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The measurement of lift on symmetrically shaped obstacles immersed in low Reynolds
number flow is the quintessential way to signal odd viscosity. For flow past cylinders,
such a lift force does not arise if incompressibility and no-slip boundary conditions are
fulfilled, whereas for spheres, a lift force has been found in Stokes flow, which is valid for
cases where the Reynolds numbers are negligible and convection can be ignored. When
considering the role of convection at low but non-zero Reynolds numbers, two hurdles
arise, the Whitehead paradox and the breaking of axial symmetry, which are overcome
by the method of matched asymptotic expansions and the Lorentz reciprocal theorem,
respectively. We also consider the case where axial symmetry is preserved because the
translation of the sphere is aligned with the axis of chirality of odd viscosity. We find
that while lift vanishes, the interplay between odd viscosity and convection gives rise to a
stream-induced torque.

Key words: Stokesian dynamics

1. Introduction

In the ever-continuing study of fluids, the exploration of flows induced by non-dissipative,
parity-breaking viscosities has emerged as a new frontier. Such transport coefficients,
which fall under the heading of odd viscosity, result from the spinning of the microscopic
or mesoscopic particles that constitute the fluid (Banerjee et al. 2017; Markovich &
Lubensky 2021; Fruchart, Scheibner & Vitelli 2023). Odd viscosity gives rise to a wide
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range of novel physical phenomena, such as azimuthal flow of sedimenting particles
(Khain et al. 2022), torque induced by the rate of area change (Lapa & Hughes
2014), non-reciprocal self-induced flow fields for swimmers (Hosaka, Golestanian &
Daddi-Moussa-Ider 2023a), formation of inertial-like waves (Kirkinis & Olvera de la
Cruz 2023), Hall-like transport in fluids (Lou et al. 2022), oscillating vortical boundary
layers (Abanov et al. 2020), and many more (Lucas & Surówka 2014). Furthermore, odd
viscosity has implications across various scales and disciplines, including electron fluids
(Delacrétaz & Gromov 2017; Berdyugin et al. 2019), diatomic gases (Korving et al. 1966;
Hulsman et al. 1970), equatorial waves (Souslov et al. 2019; Tauber, Delplace & Venaille
2019), colloidal rotors (Soni et al. 2019; Hargus et al. 2020; Han et al. 2021; Hargus,
Epstein & Mandadapu 2021; Poggioli & Limmer 2023; Matus, Lier & Surówka 2024) and
biological systems (Tan et al. 2022). Odd viscosity is also studied at different Reynolds
numbers, ranging from zero Reynolds number Stokes flow (Khain et al. 2022; Hosaka,
Golestanian & Vilfan 2023b; Yuan & Olvera de la Cruz 2023) or Oseen flow (Lier et al.
2023) to fully developed turbulence (de Wit et al. 2024).

A key tool for understanding fluid behaviour at low Reynolds numbers is the Lorentz
reciprocal theorem (Lorentz 1896), which in its original form holds only for even viscous
fluids, but was recently generalized to fluids with odd viscosity (Hosaka et al. 2023b). One
of the many things that this generalized Lorentz reciprocal theorem allows one to compute
is the odd viscosity induced lift force on a translating object. In two dimensions, such a
lift force is zero for incompressible fluids with no-slip boundary conditions, but it can take
on a non-vanishing value at quadratic order in slip length (Lier 2024) for compressible
fluids (Hosaka, Komura & Andelman 2021b; Lier et al. 2022; Duclut et al. 2024) or liquid
domains in a membrane (Hosaka, Komura & Andelman 2021a).

The force and torque for odd Stokes flow past a sphere were computed by Hosaka
et al. (2023b) up to linear order in odd viscosity, and by Everts & Cichocki (2024)
nonlinearly in odd viscosity. Stokes flow, also known as creeping flow, means that the
role of inertia, which enters through the convective term in the Navier–Stokes equation,
is ignored entirely. The reason why it is worthwhile to not ignore this convective terms is
twofold. First, to ignore the convective term requires the Reynolds number to be negligible,
which is not the case in many fluid systems. Second, for translating obstacles, convective
effects always dominate over viscous ones when one considers the flow sufficiently far
from the obstacle (Proudman & Pearson 1957; Van Dyke 1975; Veysey & Goldenfeld
2007). In two dimensions, this is what causes the Stokes paradox, which bars one from
finding a solution to the Stokes equation (Lamb 1932). In three dimensions, one can still
obtain a Stokes solution but one is faced with the Whitehead paradox (Whitehead 1889),
which makes the low Reynolds number expansion a singular perturbation theory. Although
resolving the Whitehead paradox leads one to find that the Stokes solution accurately
describes the flow at leading order in Reynolds number, this impediment further motivates
the need to understand the role of convection in the case of odd viscous flow. Considering
the role of convection for three-dimensional odd viscous flow is what is done in
this work.

