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CLASS NUMBERS OF REAL QUADRATIC FIELDS

JAE MOON KIM

Let k = Q(y/m) be a real quadratic field. It is well known that if 3 divides
the class number of k, then 3 divides the class number of Q(\/—3m), and thus
it divides Sl iXa,-i, where x aQd ^ are characters belonging to the fields k and
Q(\/—3) respectively. In general, the main conjecture of Iwasawa theory implies
that if an odd prime p divides the class number of k, then p divides Blxu-i,
where u> is the Teichmiiller character for p.

The aim of this paper is to examine its converse when p splits in k. Let feoo
be the Zp-extension of k — ko and hn be the class number of kn, the nth layer of
the Zp-extension. We shall prove that if p | BltXU-i, then p | hn for all n ^ 1. In
terms of Iwasawa theory, this amounts to saying that if Moo/fcoo is nontrivial, then
Loo/koo is nontrivial, where Moo and Loo are the maximal abelian p-extensions
unramified outside p and unramified everywhere respectively.

1. INTRODUCTION

Fix a square free positive integer m and let k = Q(\A") • Class numbers of these
real quadratic fields have been studied for a long time. Two outstanding formulas
related to class numbers are the analytic (classical or p-adic) class number formula [7]
and the index theorem of circular units discovered by Sinnott [6].

In this paper we study the class number of k by examining the p-divisibility of the
class number for each prime p. When p=2, the answer is well known and can be easily
checked either by considering the genus field of k or by using cohomological arguments:
if the discriminant of k has at least three distinct prime divisors, then the class number
is divisible by 2. Note that the converse of this statement is not true. For instance,
the class number of <Q>(\/85) is 2 and that of Q(\/2l) is 1. Both of these fields have
discriminants with exactly two prime divisors.

The answer for p=3 is also known [5, 7]: if 3 divides the class number of k, then
3 divides the class number of Q(\/—3m). This can be proved either by applying the
p-adic class number formular or by using the Kummer pairing as Scholz did [5]. The
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converse of this does not hold either. For example, the class number of Q(\/85) is 2,
but that of Q(\/— 255) is 12. Let x De the nontrivial character belonging to A; and w

be the Teichmiiller character for p — 3. Then xu)~1 belongs to the field Q( \ /~3m)
and —Blxij-i is the class number of Q(%/-3m). Thus we can rephrase the statement
as 3 divides Blxu)-i if 3 divides the class number of k.

This can be generalised to an arbitrary odd prime p by using the main conjecture
of Iwasawa theory. Let w be the Teichmiiller character for p. Let k^ be the Zp-
extension of k and Moo be its maximal abelian p-extension unramified outside p. Let
fx be the Iwasawa power series in A = ZP[[T]] corresponding to the p-adic L-function
Lp{s,x)- Then by the main conjecture, which is a theorem now [4], Ga.\{M00/k00) is
pseudo-isomorphic to A / ( / x ) as a A-module. We also have

Thus if p does not divide Blxu-i, then fx is a unit in A. Hence
is trivial, since it has no nonzero finite A-submodules (see [3, appendix]). Therefore
Gal^oo/fcoo) is also trivial, where L^ is the maximal unramified Abelian p-extension
of koo. Thus p does not divide the class number of k. To summarise, we proved:

THEOREM 1. Let k—Q(y/fn) and p be an odd prime. If p divides the class
number of k, then p divides Blxw-x.

The aim of this paper is to discuss the converse of theorem 1. According to the
previous example for p = 3, the converse cannot be true in general. However, we have
the following result when p splits in k. For each n ^ 0, let hn be the class number of
kn, the nth layer of the Zp-extension koo of k.

THEOREM 4 . Suppose an odd prime p splits in k — Q(y/m). If p divides
Blxul-i, then p divides hn for all n ^ 1.

For the proof of Theorem 4, we shall use circular units defined by Sinnott and his
index Theorem [6]. In Section 2, we briefly review his definition of circular units and
compute cohomology groups of them in the Zp-extension. In Section 3, we shall assume
that p splits in &, so there are two prime ideals po aid po above p in k. Let pn and
p n be the prime ideals of fcn above po and po respectively. We shall see that every
circular unit Sn of kn whose norm to &o equals 1 has the property that 6n = a £ - 1 for

some an € kn satisfying (an) = p£npJi9n for some integers gn and gn, where a is a
topological generator of the Galois group F = Gal (fcoo/fc) • Then we pick a special 6n

and show that
9n-9n = ±VdBlxu-i mod pZp,

where d is the conductor of k. Finally, we apply this congruence to prove Theorem 4.
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2. CIRCULAR UNITS

