s (m{a) + s
=max-(

s [ s

Following Chiswell's construction we compare the segments fax'1!*] and [u.j '"1"],
and the segments [u,xu] and [u,yu].

The segments [M,X-1M] and [u,y~lu] coincide to a distance c(x,y) from u where

= /'(*) +/'(}>)-/'

{
m(b) + s

- m a x
s [ n—s

(m(b) + s-(n-s)
<

I s

\m{b) + 2s (m(o) + 2s . _ . t. ,
= max < \ . = max < for n sufficiently large.

| 2s | 2s

For m(a)<0, l'(y) = L'(y) = s and so [u,y~lu] is contained in the axis for y, which is also
the axis for af. Since c(x,y) = s, [u,y~lu] is contained in [u,x~lu], and hence, since the
above holds for any k > 0, the axis for af agrees from the left with the axis for t at least
as far as the point u. For m(a) > 0, l'(y) = m(a) + s and L'(y) = s, and so the part of the
axis of y in [u,y~lu] is the middle section of length s. Since c(x,y)=(m(a)/2) + s this lies
in [u.x"1!*]. Since the section of \u,y~lu~] to distance m(a)/2 from u is not in the axis
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FIGURE 2

for y it follows that the axis for at' coincides with that for t from the left to a distance
m(a)/2 to the left of u, that is to the point t"(m(a)/2)u.

For m(a)<0, when l'(y) = s, consider the segments [u,xii] and [u,)>«] which coincide
up to a distance c(x~1,y~1) from u, where

Um(b) + 2n) + s-
n — s I n — s

(m(b) + n + s . « - • . i i
= n + s — max < for n sufilciently large.

[ n — s

For k, and hence s, sufficiently large 2c{x~1,y~i) = n + s —(m(b) + n + s) = —m(b)= —m(a).
[u, yu] lies in the axis for y, which is the axis for at', and this coincides with [u, xu] to a
distance c(x~l,y~1)= —(m(a)/2) from w. Thus the axis for at' coincides with the axis for
t from the left to a distance -(m(a)/2) to the right of u, that is to the point t~imia)l2)u.

Now consider the axes for two general elements at', bf, taking r, s > 0 since the axis
for an element is the axis for its inverse. Since their axes agree from the left with the
axis for t their intersection must agree from the left at least as far as the point t~cu
where c = max (m(a)/2, m(b)/2). The two axes must therefore either be identical or
intersect in a half-line. If m(a)^m(b) then the two axes will separate at the point t~cu
and so intersect in a half-line. An element has the same axis as a power and so powers
can be taken to equate powers of t. It suffices therefore to consider elements x = at' and
y = btr, and it remains to consider the case m(a) = m{b). For x and y non cyclically
related a^b. Moreover, since taking powers of x and y gives similar elements, it can be
assumed that r is as large as we please. Thus

and L'(x) = L'(y) = r.
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Consider the segments [U,XM] and [u,yu] which coincide to a distance c(x~l,y~l)
where

i(x) + l'{y)-l'(rra-lbtr)

r(x) + l\y)-l'(at-
lbr)

\ r 1 0

2 max.; v —max-J
\ r \ 0

(2m{a)-m(a~lb) c _. . . . .
= max< , for r sufnciently large.

{ —m(a lb)

The parts of the axes for x and y within [u,xu] and [w,yu] respectively extended to a
distance (m(a)/2) + r from u. For r sufficiently large this will be greater than c(x~l,y~l),
which is independent of r, and so the two axes will diverge at this point. The two axes
therefore intersect in a half-line.
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