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ASYMPTOTIC THEORY OF SINGULAR SEMILINEAR 
ELLIPTIC EQUATIONS 

BY 

T A K A S I K U S A N O A N D C H A R L E S A. SWANSON ( 1 ) 

ABSTRACT. Necessary and sufficient conditions are found for the 
existence of two positive solutions of the semilinear elliptic equation 
Aw + q(|x|)u =f{x, u) in an exterior domain Hc:|Rn, n > 1, where q, f 
are real-valued and locally Holder continuous, and f(x, u) is nonin-
creasing in u for each fixed x e f l . An example is the singular 
stationary Klein-Gordon equation Aw — k2u = p(x)u~x where k and 
À are positive constants. In this case NASC are given for the 
existence of two positive solutions ut(x) in some exterior subdomain 
of Cl such that both |x|m exp[(-l) l_1/c |x|]uj(x) are bounded and 
bounded away from zero in this subdomain, m = (n —1)/2, i = 1, 2. 

1. Introduction. The semilinear elliptic equation 

(1.1) Au + q(\x\)u=f(x,u), xefi 

is under consideration in an exterior domain flczRn
? n > 2 , where q:I—»IR, 

I = (0,°°) and / : f t x l ~ » l are locally Holder continuous, and miri\x\=tf(x,u), 
max|x |=t/(x, u) are both nonincreasing in uel for each tel. The main 
theorems in §3 are necessary and sufficient conditions for the existence of two 
positive solutions of (1.1) in some exterior subdomain of Q, with specific 
asymptotic behavior as |JC|—>o°. A prototype of (1.1) is the stationary Klein-
Gordon equation 

(1.2) ku + q(\x\)u = p(x)u~k, x e f l , 

where À is a positive constant and p : f l ^>7 is locally Holder continuous. 
The case that fix, u) is nonpositive and nondecreasing in u, e.g. p (x)<0 and 

À < 0 in (1.2), was solved earlier by Kreith and Swanson [5]. An essential 
difference in the case À > 0 is that (1.2) (or (1.1)) can have a singular solution, 
i.e. a positive solution u(x) such that limx_^Xo u(x) = 0 for x 0 ef l . In addition we 
prove the existence of two positive solutions ul5 u2 of (1.1) such that 
u1(x)/u2(x) —> 0 as |x| —> œ uniformly in Q. 
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Applications of (1.2) in the case À > 0 , q = Q arise in particular from 
boundary layer theory of viscous fluids [1,2]. 

The preliminary results for nonlinear ordinary differential equations in §2 
also are new, extending theorems of Taliaferro [9,10]. These are applied in §3 
to the ordinary differential equations (3.5) and (3.6), arising when the linear 
part of (1.1) is restricted to the radial component (3.2) and f(x, u) is replaced 
by the radial majorants (3.1). Solutions of (3.5), (3.6) obtained in this way then 
satisfy the partial differential inequalities (3.12), (3.13), implying [8, p. 125] the 
existence of positive solutions of (1.1) with appropriate asymptotic properties. 

2. Ordinary differential equations. The existence of positive solutions y(t) of 
the ordinary differential equation 

(2.1) (r(t)y')' = h(t,y), t>a 

will be proved under the following assumptions: 
(i) r:[a, oo)-^j = (0, oo) is continuous and satisfies lim^oo i?(t) = oo? where 

f1 ds 
(2.2) R(t)=\ -f-; and 

Ja r(s) 
(ii) h : [a, oo) x I -^ I is continuous and nonincreasing in the second variable. 
A positive solution y(t) of (2.1) defined in some half-line [Ty, oo) is called a 

proper positive solution. If y(t) is a local solution of (2.1) near t = a with 
positive initial values y (a) and y'(a), then y'(t)>0 throughout [a, oo) since 
KOy'W is increasing, and it is easily seen from assumption (ii) that y(t) can be 
continued to oo. Furthermore, integration of (ry')'>0 twice yields y(f) — 
r(a)y'(a)R(t), t>a. Hence equation (2.1) always has proper positive solutions 
which are unbounded as t —» oo. 

If y(f) is a proper positive solution of (2.1) defined in an interval [t0, oo)5 then 
there are only two possibilities: Either y'(t)<0 throughout [to,00), or y'(t)>0 
throughout [f1? oo) for some t\ 

>to- I f y ' ( 0 < 0 for all f>f0, then \imt^00y(t) = 
k > 0 exists and is finite. Moreover, limt_^o r(t)y'(t) = 0, for if limt^oo r(t)y'(t) = 
—m<0, then r(t)y'(f)^— m throughout [t0, oo), and integration implies a con­
tradiction of the positivity of y(t). If y'(i)>0 for all t>tl9 integration of 
(ry') '>0 twice gives 

f ds 
yW-y^^KOy^ti) — - , t>tu 

Jtl r(s) 

and hence y(t) is unbounded and y(t)/R(t) is bounded from below by a positive 
constant for t>tx. 