Let F be an abelian field. For each n > 2, let Fn = F n Q(Cn) and CFn =

^Q(Cn)/fn(^Q(Cn))' w n e r e ^Q(Cn) 'a t n e S100^ °f t n e cyclotomic units of Q(Cn) in
the usual sense. We define the group of circular units Cp of F as the multiplicative
subgroup of F x generated by CFU together with - 1 (see [6]). Note that if n is prime
to the conductor of F, then Fn = Q and so Cjrn = {1}. Thus there are only finitely
many n 's to be considered in the definition of CF • For example, when F = k =

Q{^t/rn), Ck — (•^Q(Cd)/fc( '̂Q(Cd))' ~ * ) ' w n e r e d is the conductor of k (d will always
mean the conductor of k throughout this paper). To see this, first observe that k n
Q(Cn) is either Q or *. If A; D Q(Cn) = Q, then Ckn = {1}. Otherwise, Q ( C ) contains
Q(Cd) as a subfield and thus NQ{M/k(CQ^n)) is contained in NQ^dyk(CQ{id)).

Fix an odd prime p with (p, m) = 1, and let koo — (J kn be the Zp-extension of

fc = ko = Q(^/rn). For each n ^ 0, we denote the group of circular units of kn by Cn.

It is not hard to show that

(*) Cn = Cn-i

where Qn is the subfield of Q(Cpn+i) whose degree over Q is p". Thus the generators
of Cn are given so explicitly that we can compute the cohomology groups of circular
units in the Zp-extension. Another feature of the circular units is the following index
theorem discovered by Sinnott [6].

THEOREM. Let En be the unit group of kn and hn be the class number of kn.

Then [En : Cn] — 2Cnhn for some integer d .

Before we compute the cohomology groups of Cn, we set up some notation. For

each integer s ^ 1, we choose a primitive s t h root £s of 1 so that £t = Cs if

s | t. Let K = Q(Cd), F = Q(CP) and K' = Q« P d) - We denote their cyclo-

tomic Zp-extensions by Koo, Foo, a n d ^ T O . Let a be the topological generator of

the Galois group T = Gal (K'OO/K) which maps Cpn to CP^P f° r all n ^ 1. Re-

strictions of a to various subfields are also denoted by a. Let A = Gal (K/k), A =

Gal (K/Q) and Afc = Gal (fc/Q) = {id, p). Elements of A or A will be denoted by

T'S . Let R be the set of all roots of 1 in Z p , that is, R = {w 6 Z p | w^"1 = 1}.

Then R can be regarded as the Galois group Ga l (F /Q) or any Galois group iso-

morphic to it such as G a l ( F n / Q n ) . For m > n, let Gm,n be the Galois group

Gal (K^/K^J and A^m,n be the norm map NK> /K> from K'm to K'n. We shall

abbreviate Gm<o and Nmfi to Gm and Nm respectively. Gm,n will also mean the Ga-

lois groups Gal(fcm/A;n), G a l ( F m / F n ) and G a l ( Q m / Q n ) . Similarly Nm<n wiU have

various meanings. Finally we fix a generator ipn of the character group of Gal
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such that V'n(^) = Cp" • Thus ipn is an even character of order pn with conductor p n + 1

such that ip% — rpn-i •

THEOREM 2 . Suppose p splits in k. For m > n ^ 0, we have the following.

(I) <̂ m - On,

PROOF OF (1): It is clear that Cn C Cm
m'n • To prove the converse, we invoke

a theorem of Ennola on relations of cyclotomic units [1]: If a cyclotomic unit £ —

I ! (1 ~Q)Xa m Q(Cn) is a root of 1 for some integers xa, then Y(6,£) = 0 for

every even character 0 of conductor n, where Y(8, £) = ^Z d(a)xa.

To prove C^m'n C Cn, it is enough to check the inclusion when m = n + 1.

Suppose that u G Cn+\ is fixed by Gn+i<n, that is u"P = u. By (*), u = unvn+i

for some u n e Cn and « n + 1 e JV^+ i / i f c f i + 1 ( ^ + i ) ^ n + i / Q n + i ( C F B + 1 ) • Since < P =

u n , we have v%+1 = vn+i • Thus we may assume un — 1. Then we can write u as

U= pn+2 -1) I,

for some integers a^ktb^k &nd Q,fc-
n

We apply Ennola's theorem to the relation u" - 1 = 1 with characters of the form

for 0 < j < pn+1, (j,p) = 1. Notice that

TEA

u* n
and

Thus we have
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By letting j run through all the integers 0 < j < p n + 1 with p \ j , we have a
system of linear equations AX = O , where A is a (pn+1 — pn) x p n + l matrix with

entries tpJ
n+1 (a

l+kpn) and X = ( . . . , al<k - blik, . . . ) ' • Since rank A = p n + 1 - p n , the

rank of solutions must be p n . And we can exhibit p n independent solutions explicitly.