2. Odd viscous Navier–Stokes equation

Let us consider an incompressible fluid system with free-stream velocity Ui, shear
viscosity ηs, and constant density ρ0, and a rigid no-slip sphere with radius a. We use
these to non-dimensionalize the coordinate xi, fluid velocity ui and stress tensor σij. In
addition, there is a single three-dimensional odd viscosity ηo which is assumed to be small
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Odd viscous flow past a sphere at low Reynolds numbers

compared to ηs. We start from the steady, incompressible Navier–Stokes equation

∇iui = 0, Re uj ∇jui − ∇jσij = 0, (2.1a,b)

where Re is the Reynolds number, given by Re = ρ0 |U| a/ηs. To keep the computations
tractable at non-zero Reynolds numbers, we consider only the simplest possible
three-dimensional odd viscosity ηo (Yuan & Olvera de la Cruz 2023; Everts & Cichocki
2024), namely the odd viscosity that arises upon coarse-graining a system of particles with
an intrinsic rotation whose rotation axis is pointed in direction �i (Markovich & Lubensky
2021, 2022). We will call this vector the axis of chirality. Without loss of generality, we
take the axis of chirality to be pointed in the z-direction, i.e. �i = δz

i . For such an odd
viscosity and the isotropic shear viscosity, the stress σij constitutes

σij = −pδij + ∇iuj + ∇jui + γo(δikεjl + δjkεil)(∇kul + ∇luk), (2.2)

where p is the dimensionless pressure, γo = ηo/ηs, and εij is the two-dimensional
anisotropic Levi–Civita tensor, i.e. εij = εijk�k, with εijk being the three-dimensional
Levi–Civita tensor. Plugging (2.2) into (2.1a,b) yields (Khain et al. 2023; Yuan & Olvera
de la Cruz 2023)

∇iui = 0, Re uj ∇jui − (δij + γoεij)Δuj + ∇ipm = 0, (2.3a,b)

where we introduced the modified pressure (Ganeshan & Abanov 2017) given by
pm = p − γoεij ∇iuj, and Δ is the Laplacian operator.

3. Odd Oseenlet

We now consider the effect of a non-vanishing Reynolds number on the flow past a
stationary sphere. When considering low Reynolds number flow past a sphere, one runs
into the Whitehead paradox (Whitehead 1889), which is the finding that it is impossible to
obtain a low Reynolds number correction to Stokes flow when one assumes the convective
term proportional to Re in (2.3a,b) to be globally small. To resolve this, we use the
method of matched asymptotic expansions (Kaplun 1957; Proudman & Pearson 1957),
which means that one iteratively finds inner and outer solutions to distinct expansions of
(2.3a,b), which are matched to each other at the boundary of their respective domains of
validity. This begins with the zeroth outer solution, which is given by the dimensionless
free-stream velocity ei = Ui/|U|. The zeroth outer solution is then matched to the zeroth
inner solution, which is the stokeslet. This zeroth inner solution is then matched to the first
outer solution, which is given by the Oseenlet.

3.1. Zeroth inner solution
For the inner solution, we expand our fluid velocity as

ui = u(0)i + Re u(1)i + O(log(Re)Re2), pm = p(0)m + Re p(1)m + O(log(Re)Re2),
(3.1a,b)

where we note that we added possible corrections of O(log(Re)Re2) as it was found that
in the absence of odd viscosity, the second inner solution is of this form (Proudman &
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Pearson 1957). Equations (3.1a,b) mean that at leading order, (2.1a,b) reduce to

∇iu
(0)
i = 0, (δij + γoεij)Δu(0)j − ∇ip(0)m = 0. (3.2a,b)

Working in the co-moving frame with the sphere’s centre as the origin, the boundary
conditions that we impose are given by

lim
r→∞ ui = ei, ui|r=1 = 0, (3.3a,b)

where r =
√

x2 + y2 + z2, and ei = Ui/|U|. Solving up to O(γ 2
o ) leads to (Hosaka et al.

