CLASS NUMBERS OF REAL QUADRATIC FIELDS

Jae Moon Kim

Let $k=\mathbb{Q}(\sqrt{m})$ be a real quadratic field. It is well known that if 3 divides the class number of k, then 3 divides the class number of $\mathbb{Q}(\sqrt{-3 m})$, and thus it divides $B_{1, \chi \omega^{-1}}$, where χ and ω are characters belonging to the fields k and $\mathbb{Q}(\sqrt{-3})$ respectively. In general, the main conjecture of Iwasawa theory implies that if an odd prime p divides the class number of k, then p divides $B_{1, \chi \omega^{-1}}$, where ω is the Teichmüller character for p.

The aim of this paper is to examine its converse when p splits in k. Let k_{∞} be the \mathbb{Z}_{p}-extension of $k=k_{0}$ and h_{n} be the class number of k_{n}, the nth layer of the \mathbb{Z}_{p}-extension. We shall prove that if $p \mid B_{1, x \omega^{-1}}$, then $p \mid h_{n}$ for all $n \geqslant 1$. In terms of Iwasawa theory, this amounts to saying that if M_{∞} / k_{∞} is nontrivial, then L_{∞} / k_{∞} is nontrivial, where M_{∞} and L_{∞} are the maximal abelian p-extensions unramified outside p and unramified everywhere respectively.

1. Introduction

Fix a square free positive integer m and let $k=\mathbb{Q}(\sqrt{m})$. Class numbers of these real quadratic fields have been studied for a long time. Two outstanding formulas related to class numbers are the analytic (classical or p-adic) class number formula [7] and the index theorem of circular units discovered by Sinnott [6].

In this paper we study the class number of k by examining the p-divisibility of the class number for each prime p. When $p=2$, the answer is well known and can be easily checked either by considering the genus field of k or by using cohomological arguments: if the discriminant of k has at least three distinct prime divisors, then the class number is divisible by 2. Note that the converse of this statement is not true. For instance, the class number of $\mathbb{Q}(\sqrt{85})$ is 2 and that of $\mathbb{Q}(\sqrt{21})$ is 1 . Both of these fields have discriminants with exactly two prime divisors.

The answer for $p=3$ is also known [$\mathbf{5}, \mathbf{7}$]: if 3 divides the class number of k, then 3 divides the class number of $\mathbb{Q}(\sqrt{-3 m})$. This can be proved either by applying the p-adic class number formular or by using the Kummer pairing as Scholz did [5]. The

[^0]converse of this does not hold either. For example, the class number of $\mathbb{Q}(\sqrt{85})$ is 2 , but that of $\mathbb{Q}(\sqrt{-255})$ is 12 . Let χ be the nontrivial character belonging to k and ω be the Teichmüller character for $p=3$. Then $\chi \omega^{-1}$ belongs to the field $\mathbb{Q}(\sqrt{-3 m})$ and $-B_{1, \chi \omega^{-1}}$ is the class number of $\mathbb{Q}(\sqrt{-3 m})$. Thus we can rephrase the statement as 3 divides $B_{1, \chi \omega^{-1}}$ if 3 divides the class number of k.

This can be generalised to an arbitrary odd prime p by using the main conjecture of Iwasawa theory. Let ω be the Teichmüller character for p. Let k_{∞} be the $\mathbb{Z}_{p^{-}}$ extension of k and M_{∞} be its maximal abelian p-extension unramified outside p. Let f_{χ} be the Iwasawa power series in $\Lambda=\mathbb{Z}_{p}[[T]]$ corresponding to the p-adic L-function $L_{p}(s, \chi)$. Then by the main conjecture, which is a theorem now [4], $\operatorname{Gal}\left(M_{\infty} / k_{\infty}\right)$ is pseudo-isomorphic to $\Lambda /\left(f_{\chi}\right)$ as a. Λ-module. We also have

$$
f_{\chi}(0)=L_{p}(0, \chi)=-B_{1, \chi \omega^{-1}}
$$

Thus if p does not divide $B_{1, \chi \omega^{-1}}$, then f_{χ} is a unit in Λ. Hence $\operatorname{Gal}\left(M_{\infty} / k_{\infty}\right)$ is trivial, since it has no nonzero finite Λ-submodules (see [3, appendix]). Therefore $\mathrm{Gal}\left(L_{\infty} / k_{\infty}\right)$ is also trivial, where L_{∞} is the maximal unramified Abelian p-extension of k_{∞}. Thus p does not divide the class number of k. To summarise, we proved:

THEOREM 1. Let $k=\mathbb{Q}(\sqrt{m})$ and p be an odd prime. If p divides the class number of k, then p divides $B_{1, \chi \omega^{-1}}$.

The aim of this paper is to discuss the converse of theorem 1. According to the previous example for $p=3$, the converse cannot be true in general. However, we have the following result when p splits in k. For each $n \geqslant 0$, let h_{n} be the class number of k_{n}, the nth layer of the \mathbb{Z}_{p}-extension k_{∞} of k.

TheOrem 4. Suppose an odd prime p splits in $k=\mathbb{Q}(\sqrt{m})$. If p divides $B_{1, \chi \omega^{-1}}$, then p divides h_{n} for all $n \geqslant 1$.

For the proof of Theorem 4, we shall use circular units defined by Sinnott and his index Theorem [6]. In Section 2, we briefly review his definition of circular units and compute cohomology groups of them in the \mathbb{Z}_{p}-extension. In Section 3, we shall assume that p splits in k, so there are two prime ideals φ_{0} and $\tilde{\wp}_{0}$ above p in k. Let \wp_{n} and $\widetilde{\wp}_{n}$ be the prime ideals of k_{n} above \wp_{0} and $\widetilde{\wp}_{0}$ respectively. We shall see that every circular unit δ_{n} of k_{n} whose norm to k_{0} equals 1 has the property that $\delta_{n}=\alpha_{n}^{\sigma-1}$ for some $\alpha_{n} \in k_{n}$ satisfying $\left(\alpha_{n}\right)=\wp_{n}^{g_{n}} \widetilde{\wp_{n}} \tilde{g}_{n}$ for some integers g_{n} and \tilde{g}_{n}, where σ is a topological generator of the Galois group $\Gamma=\operatorname{Gal}\left(k_{\infty} / k\right)$. Then we pick a special δ_{n} and show that

$$
g_{n}-\tilde{g}_{n} \equiv \pm \sqrt{d} B_{1, \chi \omega^{-1}} \bmod p \mathbb{Z}_{p}
$$

where d is the conductor of k. Finally, we apply this congruence to prove Theorem 4.