Namely, for each s, 0 ^ s < p n , let Xs = ( . . . , /j,k, • • •)' D e s u c n

[0 if^s

' • f c = \ l if I = 5.

Then X3 is a solution since J ] ^«+i (<7s+fcp 1 = 0 for all j , and

is clearly linearly independent. Therefore if X — ( . . . , a^k — bitk, • • •)* ' s a solution of
AX = O, then a3tk — b3tk

 IS independent of k for all s, 0 ^ s < p n , say as,fc — «̂,fc = £s-
Then we can write u as

l,k,u,T
«'"- - a)- n (̂ "'"" -«)'" n

lk lk

In this expression, the first product is in Cn, since ]J (C°n+2P " — Q ) is in C n . The
fc,w,r v p y

second and the third products in the expression, on the other hand, are circular units

of Qn+i • Thus we can write u a s u = vnv for some vn G Cn and v € CQn + 1, and

v satisfies v° = v. Now write v as v = fj (C°n+2 w — 1) and apply Ennola's

Theorem to VCTP - 1 = 1 with characters of the form V'n+n 0 ^ J < Pn + 1) P t J- After a
similar computation, we see that v is a circular unit in Q n , hence u e C n . This proves

(i). D

PROOF OF (2): For each I > 0, let St = fl fc1+i - Q) and TT, = U (<£+1 - l ) .
r6A

Then 5(, TTJ7"1 € C(. Note that for m > n ^ 0,

since p splits in k and thus TP (Frobenius automorphism of Q(Cd) for p) permutes A.
In particular,
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Also note that, for any u 6 Cn, we can write w a s t i = UQUI • • • un, where u0 € Co and
for k > 1, Uk is of the form

(**) Wfe = 6k ^ ^ 7Tfc ^* P

First we claim that Cn - CoNm,nCm. Clealy C0NminCm is contained in Cn. To check

the converse, let u = uoU\ •••un, where Uk is as in (**) for k ~£ 1. Let CTS = <rpi.

Then Nmik = Yl ai- F o r e a c n *. 0 ^ i < p m " f c , write i = apn~fc + 6 with

pm~n ,Q^b< pn~k. Then

o,6

Therefore

«* = Nm!k5m = Nm j and w^1 = ATm,nf n m
 b ) .

Hence Uk E NminCm for each A;, 1 ̂  A; < n.

Next we show that Co n NminCm = cf* " . Obviously, C j m ~ " c Co n Nm<nCm.

For the converse, suppose u € Cor\NmtnCm and write u = A^m,n(^) for some v e Cm.

As before, we can write v — voVi • • • vm with Vk of the form in (**) for fc ̂  1. By taking

Nn, we have Nn(u) = Nn(Nm,n(v)) = Nm(v). Since Nm(vk) = Nk(vk)
pm~k = 1 for

k ^ 1, we obtain up = ug . Thus u~lvl is a pnth root of 1 in A;, hence equals 1.

Therefore u = vj 6 CJ . Thus

•ff (Gm > n, C m ) = Cn/NmtnCm = CQNmtnCm/Nm^nCm

= Co I Co n ivm,ncm = co/cf~n.

Note that Co is generated by ]J (l-Q), U (1 - Cf) a n d - 1 - B u t 11 (1 — C5)

n ( 1 - C D = 1- Hence
A
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and is generated by f| (1 — Q ) . D

P R O O F OF (3): Let 6n and 7rn be as in the proof of (3). We saw that Nn(6n) =

i V n ( < - ' ) = 1. We shall prove

(* * *) if Sy^~l)b G C £ - \ then a = b = 0 mod p n .

This would imply H-l{Gn,Cn) ~ (Z/p n Z) 2 and H~l(Gn, Cn) is generated by Sn and
TT^"1 since the Herbrand quotient for Cn is p " and H~1(Gn,Cn) is annihilated by pn.