2023b)

u(0)i = ei −
(

1 + 1
6Δ
)
(G(0,s)ij + γoG(0,o)ij )F (0)

j + O(γ 2
o ), (3.4)

where we introduced the even and odd Oseen tensor (Yuan & Olvera de la Cruz 2023)

G(0,s)ij = 1
8π

(δijΔ− ∇i∇j)r, G(0,o)ij = − 1
8π

(εijδkl + δliεjk − δljεik)∇k∇lr. (3.5a,b)

The boundary conditions require the dimensionless Stokes force F (0)
j to be

F (0)
i = (C(0)D δij + C(0)L εij)ej, (3.6)

with drag and lift coefficients given by (Hosaka et al. 2023b)

C(0)D = 6π + O(γ 2
o ), C(0)L = 3πγo + O(γ 3

o ). (3.7a,b)

Restoring the dimensionality and defining the total force Fi, (3.7a,b) means that we have
a drag force

F(0)D = F(0)i ei = 6πaηs |U| + O(γ 2
o ), (3.8)

and lift force
F(0)L = εijF

(0)
i ej = 3πaηo |U| + O(γ 3

o ). (3.9)

3.2. First outer solution
Having found the zeroth inner solution, we connect this solution to the outer region to
obtain the first outer solution. The boundary of the outer region is characterized by Re r =
O(1), so that in order to consistently match small Reynolds number corrections, we work
with the Oseen coordinate r̃ = Re r. For the outer solution, we expand the fields as

ũi = ei + Re ũ(1)i + O(Re2), p̃m = Re2 p̃(1)m + O(Re3). (3.10a,b)

The equation that the first outer solution must obey is the Oseen equation (Lamb 1932;
Oseen 1910), which is given by

∇̃iũ
(1)
i = 0, (δij + γoεij) Δ̃ũ(1)j − ∇̃ip(1)m = ej ∇̃jũ

(1)
i . (3.11a,b)

The method of matched asymptotic expansions dictates that ũ(1)i must be connected to the
zeroth inner solution. We find the corresponding inner boundary condition to be given by

ũ(1)i → −t(G̃(0,s)ij + γoG̃(0,o)ij )F (0)
j + O(γ 2

o ) as r → 0, (3.12)
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Odd viscous flow past a sphere at low Reynolds numbers

where

G̃(0,s)ij = 1
8π

(δij Δ̃− ∇̃i∇̃j)r̃, G̃(0,o)ij = − 1
8π

(εijδkl + δliεjk − δljεik) ∇̃k∇̃lr̃. (3.13a,b)

Condition (3.12), together with the outer boundary condition and (3.10a,b), forces ũ(1)i to
be given by

ũ(1)i = −(G̃(1,s)ij + γoG̃(1,o)ij )F (0)
j + O(γ 2

o ), (3.14)

where G̃(1,s)ij represents the tensor corresponding to the even Oseenlet, which is of the form
(Pozrikidis 1996)

G̃(1,s)ij = 1
4π

(δij̃Δ− ∇̃j∇̃i)

∫ ζ̃

0

1 − exp(−ξ)
ξ

dξ, (3.15)

with ζ̃ = 1
2(r̃ − x̃iei). Here, G̃(1,o)ij is given by (see Appendix A for a derivation)

G̃(1,o)ij = 1
4π

(εijδkl + δliεjk − δljεik) ∇̃k∇̃l exp(−ζ̃ ). (3.16)

The tensor G̃(1,o)ij can be understood as corresponding to the odd part of the solution to the
Oseen equation in the presence of a singular force. We therefore name this solution the
odd Oseenlet.

4. First inner solution

Having found the first outer solution, we use the method of matched asymptotic expansions
to obtain the outer boundary condition for u(1)i . Matching of the inner solution to the outer
solution at O(Re) leads to the outer boundary condition

su(1)i → 1
8π

F (0)
j

[
1
2
(δijΔ− ∇j∇i)− γo(εijδkl + δliεjk − δljεik)∇k∇l

]
ζ 2

+ O(γ 2
o ) as r → ∞, (4.1)

where ζ = 1
2 (r − xiei). Expanding (2.1a,b) up to O(Re), one finds that the first inner

solution must satisfy

∇iu
(1)
i = 0, (δij + γoεij)Δu(1)j − ∇ip(1)m = u(0)j ∇ju

(0)
i . (4.2a,b)