2. Circular Units

Let F be an abelian field. For each $n>2$, let $F_{n}=F \cap \mathbb{Q}\left(\zeta_{n}\right)$ and $C_{F_{n}}=$ $N_{\mathbb{Q}\left(\zeta_{n}\right) / F_{n}}\left(C_{\mathbb{Q}\left(\zeta_{n}\right)}\right)$, where $C_{\mathbb{Q}\left(\zeta_{n}\right)}$ is the group of the cyclotomic units of $\mathbb{Q}\left(\zeta_{n}\right)$ in the usual sense. We define the group of circular units C_{F} of F as the multiplicative subgroup of F^{\times}generated by $C_{F_{n}}$ together with -1 (see [6]). Note that if n is prime to the conductor of F, then $F_{n}=\mathbb{Q}$ and so $C_{F_{n}}=\{1\}$. Thus there are only finitely many n 's to be considered in the definition of C_{F}. For example, when $F=k=$ $\mathbb{Q}(\sqrt{m}), C_{k}=\left\langle N_{\mathbb{Q}\left(\zeta_{d}\right) / k}\left(C_{\mathbf{Q}\left(\zeta_{d}\right)}\right),-1\right\rangle$, where d is the conductor of k (d will always mean the conductor of k throughout this paper). To see this, first observe that $k \cap$ $\mathbb{Q}\left(\zeta_{n}\right)$ is either \mathbb{Q} or k. If $k \cap \mathbb{Q}\left(\zeta_{n}\right)=\mathbb{Q}$, then $C_{k_{n}}=\{1\}$. Otherwise, $\mathbb{Q}\left(\zeta_{n}\right)$ contains $\mathbb{Q}\left(\zeta_{d}\right)$ as a subfield and thus $N_{\mathbb{Q}\left(\zeta_{n}\right) / k}\left(C_{\mathbb{Q}\left(\zeta_{n}\right)}\right)$ is contained in $N_{\mathbb{Q}\left(\zeta_{d}\right) / k}\left(C_{\mathbb{Q}\left(\zeta_{d}\right)}\right)$.

Fix an odd prime p with $(p, m)=1$, and let $k_{\infty}=\bigcup_{n \geqslant 0} k_{n}$ be the \mathbb{Z}_{p}-extension of $k=k_{0}=\mathbb{Q}(\sqrt{m})$. For each $n \geqslant 0$, we denote the group of circular units of k_{n} by C_{n}. It is not hard to show that

$$
\begin{equation*}
C_{n}=C_{n-1}\left(N_{\mathbb{Q}\left(\zeta_{p^{n+1}}\right) / k_{n}}\left(C_{\mathbb{Q}\left(\zeta_{p^{n+1} d}\right.}\right)\right)\left(N_{\mathbb{Q}\left(\zeta_{p^{n+1}}\right) / \mathbb{Q}_{n}}\left(C_{\mathbb{Q}\left(\zeta_{p^{n+1}}\right)}\right)\right) \tag{*}
\end{equation*}
$$

where \mathbb{Q}_{n} is the subfield of $\mathbb{Q}\left(\zeta_{p^{n+1}}\right)$ whose degree over \mathbb{Q} is p^{n}. Thus the generators of C_{n} are given so explicitly that we can compute the cohomology groups of circular units in the \mathbb{Z}_{p}-extension. Another feature of the circular units is the following index theorem discovered by Sinnott [6].

Theorem. Let E_{n} be the unit group of k_{n} and h_{n} be the class number of k_{n}. Then $\left[E_{n}: C_{n}\right]=2^{c_{n}} h_{n}$ for some integer c_{n}.

Before we compute the cohomology groups of C_{n}, we set up some notation. For each integer $s \geqslant 1$, we choose a primitive s th root ζ_{s} of 1 so that $\zeta_{t}^{t / s}=\zeta_{s}$ if $s \mid t$. Let $K=\mathbb{Q}\left(\zeta_{d}\right), F=\mathbb{Q}\left(\zeta_{p}\right)$ and $K^{\prime}=\mathbb{Q}\left(\zeta_{p d}\right)$. We denote their cyclotomic \mathbb{Z}_{p}-extensions by K_{∞}, F_{∞}, and K_{∞}^{\prime}. Let σ be the topological generator of the Galois group $\Gamma=\operatorname{Gal}\left(K_{\infty}^{\prime} / K^{\prime}\right)$ which maps $\zeta_{p^{n}}$ to $\zeta_{p^{n}}^{1+p}$ for all $n \geqslant 1$. Restrictions of σ to various subfields are also denoted by σ. Let $\Delta=\operatorname{Gal}(K / k), \bar{\Delta}=$ $\operatorname{Gal}(K / \mathbb{Q})$ and $\Delta_{k}=\operatorname{Gal}(k / \mathbb{Q})=\{i d, \rho\}$. Elements of Δ or $\bar{\Delta}$ will be denoted by τ 's. Let R be the set of all roots of 1 in \mathbb{Z}_{p}, that is, $R=\left\{\omega \in \mathbb{Z}_{p} \mid \omega^{p-1}=1\right\}$. Then R can be regarded as the Galois group $\operatorname{Gal}(F / \mathbb{Q})$ or any Galois group isomorphic to it such as $\operatorname{Gal}\left(F_{n} / \mathbb{Q}_{n}\right)$. For $m>n$, let $G_{m, n}$ be the Galois group Gal $\left(K_{m}^{\prime} / K_{n}^{\prime}\right)$ and $N_{m, n}$ be the norm map $N_{K_{m}^{\prime} / K_{n}^{\prime}}$ from K_{m}^{\prime} to K_{n}^{\prime}. We shall abbreviate $G_{m, 0}$ and $N_{m, 0}$ to G_{m} and N_{m} respectively. $G_{m, n}$ will also mean the Galois groups $\operatorname{Gal}\left(k_{m} / k_{n}\right), \operatorname{Gal}\left(F_{m} / F_{n}\right)$ and $\operatorname{Gal}\left(\mathbb{Q}_{m} / \mathbb{Q}_{n}\right)$. Similarly $N_{m, n}$ will have various meanings. Finally we fix a generator ψ_{n} of the character group of $\operatorname{Gal}\left(\mathbb{Q}_{n} / \mathbb{Q}\right)$
such that $\psi_{n}(\sigma)=\zeta_{p^{n}}$. Thus ψ_{n} is an even character of order p^{n} with conductor p^{n+1} such that $\psi_{n}^{p}=\psi_{n-1}$.

Theorem 2. Suppose p splits in k. For $m>n \geqslant 0$, we have the following.

$$
\begin{align*}
C_{m}^{G_{m, n}} & =C_{n} \tag{1}\\
\hat{H}^{0}\left(G_{m, n}, C_{m}\right) & \simeq \mathbb{Z} / p^{m-n} \mathbb{Z} \tag{2}\\
\hat{H}^{-1}\left(G_{m, n}, C_{m}\right) & \simeq\left(\mathbb{Z} / p^{m-n} \mathbb{Z}\right)^{2} \tag{3}
\end{align*}
$$

Proof of (1): It is clear that $C_{n} \subset C_{m}^{G_{m, n}}$. To prove the converse, we invoke a theorem of Ennola on relations of cyclotomic units [1]: If a cyclotomic unit $\xi=$ $\Pi\left(1-\zeta_{n}^{a}\right)^{x_{a}}$ in $\mathbb{Q}\left(\zeta_{n}\right)$ is a root of 1 for some integers x_{a}, then $Y(\theta, \xi)=0$ for $1 \leqslant a<n$ every even character θ of conductor n, where $Y(\theta, \xi)=\sum_{1 \leqslant a<n} \theta(a) x_{a}$.