These observations are summarized in the lemma below. 

LEMMA 2.1. Every proper positive solution y(t) of (2.1) defined in an interval 
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[f0, oo) has exactly one of the following properties: 
I. y(t) is strictly decreasing in [t0, °°) with nonnegative finite limit at oo? and 

iinwK0y'W = 0; 
II. y(t) is strictly increasing in [fl5 oo) for some tx > t0 and there exists a positive 

constant c such that y(t)>cR(t) for all t>tx. 

THEOREM 2.2. Equation (2.1) has a proper positive solution which is eventu­
ally decreasing if and only if 

r« (2.3) | R(t)h(t,c)dt<o° 

for some positive constant c. 

Proof. If (2.1) has a positive decreasing solution y(t) in [f0, °°), there exists a 
constant fc>0 such that y(t)<fc in [t0, °°). Integration of (2.1) twice gives 

_ r(s) 

which implies that 

v(to) - y (0 = -7-T Ha, y (&)) da ds, L r(s) 1 

f [ n ^ W , y ( < 7 ) ) d < r = [ - M H*,y(<T))dads< 
Jt0 LJt0 r(s)J Jt0 r(s)Js 

; <oo 
Jt0

 LJto r(5)J Jt0 r{s) Js 

or 

~ "t<oo. (2.4) [ R(r)hay(r))dr-

Since y(f)<fc and h(f, y) is nonincreasing in y, (2.4) implies that 
r«( f )Mt , fc)A<oo. 

Conversely, if (2.3) holds for some c > 0 , choose T>a such that 
J T ^ ( 0 M * , c) dt<c and consider the set of continuous functions 

(2.5) » = {y e C[T, 00) :c<y( r )^ 2c, t >T } . 

Clearly ^ is a closed convex subset of the space of continuous functions 
C[T, 00) with the compact open topology. Let M: & —» C[T, °°) be the integral 
operator defined by 

(2.6) (My)(t) = c + 1 " [ | S -j^]h(s, y (s)) ds, t>T. 

It is easily verified that (i) M maps & into ^ ; (ii) M is a continuous mapping; 
and (iii) M2/ is relatively compact. Therefore M has a fixed point y e <3/ by the 
Schauder-Tychonoff fixed point theorem. A standard proof shows that y(t) is a 
solution of (2.1), which by (2.6) is necessarily positive and decreases to c as 

t t °°. 
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REMARK 1. An open question is to characterize the existence of a proper 
positive solution y(r) of (2.1) with the property linv^o y(f) = 0. 

THEOREM 2.3. Equation (2.1) has an eventually positive solution y(t) such 
that y(t)/R(t) has a finite positive limit at oo // and only if there exists a positive 
constant c such that 

(2.7) J h(t,cR(t))dt<oo. 

Proof. If y(t) is a positive solution of (2.1) in [t0, °°) such that y(f)/JR(f) has a 
finite positive limit at oo5 there exist positive constants kx and k2 such that 

(2.8) k1R(t)<y(t)<k2R(t) for t>tl9 

where tx>t0 is sufficiently large. Since r(r)y'(0 is increasing, it is not difficult to 
see that l i m , ^ r(t)y'(t) = l i m , ^ y(t)/R(t), and hence integration of (2.1) yields 

(2.9) f h(t,y(t))dt<™. 

It follows from (2.8) and (2.9) that J~ h(t, k2R(t)) dt<™, proving the necessity 
of (2.7). 

The sufficiency proof is similar to that of Theorem 2.2. We can choose T>a 
large enough so that $rh(t, cR(t)) dt<c, and replace (2.5) and (2.6), respec­
tively, by 

(2.5') »={yeC[T ,oo) : c R( t )<y( t )<2cR( t ) , r > T h 

(2.60 (My)(t) = 2cR( t ) - f - f r f h (a, y)(a)) dads, t > T . 
JT r(s) Js 

THEOREM 2.4. Every proper positive solution y(f) o/ (2.1) satisfies 
limt^oo[y(t)/2?(t)] = +oo // and only if 

(2.10) J h(f,cJR(t))df = +oo /or a// c > 0 . 

The necessity of (2.10) is proved as in Theorem 2.3. Conversely, if (2.10) 
holds, then J°° R(t)h(t, c) dt = +o° for all c > 0 since h(f, y) is nonincreasing in y. 
By Theorem 2.2, equation (2.1) cannot have a proper positive solution which is 
eventually decreasing, and hence every proper positive solution y(f) must be 
unbounded with limt_H(OO[y(t)/JR(0]>0. This limit cannot be finite because of 
Theorem 2.3. 