Until now, we have made no assumption about the direction of the free-stream velocity
with respect to �i. In order to compute the first inner solution, it is important that we
do so. Let us first consider the longitudinal case where ei = �i. The longitudinal case is
simpler than the transverse case as we retain axial symmetry. For the case with transverse
free-stream velocity, we refrain from computing the first inner solution. Using the Lorentz
reciprocal theorem, we instead directly compute the lift force, which exists only for the
transverse case.
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4.1. Longitudinal free-stream velocity
For the case ei = �i, let us first solve (4.2a,b) at zeroth order in γo. For this, we use the
axial symmetry of the longitudinal free-stream velocity to take the stream function ansatz
(Happel & Brenner 1983)

u(1,s)
 = −∂zψ
(1,s)



, u(1,s)φ = 0, u(1,s)z = ∂
ψ

(1,s)



, (4.3a–c)

where 
 , φ and z are cylindrical coordinates as visualized in figure 1. The solution that
obeys (4.2a,b) in the absence of odd viscosity and satisfies the inner and outer boundary
is given by (Proudman & Pearson 1957)

ψ(1,s) = 3
32

 2

(
1
r3 − 3

r
+ 2

)
− 3

32

 2z

(
1
r5 − 1

r4 + 1
r3 − 3

r2 + 2
r

)
, (4.4)

with r = √

 2 + z2. Now we move to u(1,o)i . As a first step, let us define u(1,o)i = u′(1,o)

i +
u′′(1,o)

i , with

u′(1,o)

 = 0, u′(1,o)

φ = −∂zψ
(1,s)



, u′(1,o)

z = 0, (4.5a–c)

so that at O(γo), (4.2a,b) reduce to

Δu′′(1,o)
i − ∇ip(1,o)m = u(0,s)j ∇ju

(0,o)
i + u(0,o)j ∇ju

(0,s)
i . (4.6)

The right-hand side of (4.6) only has a non-vanishing φ-component, thus u(1,o)i also only
has a non-vanishing φ-component. The only possible contribution from pressure therefore
also comes from the φ gradient, which vanishes due to axial symmetry. Equation (4.6)
thus simplifies to

Δu′′(1,o)
φ = u(0,s)j ∇ju

(0,o)
φ . (4.7)

The solution to (4.7) is given by

u′′(1,o)
φ = 1

32



(
− 1

r6 + A1

r5 − 12
r4 + A2

r3

)

+ 1
32

 3

(
3

4r8 − 5A1

4r7 + 18
r6 − 12

r5 − 9
2r4 + 6

r3

)
, (4.8)

where the coefficients A1 and A2 must be found by imposing the boundary conditions. For
the outer boundary condition, we must consider (4.1), which together with (4.5a–c) yields
the outer boundary condition

u′′(1,o)
φ = 3
 3

16r3 as r → ∞. (4.9)

This boundary condition is satisfied regardless of A1 and A2. However, requiring that the
inner boundary condition is satisfied leads one to find A1 = 33

5 and A2 = 32
5 . Thus the
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Odd viscous flow past a sphere at low Reynolds numbers

z

FD

TSφ

�

U �

Figure 1. Graphical representation of cylindrical coordinates 
,φ, z for a sphere immersed in a fluid, with
streaming velocity Ui pointed in the z-direction, and an odd viscosity whose axis of chirality �i is also pointed
in the z-direction. The picture also shows the drag force FD and the stream-induced torque TS whose value is
given in (4.12).

complete solution is given by

u′′(1,o)
φ = 1

32



(
− 1

r6 + 33
5r5 − 12

r4 + 32
5r3

)

+ 1
32

 3

(
3

4r8 − 33
4r7 + 18

r6 − 12
r5 − 9

2r4 + 6
r3

)
. (4.10)

Having obtained a complete solution up to first order in odd viscosity and Reynolds
number, we compute the force on the sphere corresponding to this solution. As follows
from axial symmetry, there is no lift force. There is only the convective correction to drag
force, which leads to a total drag force

FD = Fiei = 6πa |U| ηs

(
1 + 3

8 Re
)

+ O(γ 2
o , log(Re)Re2). (4.11)

However, we do find odd viscous effects through the dimensionless torque T (1)
k =∫

B εijkxiσ
(1)
jl dSl. Restoring dimensions, we acquire the total stream-induced torque TS

whose value is given by

TS = �iTi = 2πa2

5
|U| ηo Re + O(γ 3

o , γo log(Re)Re2). (4.12)

This torque is displayed graphically in figure 1. We thus learn that convection can allow for
a sphere to feel torque when moving through an odd viscous fluid in an axially symmetry
way. Reflection symmetry prevents such a torque from arising for Stokes flow past a sphere
(Khain et al. 2023).