To prove $C_{m}^{G m, n} \subset C_{n}$, it is enough to check the inclusion when $m=n+1$. Suppose that $u \in C_{n+1}$ is fixed by $G_{n+1, n}$, that is $u^{\sigma^{p^{n}}}=u$. By ($\left.*\right), u=u_{n} v_{n+1}$ for some $u_{n} \in C_{n}$ and $v_{n+1} \in N_{K_{n+1}^{\prime} / k_{n+1}}\left(C_{K_{n+1}^{\prime}}\right) N_{F_{n+1} / Q_{n+1}}\left(C_{F_{n+1}}\right)$. Since $u_{n}^{\sigma^{p^{n}}}=$ u_{n}, we have $v_{n+1}^{\sigma^{p^{n}}}=v_{n+1}$. Thus we may assume $u_{n}=1$. Then we can write u as

$$
u=\prod_{\substack{0 \leqslant l<p^{n} \\ 0 \leqslant k<p}}\left(\prod_{\substack{\omega \in R \\ \tau \in \Delta}}\left(\zeta_{p^{n+2}}^{\sigma^{l+k p^{n}} \omega}-\zeta_{d}^{\tau}\right)^{a_{l, k}}\left(\zeta_{p^{n+2}}^{\sigma^{l+k p^{n}} \omega}-\zeta_{d}^{\rho \tau}\right)^{b_{l, k}} \prod_{\omega \in R}\left(\zeta_{p^{n+2}}^{\sigma^{l+k p^{n}} \omega}-1\right)^{c_{l, k}}\right)
$$

for some integers $a_{l, k}, b_{l, k}$ and $c_{l, k}$.
We apply Ennola's theorem to the relation $u^{\sigma^{p^{n}}-1}=1$ with characters of the form $\psi_{n+1}^{j} \chi$ for $0<j<p^{n+1},(j, p)=1$. Notice that

$$
\begin{gathered}
Y\left(\psi_{n+1}^{j} \chi, \prod_{\substack{\omega \in R \\
\tau \in \Delta}}\left(\zeta_{p^{n+2}}^{\sigma^{l+k p^{n}} \omega}-\zeta_{d}^{\tau}\right)\right)=(p-1) \frac{\phi(d)}{2} \psi_{n+1}^{j}\left(d \sigma^{l+k p^{n}}\right) \\
Y\left(\psi_{n+1}^{j} \chi, \prod_{\substack{\omega \in R \\
\tau \in \Delta}}\left(\zeta_{p^{n+2}}^{\sigma^{l+k p^{n}} \omega}-\zeta_{d}^{\rho \tau}\right)\right)=-(p-1) \frac{\phi(d)}{2} \psi_{n+1}^{j}\left(d \sigma^{l+k p^{n}}\right)
\end{gathered}
$$

and

$$
Y\left(\psi_{n+1}^{j} \chi, \prod_{\omega \in R}\left(\zeta_{p^{n+2}}^{\sigma^{l+k p^{n}} \omega}-1\right)\right)=0
$$

Thus we have

$$
\sum_{\substack{0 \leqslant l<p^{n} \\ 0 \leqslant k<p}}\left(a_{l, k}-b_{l, k}\right) \psi_{n+1}^{j}\left(\sigma^{l+k p^{n}}\right)=0
$$

By letting j run through all the integers $0<j<p^{n+1}$ with $p \nmid j$, we have a system of linear equations $A X=\mathbb{O}$, where A is a $\left(p^{n+1}-p^{n}\right) \times p^{n+1}$ matrix with entries $\psi_{n+1}^{j}\left(\sigma^{l+k p^{n}}\right)$ and $X=\left(\ldots, a_{l, k}-b_{l, k}, \ldots\right)^{t}$. Since $\operatorname{rank} A=p^{n+1}-p^{n}$, the rank of solutions must be p^{n}. And we can exhibit p^{n} independent solutions explicitly. Namely, for each $s, 0 \leqslant s<p^{n}$, let $X_{s}=\left(\ldots, f_{l, k}, \ldots\right)^{t}$ be such that

$$
f_{l, k}= \begin{cases}0 & \text { if } l \neq s \\ 1 & \text { if } l=s\end{cases}
$$

Then X_{s} is a solution since $\sum_{0 \leqslant k<p} \psi_{n+1}^{j}\left(\sigma^{s+k p^{n}}\right)=0$ for all j, and $\left\{X_{s}\right\}_{0 \leqslant s<p^{n}}$ is clearly linearly independent. Therefore if $X=\left(\ldots, a_{l, k}-b_{l, k}, \ldots\right)^{t}$ is a solution of $A X=\mathbb{O}$, then $a_{s, k}-b_{s, k}$ is independent of k for all $s, 0 \leqslant s<p^{n}$, say $a_{s, k}-b_{s, k}=e_{s}$. Then we can write u as

$$
u=\prod_{l, k, \omega, \tau}\left(\zeta_{p^{n+2}}^{\sigma^{l+k p^{n}} \omega}-\zeta_{d}^{\tau}\right)^{e_{l}} \prod_{\substack{l, k, \omega \\ \nu \in \bar{\Delta}}}\left(\zeta_{p^{n+2}}^{\sigma^{l+k p^{n}} \omega}-\zeta_{d}^{\nu}\right)^{b_{l, k}} \prod_{l, k, \omega}\left(\zeta_{p^{n+2}}^{a^{l+k p^{n}} \omega}-1\right)^{c_{l, k}}
$$

In this expression, the first product is in C_{n}, since $\prod_{k, \omega, \tau}\left(\zeta_{p^{n+2}}^{\sigma^{l+k p^{n}} \omega}-\zeta_{d}^{\tau}\right)$ is in C_{n}. The second and the third products in the expression, on the other hand, are circular units of \mathbb{Q}_{n+1}. Thus we can write u as $u=v_{n} v$ for some $v_{n} \in C_{n}$ and $v \in C_{\mathbb{Q}_{n+1}}$, and v satisfies $v^{\sigma^{p^{n}}}=v$. Now write v as $v=\prod_{l, k, \omega}\left(\zeta_{p^{n+2}}^{a^{l+k p^{n}} \omega}-1\right)^{d_{l, k}}$ and apply Ennola's Theorem to $v^{\sigma^{p^{n}}-1}=1$ with characters of the form $\psi_{n+1}^{j}, 0 \leqslant j<p^{n+1}, p \nmid j$. After a similar computation, we see that v is a circular unit in \mathbb{Q}_{n}, hence $u \in C_{n}$. This proves (1).