REMARK 2. Since (2.3) implies (2.7), condition (2.3) is sufficient for equation 
(2.1) to have two proper positive solutions yx(t) and y2(t) such that both y t(t) 
and y2(t)IR(t) have finite positive limits at oo; and so in particular 
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limt^oo yi(t)/y2(t) = 0. On the other hand, if (2.7) is satisfied but not (2.3), then 
every proper positive solution y(t) is unbounded with limt^oo[y(t)AR(f)] finite 
and positive. 

In the case of the specialization 

(2.11) (K0y')' = p ( 0 y - \ A > 0 

of (2.1), where r is as before and p:[a, o°)—>/ is continuous, conditions (2.3), 
(2.7) and (2.10) reduce to, respectively 

(2.12) [ R(t)p(t)dt<™, 

(2.13) J [R(t)Tkp(t)dt<™, 

(2.14) JO°[«(0rxp(t)A = +oo. 

COROLLARY 2.5. Condition (2.12) is sufficient for (2.11) to have two eventu­
ally positive proper solutions yx(t) and y2(0 such that both y^t) and y2(t)/R(t) 
have finite limits at oo. 

COROLLARY 2.6. If (2.13) holds but J°°l?(t)p(f) df = +«>, then y(t)/R(t) has a 
finite positive limit at °° for every proper positive solution y(t) of (2.11). 

COROLLARY 2.7. Condition (2.13) is necessary and sufficient for (2.11) to 
have an eventually positive solution y(t) such that y(t)/R(t) has a finite positive 
limit at °°. 

COROLLARY 2.8. Condition (2.14) is sufficient for every proper positive solution 
y(t) of (2.11) to have the property that limt_^[y(f)AR(0] = +°°. 

It is possible for a solution y(t) of (2.11) to be singular at tx>a, i.e. y(f)>0 
in [f0, h), t 0 > a , but l im^o rx-y(f) = 0. It is not difficult to prove 

THEOREM 2.9. If 0 < A < 1 , then for any tx>a there exists a singular solution 
of (2.11) at tx. J / A > 1 , no singular solution of (2.11) exists, i.e. every positive 
solution of (2.11) is continuable to <*>. 

The results of this section can be proved similarly in the case that h(t, y) is 
nondecreasing in y. (In particular, the first inequality in (2.8) is used instead of 
the second inequality). 

3. Elliptic equations. The following notation will be used: 

Ctt={xeUn:\x\>t}, t>0. 

Since H is an exterior domain, there exists a > 0 such that flt <= O for all t > a. 
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Let 

(3.1) cf)(t7 u) = minf(x, u), <ï>(t, u) = max/(x, u). 
\x\ = t |x| = t 

We consider equation (1.1) in ft under the following standing hypotheses. 

HYPOTHESES FOR (1.1). 

(Hx) The functions q:I-*R and / : ft x I —> I are locally Holder continuous, 
where I = (0, °°); 

(H2) Both <fi(t, u) and $(f, u) are nonincreasing in M G I for each tel; 
(H3) The linear differential equation (3.2) below is nonoscillatory in [a, °°): 

(3.2) Lr-.-Kr-fJ^O.-O. 
Equation (3.2) is the radial component of the linear part of (1.1), i.e. /(x, u) in 
(1.1) is replaced by 0, and A is replaced by the radial component in spherical 
polar coordinates. 

By hypothesis (H3), it is well-known that (3.2) has two eventually positive 
solutions Zi(t) and z2(t) with \im[z1(t)/z2(t)'] = 0 as t—>oo? and furthermore that 
L has the factorized form [4,11] 

(3 3) Lz=-^-- I " — - ( Z )] 
p2(t) dt Lpi(f) dt \po(f)/J' 

where 

(3.4) Po(t) = 2,(0, Pl(t) = [zzCO/z^t)]', P2(t) = [z1(r)Pl(0r'• 

In view of (3.2) and (3.3), the ordinary differential equations 

(3.5) Ly = <f>(t,y) 

(3.6) Lz=0>(t,z) 

have the equivalent forms 

(3.7) fa\t) Y')' - p2(0*(t, p0(t) Y), Y - y/po(0 

(3.8) (pl^OZ'y = p2(t)<I>(t, Po(t)Z), Z = z/p0(t) 

of the form (2.1) in the case r(t) = pî\t), jR(f) = z2(f)/z1(r). (An additive 
constant can be ignored.) Conditions (2.3) and (2.7) applied to (3.8) are, 
respectively 

(3.9) rp2(t)^<Ht,czl(t))dt«» 
J ZiW 

(3.10) | p2(t)<t>(t,cz2(t))dt<°o 

for some positive constants c. 
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THEOREM 3.1. Condition (3.9) is sufficient for equation (1.1) to have a positive 
solution MGC^a(flT) for some T>a, 0 < a < l , such that M(JC)/Z1(|X|) is 
bounded and bounded away from zero in ClT. 