4.2. Transverse free-stream velocity
For the case where the free-stream velocity is transverse to �i, to explicitly solve (4.2a,b)
in a way that satisfies the inner and outer boundary conditions is challenging. Fortunately,
it turns out that that thanks to the Lorentz reciprocal theorem, we need not know more
about the first inner solution than (4.1) and (4.2a,b) in order to obtain the first convective
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correction to drag and lift force on a translating sphere. The Lorentz reciprocal theorem
connects two fluid systems, with the first fluid system being the one that we wish to better
understand, and an auxiliary fluid system that is used to accomplish this by means of the
Lorentz reciprocal theorem. The first fluid system is one corresponding to the first inner
solution represented by fluid velocity u(1)i . The auxiliary fluid system labelled by ∗ is
identical to the first fluid system except for the following three things.

(i) We consider for the auxiliary fluid system a dimensionless free-stream velocity e∗
i

that satisfies (e∗
i )

2 = 1 and e∗
i �i = 0, but is not necessarily parallel to ei, as a parallel

e∗
i does not allow one to extract lift force (Lier 2024).

(ii) For the auxiliary fluid system, we consider Stokes flow, i.e. flow that corresponds to
the zeroth inner solution represented by fluid velocity u∗(0)

i .
(iii) In order for the Lorentz reciprocal theorem to hold for odd fluids, we require that odd

viscosity of the second fluid system is given by γ ∗
o = −γo (Hosaka et al. 2023b).

These differences are displayed graphically in figure 2. Starting from (4.2a,b), the Lorentz
reciprocal theorem gives the relation (Brenner & Cox 1963; Masoud & Stone 2019)∫

S∞
(u∗(0)

j σ
(1)
ij − u(1)j σ

∗(0)
ij ) dSi =

∫
V∞

u(0)i ∇iu
(0)
j u∗(0)

j dV, (4.13)

where the normal of the surface integral points outwardly. Here, S∞ is the surface of a
sphere centred at xi that encloses the volume V∞ of the fluid system, whose radius will
eventually be taken to infinity. Furthermore, V∞ surrounds B, the boundary of the sphere
(see figure 2). To work out (4.13), we introduce the definitions

I1 =
∫

S∞
u∗(0)

j σ
(1)
ij dSi, I2 = −

∫
S∞

u(1)j σ
∗(0)
ij dSi, I3 =

∫
V∞

u(0)i ∇iu
(0)
j u∗(0)

j dV.

(4.14a–c)

For the first two terms, it holds that because the sphere with surface S∞ will be considered
infinitely large, any contribution to the integrand that is O(r−3) can be discarded. To take
advantage of this fact, let us introduce for a general field f the notation

f =
∑
n=0

( f )−n r−n, (4.15)

where ( f )−n has no r-dependence. We first consider I1, which in the limit of infinite sphere
radius can be written as

I1 =
∫

S∞
(σ
(1)
ij )−1[(u∗(0)

j )0 r−1 + (u∗(0)
j )−1 r−2] dSi +

∫
S∞
(σ
(1)
ij )−2 (u

∗(0)
j )0 r−2 dSi.

(4.16)

Here, u∗(0)
j is fully even under xi → −xi, and since (4.16) is a surface integral, (σ (1)ij )−1

or (σ (1)ij )−2 must be odd under xi → −xi in order for this contribution to I1 to be

non-vanishing. This cannot come from the pressure term as it is fully even. For (σ (1)ij )−1

to give a non-vanishing contribution thus requires (u(1)j )0 to be even under xi → −xi.
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Odd viscous flow past a sphere at low Reynolds numbers

From (4.1), it follows that

(u(1)j )0 = JjkF (0)
k + terms odd under xi → −xi, (4.17)

with Jjk given by

Jij = 1
32π

(3δij − eiej − 2γoεij). (4.18)

Because this term is constant, it vanishes when computing the corresponding viscous
stress. Therefore, (4.16) reduces to

I1 = e∗
j

∫
S∞
σ
(1)
ij dSi. (4.19)

Now I1 can be related to the desired F (1)
i whose expression is given by F (1)

i = ∫
B σ

(1)
ij dSj.

Specifically, from (4.2a,b), it follows that

∫
B+S∞

(σ
(1)
ij − u(0)j u(0)j ) dSj = 0. (4.20)

Equation (4.20) simplifies by noting that u(0)j = 0 on B. Furthermore, since u(0)j is fully

even under xi → −xi, we have
∫

B+S∞ u(0)j u(0)j dSj = 0, from which it follows that I1 =
−e∗

j F
(1)
j . We then consider I2, which in the limit of infinite sphere radius can be written

as

I2 = −
∫

S∞
r−2(u(1)j )0 (σ

∗(0)
ij )−2 dSi. (4.21)

Here, (σ ∗(0)
ij )−2 is odd under xi → −xi, so that only the even part of (u(1)j )0 can contribute.