$$
\text { PROOF OF (2): For each } l \geqslant 0, \text { let } \delta_{l}=\prod_{\substack{\omega \in R \\ \tau \in \Delta}}\left(\zeta_{p^{l+1}}^{\omega}-\zeta_{d}^{\tau}\right) \text { and } \pi_{l}=\prod_{\omega \in R}\left(\zeta_{p^{l+1}}^{\omega}-1\right)
$$ Then $\delta_{l}, \pi_{l}^{\sigma-1} \in C_{l}$. Note that for $m>n \geqslant 0$,

$$
N_{m, n}\left(\delta_{m}\right)=\prod_{\substack{\omega \in R \\ \tau \in \Delta}}\left(\zeta_{p^{n+1}}^{\omega}-\zeta_{d}^{p^{m-n} \tau}\right)=\delta_{n}
$$

since p splits in k and thus τ_{p} (Frobenius automorphism of $\mathbb{Q}\left(\zeta_{d}\right)$ for p) permutes Δ. In particular,

$$
N_{l}\left(\delta_{l}\right)=\delta_{0}=\prod_{\omega, \tau}\left(\zeta_{p}^{\omega}-\zeta_{d}^{\tau}\right)=\frac{\prod_{\tau}\left(1-\zeta_{d}^{p \tau}\right)}{\prod_{\tau}\left(1-\zeta_{d}^{\tau}\right)}=1
$$

Also note that, for any $u \in C_{n}$, we can write u as $u=u_{0} u_{1} \cdots u_{n}$, where $u_{0} \in C_{0}$ and for $k \geqslant 1, u_{k}$ is of the form

$$
\begin{equation*}
u_{k}=\sum_{k} \sum_{\substack{0 \leqslant i \leqslant p^{k} \\ a_{i, j} \sigma^{i} \rho^{j}}}{ }_{(\sigma-1)} \sum_{0 \leqslant i \leqslant 1} c_{i} \sigma^{i} . \tag{**}
\end{equation*}
$$

First we claim that $C_{n}=C_{0} N_{m, n} C_{m}$. Clealy $C_{0} N_{m, n} C_{m}$ is contained in C_{n}. To check the converse, let $u=u_{0} u_{1} \cdots u_{n}$, where u_{k} is as in (**) for $k \geqslant 1$. Let $\sigma_{s}=\sigma^{p^{s}}$. Then $N_{m, k}=\sum_{0 \leqslant i<p^{m-k}} \sigma_{k}^{i}$. For each $i, 0 \leqslant i<p^{m-k}$, write $i=a p^{n-k}+b$ with $0 \leqslant a<p^{m-n}, 0 \leqslant b<p^{n-k}$. Then

$$
\begin{array}{r}
N_{m, k}=\sum_{a, b} \sigma_{k}^{a p^{n-k}+b}=\left(\sum_{a} \sigma_{k}^{a p^{n-k}}\right)\left(\sum_{b} \sigma_{k}^{b}\right)=\left(\sum_{a} \sigma_{n}^{a}\right)\left(\sum_{b} \sigma_{k}^{b}\right) \\
=\left(\sum_{b} \sigma_{k}^{b}\right) N_{m, n}
\end{array}
$$

Therefore

$$
\delta_{k}=N_{m, k} \delta_{m}=N_{m, n}\left(\delta_{m}^{\sum_{k}^{b} \sigma_{k}^{b}}\right) \text { and } \pi_{k}^{\sigma-1}=N_{m, n}\left(\pi_{m}^{(\sigma-1) \sum_{b} \sigma_{k}^{b}}\right)
$$

Hence $u_{k} \in N_{m, n} C_{m}$ for each $k, 1 \leqslant k \leqslant n$.
Next we show that $C_{0} \cap N_{m, n} C_{m}=C_{0}^{p^{m-n}}$. Obviously, $C_{0}^{p^{m-n}} \subset C_{0} \cap N_{m, n} C_{m}$. For the converse, suppose $u \in C_{0} \cap N_{m, n} C_{m}$ and write $u=N_{m, n}(v)$ for some $v \in C_{m}$. As before, we can write $v=v_{0} v_{1} \cdots v_{m}$ with v_{k} of the form in (**) for $k \geqslant 1$. By taking N_{n}, we have $N_{n}(u)=N_{n}\left(N_{m, n}(v)\right)=N_{m}(v)$. Since $N_{m}\left(v_{k}\right)=N_{k}\left(v_{k}\right)^{p^{m-k}}=1$ for $k \geqslant 1$, we obtain $u^{p^{n}}=v_{0}^{p^{m}}$. Thus $u^{-1} v_{0}^{p^{m-n}}$ is a p^{n} th root of 1 in k, hence equals 1 . Therefore $u=v_{0}^{p^{m-n}} \in C_{0}^{p^{m-n}}$. Thus

$$
\begin{aligned}
\hat{H}^{0}\left(G_{m, n}, C_{m}\right) & =C_{n} / N_{m, n} C_{m}=C_{0} N_{m, n} C_{m} / N_{m, n} C_{m} \\
& =C_{0} / C_{0} \cap N_{m, n} C_{m}=C_{0} / C_{0}^{p^{m-n}}
\end{aligned}
$$

Note that C_{0} is generated by $\prod_{\tau \in \Delta}\left(1-\zeta_{d}^{\tau}\right), \prod_{\tau \in \Delta}\left(1-\zeta_{d}^{\rho \tau}\right)$ and -1 . But $\prod_{\tau \in \Delta}\left(1-\zeta_{d}^{\tau}\right)$ $\prod_{\tau \in \Delta}\left(1-\zeta_{d}^{\rho \tau}\right)=1$. Hence

$$
\widehat{H}^{0}\left(G_{m, n}, C_{m}\right) \simeq \mathbb{Z} / p^{m-n} \mathbb{Z}
$$

and is generated by $\prod_{\tau \in \Delta}\left(1-\zeta_{d}^{\tau}\right)$.
Proof of (3): Let δ_{n} and π_{n} be as in the proof of (3). We saw that $N_{n}\left(\delta_{n}\right)=$ $N_{n}\left(\pi_{n}^{\sigma-1}\right)=1$. We shall prove
$(* * *) \quad$ if $\delta_{n}^{a} \pi_{n}^{(\sigma-1) b} \in C_{n}^{\sigma-1}$, then $a \equiv b \equiv 0 \bmod p^{n}$.
This would imply $\hat{H}^{-1}\left(G_{n}, C_{n}\right) \simeq\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{2}$ and $\hat{H}^{-1}\left(G_{n}, C_{n}\right)$ is generated by δ_{n} and $\pi_{n}^{\sigma-1}$ since the Herbrand quotient for C_{n} is p^{n} and $\widehat{H}^{-1}\left(G_{n}, C_{n}\right)$ is annihilated by p^{n}. Then from the inflation- restriction sequence

$$
0 \rightarrow H^{1}\left(G_{n}, C_{m}^{G_{m, n}}\right) \xrightarrow{\text { inf }} H^{1}\left(G_{m}, C_{m}\right) \xrightarrow{\text { res }} H^{1}\left(G_{m, n}, C_{m}\right),
$$

we obtain

$$
0 \rightarrow\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{2} \rightarrow\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{2} \rightarrow H^{1}\left(G_{m, n}, C_{m}\right)
$$

since the first cohomology group H^{1} is isomorphic to \hat{H}^{-1}. Thus $\left(\mathbb{Z} / p^{m-n} \mathbb{Z}\right)^{2}$ injects into $H^{1}\left(G_{m, n}, C_{m}\right)$. But we already know that its order is $p^{2(m-n)}$. Therefore $\widehat{H}^{-1}\left(G_{m, n}, C_{m}\right) \simeq\left(\mathbb{Z} / p^{m-n} \mathbb{Z}\right)^{2}$.