Then from the inflation- restriction sequence

0 -+ ff1(Gn,c£m'n) ^ 4 Hl{Gm,Cm) ^ Hl{Gm,n,Cm),

we obtain
0 -> (Z/p"Z)2 -> (Z/pmZ)2 -4 Hl{Gmtn,Cm)

since the first cohomology group H1 is isomorphic to H~l. Thus (Z/pm~"Z) in-
jects into H1(Gmin,Cm)- But we already know that its order is p2(m-") . Therefore

It remains to show (*•*) . We shall prove this by induction on n. Suppose

that Siir{~ = ua~l for some u € Cj . As before we can write u = uoui, where

UQ e Co and ui is of the form in (**). So we have <5"7rja~^ = u^"1, where ui =

61 ''' K° * . We apply Ennola's Theorem with the character ViX to this
equation. Then we have

Since

we get

a =

= (P"l)r^V'i(d)^O)

Note that $Za.,jV'ix(o''/:>J) is integral. Therefore a = 0 mod (£p — 1), hence mod p.
Since iVi<5i = 1,
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Then from 8?ir<f~1)b = ua~x, we obtain ir<f~1)b = v"'1 for some v € d . This implies
that TTJ — «a 0 for some ao £ k. As ideals, we have (TTJ) = (ao), which is impossible
unless 6 = 0 mod p since primes of k above p ramify totally in k\.

Now we prove (* * *) for n , assuming the result for n — 1. Suppose S^nn ~^b =

ua
n~

x for some un € Cn. By applying iVnri_1 to both sides, we have ^_17r^1~1
1'(> =

(-Nn^-iUn)"7"1 £ C ^ I i . Then by the induction hypothesis, a = b = 0 mod pn~l. Let

a = p n ~ 1 a i and fe^p""1/)!. Note that

and

Therefore ^7r^~1 ) l p = < ~ x reads ( J ^ T T ^ " 1 ^ = i ^ " 1 for some wn € C n . By the
injectivity of the inflation map

J^TTJ *' 1 must be in Cf 1. Thus a\ = 61 = 0 mod p and so a = b = 0 mod p " .

This finishes the proof. D

R E M A R K . In the proof of (1), we did not use the splitting of p . So (1) is still valid

even when p remains inert in k. If p remains inert in k, the Frobenius automorphism

TP of Q(Cd) for p is not in A. . Thus

n (i - c;r2=n l-^3 - n«? - <a=*>=^m-
TgA TgA S d W,T

Therefore f] (1 — Cd) G -^i(Ci)- With this additional information, one can modify

the proof of (2) to obtain:

THEOREM 2 ' . Suppose p remains inert in k. For m > n ^ 0, we have

(i') c£m-»=cn,
(2') £°(Gm,n,Cm) = {()},
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3. MAIN RESULTS

Let p be an odd prime which splits in k and let Sn — f ] (Cn+i ~ Q ) > T B =

I I fCn+i - l ) as before. We know that Sn and < - 1 generate ff-^Gn.Cn). Let

En be the group of p-units of fcn.

LEMMA 1 . The homomorphism H-1(Gn,Cn) -> H-1(Gn,E
>

n) induced by the

inclusion Cn —¥ En is a zero map.

PROOF: Since Gn is cyclic, it is enough to show that H 1 (G n , Cn) -> H1 (Gn, E'n)

is a zero map. By taking limits under the inflation maps, we have a homomorphism

, where C^ = |J Cn and <«, = (J < • By Theorem 2,

^ (Qp/Zp)2. On the other hand, i f 1 ^ , ^ ) is a finite group [2]. Since

(Qp/Zp)2 cannot have a nontrivial finite quotient, the map fl'1(r,Coo) -»• i

is a zero map. Then the lemma follows from the injectivity of the inflation maps. D

Thus 5n — a £ - 1 for some p-unit a n in kn by the lemma. Let pn and pn be the

prime ideals of kn above p as in the introduction. Then (an) = pf^p^9n for some

integers gn and gn. If <$„ = a^"1 = (3%~l for some other p-unit /?„, then a n = /3na0

for some p-unit ao £ fco. Thus <?n and g~n are determined uniquely modulo p" by

(Jn since p 0 and p5 ramify totally in kn. If Jm = a^"1 with (a m ) = p ^ " p ^ S m for

m> n, then $„ = iVm,n<Jm = (iVm,nam)CT~1 and (JVm,nam) = pfTp^9"1. Therefore

5m = ffn, ffm = 3n mod p" .

THEOREM 3 . Let Sn = a j - 1 with (on) = p?rp^9n. Then gn-gn = gl-gl =

REMARK. The signature in the theorem depends on the embedding of Q into Qp.
Fix an embedding i once and for all and assume that under this embedding, kn is
completed at pn rather than p~n. We denote t(Q) just by Q. Let p(r) be the
integer modulo d corresponding to r under the isomorphism A ~ (Z /dZ) x . Then

= ^(Cd)p(T) = C2(T)- Again we simply write Q for i(Cd
T) = CS(T) in

Before we prove Theorem 3, we need the following proposition which is valid even
when p remains inert in k.