This term is given by (4.17), and we thus find

I2 = −JjkF (0)
k

∫
S∞
σ

∗(0)
ij dSi. (4.22)

Using the zeroth-order version of (4.20), it holds for the zeroth-order Stokes force that
F∗(0)

i = − ∫S∞ σ
∗(0)
ij dSj, so that (4.22) turns into I2 = −JjkF∗(0)

j F (0)
k . Finally, u(0)i is fully

even under xi → −xi, making the integrand of I3 fully odd under xi → −xi, thus I3 = 0.
Combining the results for I1 and I2, (4.13) narrows down to

F (1)
j e∗

j = JjkF∗(0)
j F (0)

k . (4.23)

We now consider two choices for e∗
i that enable us to extract drag and lift force,

respectively. First, we take e∗
i = ei. Using (4.18), (4.23) then reduces to the formula for
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z

FD
(1)

FL
(1)

FL
∗(0)

FD
∗(0)

ηS, ηo ηS, –ηo

U

U∗
S∞ S∞

B

a a

B

� z �

(b)(a)

Figure 2. Graphical representation of the two fluid systems that are considered when using the Lorentz
reciprocal theorem. These are (a) the first fluid system, which we wish to understand better, and (b) the auxiliary
fluid system, which is used to gain understanding of the first one by means of the Lorentz reciprocal theorem.

the convective correction to drag force (Brenner & Cox 1963; Masoud & Stone 2019)

F (1)
j ej = C(1)D = 9π

4
+ O(γ 2

o ). (4.24a)

Let us now consider the case e∗
i = εijej. We find the convective lift force correction

εijF (1)
i ej = C(1)L = 9π

16
γo + O(γ 3

o ). (4.24b)

Using (3.6) and restoring the dimensionality, we finally obtain the total drag force
(Proudman & Pearson 1957)

FD = Fiei = 6πa |U| ηs

(
1 + 3

8 Re
)

+ O(γ 2
o , log(Re)Re2), (4.25a)

and total lift force

FL = εijFiej = 3πa |U| ηo

(
1 + 3

16 Re
)

+ O(γ 3
o , γo log(Re)Re2). (4.25b)

In Appendix B, we show an alternative and more direct way of computing (4.25).

5. Discussion

In this work, we studied the effect of convection for odd viscous flow past a sphere, and
computed low Reynolds number corrections to the corresponding forces and torques. Since
the low Reynolds number expansion is singular, we obtained inner and outer solutions
that are matched using the method of matched asymptotic expansions. We considered
two cases, namely the cases where the axis of chirality is parallel and orthogonal to the
free-stream velocity. For the longitudinal case, we could use axial symmetry to fully apply
the method of matched asymptotic expansions up to first order. Due to axial symmetry,
lift force vanishes; however, we do find that the interplay between convection and odd
viscosity can turn on torque for a translating sphere. Torque does not arise for Stokes
flow, because in this case a coupling between torque and translation is precluded by the
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symmetry of Stokes flow under reflection along the direction of motion (Khain et al. 2023).
This symmetry is also called fore–aft symmetry. Interestingly, the breaking of fore–aft
symmetry exhibited by the flow is also found to generate torque on a sphere translating
through an even viscous fluid subject to a background rotation. In this case, the torque
arises when the rotation axis is aligned with the motion, similar to how in the odd viscous
case the axis of chirality is aligned with the motion. In both cases, the stream-induced
torque arises at first order in Reynolds number. Aurégan, Bonometti & Magnaudet (2023)
have studied the force and torque for this rotating fluid system numerically, avoiding the
need to assume certain characteristic numbers such as the Reynolds number to be small.
It would be interesting to similarly numerically explore odd viscous flow past a sphere
without assuming the Reynolds number or γo to be small. For Stokes flow, odd viscous
flow was studied analytically and nonlinearly in γo in Everts & Cichocki (2024).