It remains to show $(* * *)$. We shall prove this by induction on n. Suppose that $\delta_{1}^{a} \pi_{1}^{(\sigma-1) b}=u^{\sigma-1}$ for some $u \in C_{1}$. As before we can write $u=u_{0} u_{1}$, where $u_{0} \in C_{0}$ and u_{1} is of the form in (**). So we have $\delta_{1}^{a} \pi_{1}^{(\sigma-1) b}=u_{1}^{\sigma-1}$, where $u_{1}=$ $\delta_{1}^{\sum a_{i, j} \sigma^{i} \rho^{j}} \pi_{1}^{(\sigma-1) \sum c_{i} \sigma^{i}}$. We apply Ennola's Theorem with the character $\psi_{1} \chi$ to this equation. Then we have

$$
a Y\left(\psi_{1} \chi, \delta_{1}\right)=\left(\psi_{1}(\sigma)-1\right)\left(\sum_{i, j} a_{i, j} \psi_{1} \chi\left(\sigma^{i} \rho^{j}\right)\right) Y\left(\psi_{1} \chi, \delta_{1}\right)
$$

Since

$$
Y\left(\psi_{1} \chi, \delta_{1}\right)=\sum_{\omega, \tau} \psi_{1} \chi\left(-\omega d+p^{2} \tau\right)=(p-1) \frac{\phi(d)}{2} \psi_{1}(d) \neq 0
$$

we get

$$
a=\left(\psi_{1}(\sigma)-1\right)\left(\sum_{i, j} a_{i, j} \psi_{1} \chi\left(\sigma^{i} \rho^{j}\right)\right) .
$$

Note that $\sum a_{i, j} \psi_{1} \chi\left(\sigma^{i} \rho^{j}\right)$ is integral. Therefore $a \equiv 0 \bmod \left(\zeta_{p}-1\right)$, hence $\bmod p$. Since $N_{1} \delta_{1}=1$,

$$
\delta_{1}^{p}=\frac{\delta_{1}^{p}}{N_{1} \delta_{1}}=\delta_{1}^{\sum_{1} \leqslant i<p}\left(1-\sigma^{i}\right) \quad=\delta_{1}^{\left(\sum\left(1-\sigma^{i}\right) /(\sigma-1)\right)(\sigma-1)} \in C_{1}^{\sigma-1} .
$$

Then from $\delta_{1}^{a} \pi_{1}^{(\sigma-1) b}=u^{\sigma-1}$, we obtain $\pi_{1}^{(\sigma-1) b}=v^{\sigma-1}$ for some $v \in C_{1}$. This implies that $\pi_{1}^{b}=v \alpha_{0}$ for some $\alpha_{0} \in k$. As ideals, we have $\left(\pi_{1}^{b}\right)=\left(\alpha_{0}\right)$, which is impossible unless $b \equiv 0 \bmod p$ since primes of k above p ramify totally in k_{1}.

Now we prove $(* * *)$ for n, assuming the result for $n-1$. Suppose $\delta_{n}^{a} \pi_{n}^{(\sigma-1) b}=$ $u_{n}^{\sigma-1}$ for some $u_{n} \in C_{n}$. By applying $N_{n, n-1}$ to both sides, we have $\delta_{n-1}^{a} \pi_{n-1}^{(\sigma-1) b}=$ $\left(N_{n, n-1} u_{n}\right)^{\sigma-1} \in C_{n-1}^{\sigma-1}$. Then by the induction hypothesis, $a \equiv b \equiv 0 \bmod p^{n-1}$. Let $a=p^{n-1} a_{1}$ and $b=p^{n-1} b_{1}$. Note that

$$
\delta_{n}^{p^{n-1}}=\left(N_{n, 1} \delta_{n}\right) \frac{\delta_{n}^{p^{n-1}}}{\left(N_{n, 1} \delta_{n}\right)}=\delta_{1}\left(\delta_{n} \sum^{0 \leqslant k<p^{n-1}}{ }^{\left(1-\sigma^{k p}\right) /(\sigma-1)}\right)^{\sigma-1}
$$

and

$$
\pi_{n}^{p^{n-1}(\sigma-1)}=\pi_{1}^{\sigma-1}\left(\pi_{n}^{\sum_{n}^{k}\left(1-\sigma^{k p}\right)}\right)^{\sigma-1}
$$

Therefore $\delta_{n}^{a} \pi_{n}^{(\sigma-1) b}=u_{n}^{\sigma-1}$ reads $\delta_{1}^{a_{1}} \pi_{1}^{(\sigma-1) b}=v_{n}^{\sigma-1}$ for some $v_{n} \in C_{n}$. By the injectivity of the inflation map

$$
\widehat{H}^{-1}\left(G_{1}, C_{1}\right) \simeq H^{1}\left(G_{1}, C_{1}\right) \xrightarrow{\text { inf }} H^{1}\left(G_{n}, C_{n}\right) \simeq \widehat{H}^{-1}\left(G_{n}, C_{n}\right)
$$

$\delta_{1}^{a_{1}} \pi_{1}^{(\sigma-1) b_{1}}$ must be in $C_{1}^{\sigma-1}$. Thus $a_{1} \equiv b_{1} \equiv 0 \bmod p$ and so $a \equiv b \equiv 0 \bmod p^{n}$. This finishes the proof.

Remark. In the proof of (1), we did not use the splitting of p. So (1) is still valid even when p remains inert in k. If p remains inert in k, the Frobenius automorphism τ_{p} of $\mathbb{Q}\left(\zeta_{d}\right)$ for p is not in Δ. Thus

$$
\prod_{\tau \in \Delta}\left(1-\zeta_{d}^{\tau}\right)^{-2}=\prod_{\tau \in \Delta} \frac{1-\zeta_{d}^{p \tau}}{1-\zeta_{d}^{\tau}}=\prod_{\omega, \tau}\left(\zeta_{p}^{\omega}-\zeta_{d}^{\tau}\right)=\delta_{0}=N_{1}\left(\delta_{1}^{\tau_{p}}\right)
$$

Therefore $\prod_{\tau \in \Delta}\left(1-\zeta_{d}^{\tau}\right) \in N_{1}\left(C_{1}\right)$. With this additional information, one can modify the proof of (2) to obtain:

Theorem 2'. Suppose p remains inert in k. For $m>n \geqslant 0$, we have

$$
\begin{align*}
C_{m}^{G_{m, n}} & =C_{n} \\
\widehat{H}^{0}\left(G_{m, n}, C_{m}\right) & =\{0\} \\
\hat{H}^{-1}\left(G_{m, n}, C_{m}\right) & \simeq \mathbb{Z} / p^{m-n} \mathbb{Z}
\end{align*}
$$

3. Main results

Let p be an odd prime which splits in k and let $\delta_{n}=\prod_{\omega \in R, \tau \in \Delta}\left(\zeta_{p^{n+1}}^{\omega}-\zeta_{d}^{\tau}\right), \pi_{n}=$ $\prod_{\omega \in R}\left(\zeta_{p^{n+1}}^{\omega}-1\right)$ as before. We know that δ_{n} and $\pi_{n}^{\sigma-1}$ generate $\hat{H}^{-1}\left(G_{n}, C_{n}\right)$. Let E_{n}^{\prime} be the group of p-units of k_{n}.