PROPOSITION 1.

E X
TEA
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PROOF: For 0 ^ i < p, 0 < A; < p, let

where tp = ip\. When k = 0,

So =

= E

T € A

x(o)iogp(i-C5)
a mod d
(a,d)=l

When fc^O,

^ - a)
i,W,T

where r(vfcx) is the Gauss sum of the character ipkx- Note that

= j2
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[11] Real quadratic fields 271

We also have

u •> i

where u)(k) is the root of 1 in Zp satisfying uj(k) = k mod p . Therefore, for k ^ 0,

Thus we have a system of linear equations

To \

\TP.J

By solving this equation, we have

f i
P~

Cp2

Since = LP{l,x) = Lp(0,X) = -BltXW-i mod CP - 1,
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Since C;2
(fc) = <£ mod (CP - 1), l+ZCjk) = (1 - CP)/(l - Cp2) = 0 mod (l - C^)""1.

Therefore To = -x(p)>/dBliXU-i mod (Cp2 - I ) ' " 1 . D

P R O O F OF T H E O R E M 3: We already know that gn = gx and gn = g~i mod p.

For brevity, we denote 31 and <?i by g and g. We read 5i = a"*1 in Qp under the

embedding t. Since ki is assumed to be completed at pi, we have (ai) = (fti)9• Let

7T = CP2 - 1 • Then (a i ) = (v)"**-1) i n Qp(C p 2) . B y taking p € Ak, we get 6[ = ap
x
(°-l)

and (a?) = p\p{9 in &i, hence (a?) = {*$<*-*) i n Q p ( C p 2 ) . T h u s SI-P = Q ( I - P ) ( — D

and ( a j - p ) = ( j r ) ^ "* )^ - 1 ) . Hence, in Qp(Cp2),

for some unit 7/ in Qp(Cp2). It is easy to see that

n"-1 = 1 + -KV~X mod TTP, and jf~x = 1 mod ?rp.

Therefore

5\~p = l + (g-g)(p- l ) ^ - 1 = 1 + (g - g)^~l mod (Cp - 1).

Hence

logp 6\-p = logp (1 + (g - g)^-1) mod (<„ - 1).

Now we compute both sides of this congruence.

- c i w

TEA

T6A

T6A

= —vdBlxu/-i mod 7r.

On the other hand,
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In this expression, every term except ((g - g)^p~l)P /p is congruent to 0 mod TT, and

n(p-i)p/p= —i mod 7T. Therefore

logp(l + (g - g)Kp~l) =g-g mod n.

By equating both sides, we obtain

g — g~ = —VdB1 xu-i mod n.

Since both sides are in Z p , the congruence holds mod pZp. D

THEOREM 4 . Suppose an odd prime p splits in k — Q(\/m). If p \ Blxu-i,

then p | hn for all n JJ 1.

PROOF: By class field theory, it is enough to show that p \ h\. If p \ ho, then
there is nothing to prove. So we assume that p \ ho • In particular, there is no nontrivial
capitulation from fco to fci.

Let 5\ — a"" 1 and (a{) = p^pi91 as before. Since p \ Blxu-i, gi = <j\ modp
by Theorem 3. Let g be such that 0 < g < p and gi = gi = g mod p. Then

(ai) = {pipl)9Io = (7r?Ko

for some ideal 7o of feo. Since there is no nontrivial capitulation, IQ = {ceo) for some

a0 E k0. Hence (on) = (vrfao) and Si = T T ? ^ " 1 ^ - 1 for some rji 6 Ex. Thus

Hl{Gi,Ci) —> H1{Gi,Ei) is not injective. From the short exact sequence 0 -> Ci -*

Ei —> Ei/Ci —> 0, we get a long exact sequence

Therefore {Ei/Ci)Gl ® Z P / {0}. Hence p \ [Ei : Ci] and so p | hi by the index

theorem. D

COROLLARY. Let MQQ a nd LQO be as in the introduction. If Ga^Moo/fcoo) is
nontriviai, then Gal^oo/fcoo) is also nontrivial.

PROOF: AS in the proof of Theorem 1, if Gal(Moo/fcoo) is nontrivial, then fx is

not a unit in A. Hence fx(0) = —BliXU)-i is divisible by p. Thus the corollary follows

from Theorem 4. U
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