Because the stream-induced torque arises exclusively due to convection, measuring
torque is an excellent avenue for experimentally studying the interplay between convection
and odd viscosity. Specifically, one could measure the rotation of a spherical object that is
dropped into an odd viscous fluid that has its axis of chirality aligned with the gravitational
force. A good option for the experimental realization of a three-dimensional odd viscous
fluid is a suspension of externally rotated spinners, as considered by Soni et al. (2019).
However, in this work the spinners were confined to an interface, which prevents the
odd viscosity from being three-dimensional. Another challenge in studying the interplay
between convection and three-dimensional odd viscosity with a suspension of spinners is
that such a fluid will also exhibit rotational viscosity, which can affect the torque on an
obstacle.

For the transverse case, axial symmetry is broken, and the computation of convective
effects on flow is more involved. We therefore computed only the first Reynolds number
corrections to the forces with the help of the odd generalization of the Lorentz reciprocal
theorem (Hosaka et al. 2021b). A relevant question is whether for the transverse case,
stream-induced torque can also arise. Because axial symmetry breaking dramatically
complicates this problem, an analytical computation of the first inner solution seems out
of reach, and one instead must rely on an indirect method similar to the Lorentz reciprocal
theorem that was employed to compute lift force. Because torque requires knowledge of a
force dipole as opposed to a force monopole, finding such an approach is more involved.

Acknowledgements. We thank J. Everts, Y. Hosaka, T. Khain, P. Matus, C. Scheibner and P. Surówka for
useful discussions. We also thank the referee for mentioning the analogy between odd viscous stream-induced
torque on a sphere and torque on a sphere for fluids subject to a background rotation.
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Appendix A

To derive the first outer solution, we start from (3.11a,b) and add a point force that
approximates the sphere at distances far away from it. The corresponding point force
solution will turn out to satisfy the inner boundary condition (3.12). Introducing the point
force yields the equations

∇̃iũ
′(1)
i = 0, (A1a)

(δij + γoεij) Δ̃ũ′(1)
j − ∇̃ip̃′(1)

m = ej ∇̃jũ
′(1)
i + F (0)

i δ̃, (A1b)
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where δ̃ is the three-dimensional Dirac delta function located at the origin. Following
Pozrikidis (1996), we take the divergence of (A1b) to obtain

Δ̃p̃′(1)
m = −F (0)

i ∇iδ̃ + γoεij Δ̃∇̃iu
′(1)
j . (A2)

Using the relation δ̃ = −Δ̃(1/4πr̃), (A2) can be solved as

p̃′(1)
m = F (0)

i ∇̃i
1

4πr̃
+ γoεij ∇̃iũ

′(1)
j . (A3)

Plugging this back into (A1b), we obtain

ej ∇̃jũ
′(1)
i = [δij Δ̃+ γo(εij Δ̃− εkj ∇̃i∇̃k)]ũ

′(1)
j +

F (0)
j

4π
(δij Δ̃− ∇̃i∇̃j)

1
r̃
. (A4)

At zeroth order in γo, (A4) can be solved with

ũ′(1,s)
i = −F (0,s)

j (δij Δ̃− ∇̃i∇̃j)M, (A5)

where M is given by

(Δ̃− ej ∇̃j)M = 1
4πr̃

. (A6)

Note that the ansatz of (A5) is such that (A1a) is automatically satisfied. We can take the
Laplacian of (A6) to find

(Δ̃− ej ∇̃j)ΔM = −δ̃. (A7)

We define
Δ̃M = Φ exp(x̃iei/2), (A8)

so that (A7) turns into the Helmholtz equation

Δ̃Φ − 1
4Φ = −δ̃, (A9)

whose solution is given by

Φ = 1
4πr̃

exp(−r̃/2). (A10)

Equation (A8) then turns into

Δ̃M = exp(−ζ̃ )
4πr̃

, (A11)

with ζ̃ = 1
2 (r̃ − x̃iei). Equation (A11) can be solved to find (Pozrikidis 1996)

M = 1
4π

∫ ζ̃

0

1 − exp(−ξ)
ξ

dξ. (A12)

Having found ũ′(1,s)
i , we move on to ũ′(1,o)

i . For this, we take the ansatz

ũ′(1,o)
i = −F (0,s)

j Aijkl ∇̃k∇̃lN − F (0,o)
j (δij Δ̃− ∇̃i∇̃j)M, (A13)

where Aijkl is some four-tensor. The second term on the right-hand side of (A13) cancels
out the odd part of the point-force term in (A4). Plugging (A13) into (A4) and considering
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Odd viscous flow past a sphere at low Reynolds numbers

the contributions O(γo), we find

F (0,s)
j Aijkl ∇̃k∇̃l(Δ̃N − em ∇̃mN) = −F (0,s)

j (εil Δ̃− εkl ∇̃i∇̃k)(δlj̃Δ− ∇̃l∇̃j)M. (A14)