Lemma 1. The homomorphism $\hat{H}^{-1}\left(G_{n}, C_{n}\right) \rightarrow \hat{H}^{-1}\left(G_{n}, E_{n}^{\prime}\right)$ induced by the inclusion $C_{n} \rightarrow E_{n}^{\prime}$ is a zero map.

Proof: Since G_{n} is cyclic, it is enough to show that $H^{1}\left(G_{n}, C_{n}\right) \rightarrow H^{1}\left(G_{n}, E_{n}^{\prime}\right)$ is a zero map. By taking limits under the inflation maps, we have a homomorphism $H^{1}\left(\Gamma, C_{\infty}\right) \longrightarrow H^{1}\left(\Gamma, E_{\infty}^{\prime}\right)$, where $C_{\infty}=\bigcup_{n \geqslant 0} C_{n}$ and $E_{\infty}^{\prime}=\bigcup_{n \geqslant 0} E_{n}^{\prime}$. By Theorem 2, $H^{1}\left(\Gamma, C_{\infty}\right) \simeq\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{2}$. On the other hand, $H^{1}\left(\Gamma, E_{\infty}^{\prime}\right)$ is a finite group [2]. Since $\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{2}$ cannot have a nontrivial finite quotient, the map $H^{1}\left(\Gamma, C_{\infty}\right) \rightarrow H^{1}\left(\Gamma, E_{\infty}^{\prime}\right)$ is a zero map. Then the lemma follows from the injectivity of the inflation maps.

Thus $\delta_{n}=\alpha_{n}^{\sigma-1}$ for some p-unit α_{n} in k_{n} by the lemma. Let \wp_{n} and $\widetilde{\wp}_{n}$ be the prime ideals of k_{n} above p as in the introduction. Then $\left(\alpha_{n}\right)=\wp_{n}^{g_{n}} \widetilde{\wp_{n}} \widetilde{g}_{n}$ for some integers g_{n} and \widetilde{g}_{n}. If $\delta_{n}=\alpha_{n}^{\sigma-1}=\beta_{n}^{\sigma-1}$ for some other p-unit β_{n}, then $\alpha_{n}=\beta_{n} \alpha_{0}$ for some p-unit $\alpha_{0} \in k_{0}$. Thus g_{n} and \tilde{g}_{n} are determined uniquely modulo p^{n} by δ_{n} since \wp_{0} and $\widetilde{\wp_{0}}$ ramify totally in k_{n}. If $\delta_{m}=\alpha_{m}^{\sigma-1}$ with $\left(\alpha_{m}\right)=\wp_{m}^{g_{m}} \widetilde{\wp_{m}} \widetilde{g}_{m}$ for $m>n$, then $\delta_{n}=N_{m, n} \delta_{m}=\left(N_{m, n} \alpha_{m}\right)^{\sigma-1}$ and $\left(N_{m, n} \alpha_{m}\right)=\wp_{n}^{g_{m}}{\widetilde{\wp_{n}}}^{g_{m}}$. Therefore $g_{m} \equiv g_{n}, \tilde{g}_{m} \equiv \tilde{g}_{n} \bmod p^{n}$.

THEOREM 3. Let $\delta_{n}=\alpha_{n}^{\sigma-1}$ with $\left(\alpha_{n}\right)=\wp_{n}^{g_{n}}{\widetilde{\wp_{n}}}^{\tilde{g}_{n}}$. Then $g_{n}-\tilde{g}_{n} \equiv g_{1}-\widetilde{g}_{1} \equiv$ $\pm \sqrt{d} B_{1, \chi \omega^{-1}} \bmod p \mathbb{Z}_{p}$.

Remark. The signature in the theorem depends on the embedding of $\overline{\mathbb{Q}}$ into $\overline{\mathbb{Q}_{p}}$. Fix an embedding ι once and for all and assume that under this embedding, k_{n} is completed at \wp_{n} rather than $\widetilde{\wp_{n}}$. We denote $\iota\left(\zeta_{d}\right)$ just by ζ_{d}. Let $p(\tau)$ be the integer modulo d corresponding to τ under the isomorphism $\bar{\Delta} \simeq(\mathbb{Z} / d \mathbb{Z})^{\times}$. Then $\iota\left(\zeta_{d}^{\tau}\right)=\iota\left(\zeta_{d}^{p(\tau)}\right)=\iota\left(\zeta_{d}\right)^{p(\tau)}=\zeta_{d}^{p(\tau)}$. Again we simply write ζ_{d}^{τ} for $\iota\left(\zeta_{d}^{\tau}\right)=\zeta_{d}^{p(\tau)}$ in $\overline{\mathbb{Q}_{p}}$.

Before we prove Theorem 3, we need the following proposition which is valid even when p remains inert in k.

Proposition 1.
$\sum_{\substack{\omega \in R \\ \tau \in \bar{\Delta}}} \chi(\tau) \log _{p}\left(\zeta_{p^{2}}^{\omega}-\zeta_{d}^{\tau}\right) \equiv-\chi(p) \sqrt{d} B_{1, \chi \omega-1} \bmod \left(\zeta_{p^{2}}-1\right)^{p-1}$.

Proof: For $0 \leqslant i<p, 0 \leqslant k<p$, let

$$
\begin{aligned}
& T_{i}=\sum_{\omega \in R, \tau \in \bar{\Delta}} \chi(\tau) \log _{p}\left(\zeta_{p^{2}}^{\sigma^{i} \omega}-\zeta_{d}^{\tau}\right) \\
& S_{k}=\sum_{0 \leqslant i<p} \psi^{k}\left(\sigma^{i}\right) t_{I}
\end{aligned}
$$

where $\psi=\psi_{1}$. When $k=0$,

$$
\begin{aligned}
S_{0} & =\sum_{0 \leqslant i<p} T_{i} \\
& =\sum_{\tau \in \bar{\Delta}} \chi(\tau) \sum_{\substack{0 \leqslant i<p \\
\omega \in R}} \log _{p}\left(\zeta_{p^{2}}^{\sigma^{i} \omega}-\zeta_{d}^{\tau}\right) \\
& =\sum_{\tau \in \bar{\Delta}} \chi(\tau) \log _{p} \frac{1-\zeta_{d}^{p^{2} \tau}}{1-\zeta_{d}^{p \tau}} \\
& =\left(\chi\left(p^{-2}\right)-\chi\left(p^{-1}\right)\right) \sum_{\tau \in \bar{\Delta}} \chi(\tau) \log _{p}\left(1-\zeta_{d}^{\tau}\right) \\
& =(1-\chi(p)) \sum_{\substack{a \\
(a, d)=1}} \chi(a) \log _{p}\left(1-\zeta_{d}^{a}\right) \\
& =-\frac{1-\chi(p)}{p-\chi(p)} p \sqrt{d} L_{p}(1, \chi)
\end{aligned}
$$

When $k \neq 0$,

$$
\begin{aligned}
S_{k} & =\sum_{i, \omega, \tau} \psi^{k} \chi\left(\sigma^{i} \tau\right) \log _{p}\left(\zeta_{p^{2}}^{\sigma^{i} \omega}-\zeta_{d}^{\tau}\right) \\
& =\overline{\psi^{k}}(d) \sum_{1 \leqslant b \leqslant p^{2} d} \psi^{k} \chi(b) \log _{p}\left(1-\zeta_{p^{2} d}^{b}\right) \\
& =-\frac{\overline{\psi^{k}}(d) p^{2} d}{\tau\left(\overline{\psi^{k}} \chi\right)} L_{p}\left(1, \overline{\psi^{k}} \chi\right)
\end{aligned}
$$

where $\tau\left(\overline{\psi^{k}} \chi\right)$ is the Gauss sum of the character $\overline{\psi^{k}} \chi$. Note that

$$
\begin{aligned}
\tau\left(\overline{\psi^{k}} \chi\right) & =\sum_{1 \leqslant a<p^{2} d} \overline{\psi^{k}} \chi(a) \zeta_{p^{2} d}^{a} \\
& =\sum_{\substack{0 \leqslant x<d \\
0 \leqslant y<p^{2}}} \overline{\psi^{k}} \chi\left(p^{2} x+d y\right) \zeta_{p^{2} d}^{p^{2} x+d y}
\end{aligned}
$$

$$
\begin{aligned}
& =\overline{\psi^{\bar{k}}}(d)\left(\sum_{y} \overline{\psi^{k}}(y) \zeta_{p^{2}}^{y}\right)\left(\sum_{x} \chi(x) \zeta_{d}^{x}\right) \\
& =\overline{\psi^{k}}(d) \tau\left(\overline{\psi^{k}}\right) \tau(\chi)
\end{aligned}
$$

We also have

$$
\begin{aligned}
\tau\left(\overline{\psi^{k}}\right) & =\sum_{0 \leqslant y<p^{2}} \overline{\psi^{k}}(y) \zeta_{p^{2}}^{y} \\
& =\sum_{\substack{0 \leqslant i<p \\
\omega \in R}} \overline{\psi^{k}}\left(\sigma^{i} \omega\right) \zeta_{p^{2}}^{\sigma^{i} \omega} \\
& =\sum_{i, \omega} \zeta_{p}^{-k i} \zeta_{p^{2}}^{(1+i p) \omega} \\
& =\sum_{\omega} \zeta_{p^{2}}^{\omega}\left(\sum_{i} \zeta_{p}^{(\omega-k) i}\right) \\
& =p \zeta_{p^{2}}^{\omega(k)},
\end{aligned}
$$

where $\omega(k)$ is the root of 1 in \mathbb{Z}_{p} satisfying $\omega(k) \equiv k \bmod p$. Therefore, for $k \neq 0$,

$$
S_{k}=-p \sqrt{d} \zeta_{p^{2}}^{-\omega(k)} L_{p}\left(1, \overline{\psi^{k}} \chi\right)
$$

Thus we have a system of linear equations

$$
\left(\psi^{k}\left(\sigma^{i}\right)\right)\left(\begin{array}{c}
T_{0} \\
T_{1} \\
\vdots \\
T_{p-1}
\end{array}\right)=-p \sqrt{d}\left(\begin{array}{c}
\frac{1-\chi(p)}{p-\chi(p)} L_{p}(1, \chi) \\
\vdots \\
\zeta_{p^{2}}^{-\omega(k)} L_{p}\left(1, \overline{\psi^{k}} \chi\right) \\
\vdots
\end{array}\right)
$$

By solving this equation, we have

$$
T_{0}=-\sqrt{d}\left(\frac{1-\chi(p)}{p-\chi(p)} L_{p}(1, \chi)+\sum_{1 \leqslant k \leqslant p-1} \zeta_{p^{2}}^{-\omega(k)} L_{p}\left(1, \bar{\psi}^{k} \chi\right)\right)
$$

Since $L_{p}\left(1, \overline{\psi^{k}} \chi\right) \equiv L_{p}(1, \chi) \equiv L_{p}(0, \chi)=-B_{1, \chi \omega^{-1}} \bmod \zeta_{p}-1$,

$$
T_{0} \equiv \sqrt{d}\left(1-\chi(p)+\sum_{1 \leqslant k \leqslant p-1} \zeta_{p^{2}}^{\omega(k)}\right) B_{1, \chi \omega^{-1}} \bmod \zeta_{p}-1
$$

Since $\zeta_{p^{2}}^{\omega(k)} \equiv \zeta_{p^{2}}^{k} \bmod \left(\zeta_{p}-1\right), 1+\sum_{k} \zeta_{p^{2}}^{\omega(k)} \equiv\left(1-\zeta_{p}\right) /\left(1-\zeta_{p^{2}}\right) \equiv 0 \bmod \left(1-\zeta_{p^{2}}\right)^{p-1}$. Therefore $T_{0} \equiv-\chi(p) \sqrt{d} B_{1, \chi \omega^{-1}} \bmod \left(\zeta_{p^{2}}-1\right)^{p-1}$.

Proof of Theorem 3: We already know that $g_{n} \equiv g_{1}$ and $\tilde{g}_{n} \equiv \tilde{g}_{1} \bmod p$. For brevity, we denote g_{1} and \tilde{g}_{1} by g and \tilde{g}. We read $\delta_{1}=\alpha_{1}^{\sigma-1}$ in $\overline{\mathbb{Q}_{p}}$ under the embedding ι. Since k_{1} is assumed to be completed at \wp_{1}, we have $\left(\alpha_{1}\right)=\left(\pi_{1}\right)^{g}$. Let $\pi=\zeta_{p^{2}}-1$. Then $\left(\alpha_{1}\right)=(\pi)^{g(p-1)}$ in $\mathbb{Q}_{p}\left(\zeta_{p^{2}}\right)$. By taking $\rho \in \Delta_{k}$, we get $\delta_{1}^{\rho}=\alpha_{1}^{\rho(\sigma-1)}$ and $\left(\alpha_{1}^{\rho}\right)=\wp_{1}^{\tilde{g}} \widetilde{\wp}_{1}^{g}$ in k_{1}, hence $\left(\alpha_{1}^{\rho}\right)=(\pi)^{\widetilde{g}(p-1)}$ in $\mathbb{Q}_{p}\left(\zeta_{p^{2}}\right)$. Thus $\delta_{1}^{1-\rho}=\alpha_{1}^{(1-\rho)(\sigma-1)}$ and $\left(\alpha_{1}^{1-\rho}\right)=(\pi)^{(g-\widetilde{g})(p-1)}$. Hence, in $\mathbb{Q}_{p}\left(\zeta_{p^{2}}\right)$,

$$
\delta_{1}^{1-\rho}=\pi^{(g-\tilde{g})(p-1)(\sigma-1)} \eta^{\sigma-1}
$$

for some unit η in $\mathbb{Q}_{p}\left(\zeta_{p^{2}}\right)$. It is easy to see that

$$
\pi^{\sigma-1} \equiv 1+\pi^{p-1} \bmod \pi^{p}, \text { and } \eta^{\sigma-1} \equiv 1 \bmod \pi^{p}
$$