Simplifying leads to

Aijkl ∇̃k∇̃l(Δ̃N − em ∇̃mN) = −(εijδkl + εjkδil − εikδlj) ∇̃k∇̃lΔM. (A15)

To solve (A15), we take
Aijkl = εijδkl + εjkδil − εikδlj, (A16)

and also impose
Δ̃N − ei ∇̃iN = −Δ̃M. (A17)

Note that we have

∇̃iũ
′(1,o)
i = −∇̃i[F (0)

j (εijδkl + εjkδil − εikδlj) ∇̃k∇̃lN]

= −
F (0)

j

ηs
(εkj ∇̃k + εjk ∇̃k) Δ̃N = 0, (A18)

thus incompressibility is guaranteed for ũ(1,o)i . Proceeding, we find that with the help of
(A11), (A17) can be rewritten as

Δ̃N − ei ∇̃iN = −exp(−ζ̃ )
4πr̃

, (A19)

which is solved when one takes

N = exp(−ζ̃ )
4π

. (A20)

The combination of (A3), (A5) and (A13) fully specifies ũ′(1,o)
i . It turns out that this point

force solution satisfies (3.12), and therefore ũ(1,o)i = ũ′(1,o)
i . We have thus obtained (3.14).

Appendix B

In this appendix, we show a more direct way to compute the convective corrections to the
Stokes forces from the first outer solutions. First, let us define

vi = −Re ũ(1)i , (B1)

where ũ(1)i is the first outer solution given in (3.14). We revert back to the coordinate r and
to the frame where the fluid is stationary at r → ∞ and the sphere is moving with a sphere
velocity Vi = −Ui. We then find the fluid velocity

vi = (H(s)
ij + γoH(o)

ij )F
(0)
j + O(γ 2

o ), (B2)

where we introduced the Green’s functions H(s)
ij and H(o)

ij given by

H(s)
ij = 1

4π Re
(δijΔ− ∇j∇i)

∫ Re ζ

0

1 − exp(−ξ)
ξ

dξ, (B3a)

H(o)
ij = 1

4π Re
(εijδkl + δliεjk − δljεik)∇k∇l exp(−Re ζ ), (B3b)

with ζ = 1
2(r − xiei). Since we are interested in the transverse case, we take F (0)

i �i = 0. To
compute the inertial corrections, we will follow the method described in Pozrikidis (1996).
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This method involves extracting the inertial correction to the Stokes force by looking
at how, from the point of view of the first outer solution, the sphere is accelerated by
convection. To see this, let us expand vi for small r using the notation introduced in (4.15).
It follows from the matching condition (3.12) that (vi)−1 is given by the zeroth inner
solution, which represents Stokes flow. Therefore, (vi)−1 does not depend on Reynolds
number. For the sub-leading contribution, we find from (B2) that

(vi)0 = − Re
16π

[
(δij − eiej)

(
3
2

−
x‖(4r2 − x2

‖ − z2)

2r3

)
+ eiej

(
1 −

x‖(x2
‖ + r2)

2r3

)

− εijγo

(
1 − x‖(r2 − z2)

2r3

)]
F (0)

j + O(γ 2
o ,Re2), (B4)

where x‖ = elxl. The right-hand side of (B4) tells us the effective correction to the sphere
velocity due to convective corrections. Only the part that is even under xi → −xi can be
viewed as such an effective sphere velocity correction, whereas the part that is odd has its
effective contribution to the sphere velocity cancelled out. Focusing on the part of (B4)
that is even under xi → −xi, we find

(vi)0 = −Re JijF (0)
j + terms odd under xi → −xi + O(γ 2

o ,Re2), (B5)

where Jij was defined in (4.18). We then extract from (B5) the leading-order contribution
to the effective sphere velocity V ′

i , which is given by

V ′
i = Vi − Re JijF (0)

j . (B6)

We then use the formula for the Stokes force of (3.6) to find the effective Stokes force
induced by V ′

i . We find

F ′(0)
i = −(C(0)D δij + C(0)L εij)V ′

j

= [(C(0)D + Re C(1)D )δij + (C(0)L + Re C(1)L )εij]Uj, (B7)

where

C(1)D = 9π

4
+ O(γ 2

o ), C(1)L = 9π

16
γo + O(γ 3

o ). (B8a,b)

Equations (B8a,b) coincide with (4.24).
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