Therefore

$$
\delta_{1}^{1-\rho} \equiv 1+(g-\widetilde{g})(p-1) \pi^{p-1} \equiv 1+(\tilde{g}-g) \pi^{p-1} \bmod \left(\zeta_{p}-1\right)
$$

Hence

$$
\log _{p} \delta_{1}^{1-\rho} \equiv \log _{p}\left(1+(\widetilde{g}-g) \pi^{p-1}\right) \bmod \left(\zeta_{p}-1\right)
$$

Now we compute both sides of this congruence.

$$
\begin{aligned}
\text { LHS } & =\log _{p} \delta_{1}^{1-\rho} \\
& =\log _{p} \prod_{\substack{\omega \in R \\
\tau \in \Delta}}\left(\zeta_{p^{2}}^{\omega}-\zeta_{d}^{\tau}\right)^{1-\rho} \\
& =\log _{p} \prod_{\substack{\omega \in R \\
\tau \in \Delta}}\left(\zeta_{p^{2}}^{\omega}-\zeta_{d}^{\tau}\right)^{\chi(\tau)} \\
& =\sum_{\substack{\omega \in R \\
\tau \in \bar{\Delta}}} \chi(\tau) \log _{p}\left(\zeta_{p^{2}}^{\omega}-\zeta_{d}^{\tau}\right) \\
& \equiv-\sqrt{d} B_{1, x \omega^{-1}} \bmod \pi
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\text { RHS } & =\log _{p}\left(1+(\tilde{g}-g) \pi^{p-1}\right) \\
& \equiv(\widetilde{g}-g) \pi^{p-1}-\frac{1}{2}\left((\tilde{g}-g) \pi^{p-1}\right)^{2}+\ldots+\frac{1}{p}\left((\tilde{g}-g) \pi^{p-1}\right)^{p}-\ldots
\end{aligned}
$$

In this expression, every term except $\left((\tilde{g}-g) \pi^{p-1}\right)^{p} / p$ is congruent to $0 \bmod \pi$, and $\pi^{(p-1) p} / p \equiv-1 \bmod \pi$. Therefore

$$
\log _{p}\left(1+(\tilde{g}-g) \pi^{p-1}\right) \equiv g-\tilde{g} \bmod \pi .
$$

By equating both sides, we obtain

$$
g-\tilde{g} \equiv-\sqrt{d} B_{1, \chi \omega^{-1}} \bmod \pi
$$

Since both sides are in \mathbb{Z}_{p}, the congruence holds $\bmod p \mathbb{Z}_{p}$.
Theorem 4. Suppose an odd prime p splits in $k=\mathbb{Q}(\sqrt{m})$. If $p \mid B_{1, \chi \omega^{-1}}$, then $p \mid h_{n}$ for all $n \geqslant 1$.

Proof: By class field theory, it is enough to show that $p \mid h_{1}$. If $p \mid h_{0}$, then there is nothing to prove. So we assume that $p \nmid h_{0}$. In particular, there is no nontrivial capitulation from k_{0} to k_{1}.

Let $\delta_{1}=\alpha_{1}^{\sigma-1}$ and $\left(\alpha_{1}\right)=\wp_{1}^{g_{1}} \widetilde{\wp}_{1}^{g_{1}}$ as before. Since $p \mid B_{1, \chi \omega^{-1}}, g_{1} \equiv \widetilde{g}_{1} \bmod p$ by Theorem 3. Let g be such that $0 \leqslant g<p$ and $g_{1} \equiv \widetilde{g}_{1} \equiv g \bmod p$. Then

$$
\left(\alpha_{1}\right)=\left(\wp_{1} \widetilde{\wp_{1}}\right)^{g} I_{0}=\left(\pi_{1}^{g}\right) I_{0}
$$

for some ideal I_{0} of k_{0}. Since there is no nontrivial capitulation, $I_{0}=\left(\alpha_{0}\right)$ for some $\alpha_{0} \in k_{0}$. Hence $\left(\alpha_{1}\right)=\left(\pi_{1}^{g} \alpha_{0}\right)$ and $\delta_{1}=\pi_{1}^{g(\sigma-1)} \eta_{1}^{\sigma-1}$ for some $\eta_{1} \in E_{1}$. Thus $H^{1}\left(G_{1}, C_{1}\right) \rightarrow H^{1}\left(G_{1}, E_{1}\right)$ is not injective. From the short exact sequence $0 \rightarrow C_{1} \rightarrow$ $E_{1} \rightarrow E_{1} / C_{1} \rightarrow 0$, we get a long exact sequence

$$
0 \rightarrow C_{0} \rightarrow E_{0} \rightarrow\left(E_{1} / C_{1}\right)^{G_{1}} \rightarrow H^{1}\left(G_{1}, C_{1}\right) \rightarrow H^{1}\left(G_{1}, E_{1}\right) \rightarrow
$$

Therefore $\left(E_{1} / C_{1}\right)^{G_{1}} \otimes \mathbb{Z}_{p} \neq\{0\}$. Hence $p \mid\left[E_{1}: C_{1}\right]$ and so $p \mid h_{1}$ by the index theorem.

Corollary. Let M_{∞} and L_{∞} be as in the introduction. If $\operatorname{Gal}\left(M_{\infty} / k_{\infty}\right)$ is nontrivial, then $\mathrm{Gal}\left(L_{\infty} / k_{\infty}\right)$ is also nontrivial.

Proof: As in the proof of Theorem 1, if $\mathrm{Gal}\left(M_{\infty} / k_{\infty}\right)$ is nontrivial, then f_{χ} is not a unit in Λ. Hence $f_{\chi}(0)=-B_{1, \chi \omega^{-1}}$ is divisible by p. Thus the corollary follows from Theorem 4.

References

[1] V. Ennola, 'On relations between cyclotomic units', J. Number Theory 4 (1972), 236-247.
[2] K. Iwasawa, 'On cohomology groups of units for $\mathbb{Z}_{\boldsymbol{p}}$-extensions', Amer. J. Math. 105 (1983), 189-200.
[3] S. Lang, Cyclotomic fields, Graduate Texts in Mathematics I and II 59, 69 (Springer-Verlag, Berlin, Heidelberg, New York, 1990).
[4] B. Mazur and A. Wiles, 'Class fields of abelian extensions of \mathbb{Q} ', Invent. Math 76 (1984), 179-330.
[5] A. Scholz, 'Über die Beziehung der Klassenzahlen quadratischer Körper zueinander', J. Reine Angew Math. 166 (1932), 201-203.
[6] W. Sinnott, 'On the Stickelberger ideal and the circular units of an abelian field', Invent. Math. 62 (1980), 181-234.
[7] L. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics 83 (Springer-Verlag, Berlin, Heidelberg, New York, 1980).

Department of Mathematics
Inha University
Inchon
Korea
e-mail: jmkim@math.inha.ac.kr

[^0]: Received 31st July, 1997
 This work was partially supported by the Basic Science Research Institute program, Ministry of Education, Korea, \#BSRI-96-1414, and was completed while the author was visiting the Ohio State University during the sabbatical year 1996-1997.