Proof. The sufficiency proof of Theorem 2.2 shows that equation (3.8) has 
an eventually decreasing positive solution Z(t) such that l i m , ^ Z(t) = c, c as in 
(3.9). Since cf>(t, u) is nonincreasing in u, (3.1) and (3.9) imply that 

(3.11) \"p2(t)^4>(t,C*Z1(t)) dt <co 

for arbitrary c*>c. By Theorem 2.2 again, equation (3.7) has an eventually 
decreasing positive solution Y(t) such that limt^oo Y(t) = c*. Then there exists 
T>a such that Y(t)>Z(t) for all t>T. Define v(x) = Zxflxl)Y(\x\) and w(x) = 
ZxdxDZdxl) for xe£lT. Since (3.5), (3.6) are equivalent to (3.7), (3.8), respec­
tively, it follows from (3.1) that v(x) and W(JC) satisfy the differential in­
equalities 

(3.12) Av + q(\x\)v<f(x,v), x e f i T 

(3.13) Aw + q(\x\)w>f(x,w), X G ( 1 T 

respectively. Furthermore w(x)<v(x) throughout ClT and v, w e C ^ i l r ) for 
some a in 0 < a < l by standard regularity theory [6; §4.8] for equations (3.7), 
(3.8), in view of the assumed local Holder continuity of the coefficients in (3.2), 
(3.7), (3.8). A theorem of Noussair and Swanson [8, p. 125] applied to (3.12), 
(3.13) shows that equation (1.1) has a positive solution u(x)e Cf^iCij) satisfy­
ing w(x)<u(x)<v(x), XG(1 T . This solution u(x) evidently has the stated 
boundedness properties in Theorem 3.1. 

The following theorem is proved by virtually the same procedure, applying 
Theorem 2.3 instead of Theorem 2.2. 

THEOREM 3.2. Condition (3.10) is sufficient for equation (1.1) to have a 
positive solution u e C{£a(ÇlT) for some T>a, 0 < a < 1, such that u(x)/z2(\x\) is 
bounded and bounded away from zero in HT. 

COROLLARY 3.3. Condition (3.9) is sufficient for the existence of two positive 
solutions ut e Cj^a(ftT) for some T > a , 0 < a < l such that each of wi(x)/zi(|x|) is 
bounded and bounded away from zero in ftT, i = 1, 2. 

As an example of (1.1), consider the semilinear equation 

(3.14) Au-k2u = p(x)u~k, xe f t , 

where k > 0 and À > 0 are constants and p e Cg^ft). In this case (3.1) reduces 
to 

^(f,w) = p*(t)u \ <ï>(t,w) = p*(f)M \ 
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where 

p*(f) = min p(x), p*(t) = max p(x). 
|x| = t \x\ = t 

Case I: fc = 0. The solutions zx(t), z2(t) of (3.2) can then be taken to be 

z1(t) = l, z2(t) = \ogt if n = 2; 

z1(t) = t2~n, z2(t) = l if n > 3 . 

Condition (3.9) reduces to 

(3.15) J t log tp*(t)dt«* if n = 2; 

(3.16) | rp*(t) A<oo if n>3, 

where a = (n —1) + A(n —2), and condition (3.10) reduces to 

(3.17) [ f(log t)-xp*(*)dt<oo if n = 2; 

(3.18) J tp*(t)dt«*> if n > 3 . 

Theorems 3.1 and 3.2 imply the following results. 

COROLLARY 3.4 (k = 0, n = 2). Condition (3.15) is sufficient for equation 
(3.14) to haue a positive solution which is bounded and bounded away from zero 
in some domain ftTc:ft. Condition (3.17) is sufficient for (3.14) to have a 
positive solution u(x) in some domain flTc:f2 such that w(x)/log|x| is bounded 
and bounded away from zero in £lT. 

COROLLARY 3.5. (fc = 0, n > 3 ) . Condition (3.18) is sufficient for (3.14) to 
have a positive solution which is bounded and bounded away from zero in some 
domain ftTc:fl. Condition (3.16) implies that (3.14) has a positive solution u(x) 
in some domain f lT such that \x\n~2 u(x) is bounded and bounded away from 
zero in flT. 

Case II: k>0. The solutions zx(t), z2(t) of (3.2) can be taken as 

Zl(t) = rvKv(kt), z2(t) = rviv(kt\ v = \-^> 

where Iv and Kv denote the modified Bessel functions of order v. In view of 
the well-known asymptotic behavior of these Bessel functions [3, p. 86], it is 
easily verified that (3.9) and (3.10) reduce to, respectively. 

(3.19) f tpe<Ttp*(t)dt<oo 

https://doi.org/10.4153/CMB-1984-032-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1984-032-1


1984] SINGULAR SEMILINEAR ELLIPTIC EQUATIONS 2 3 1 

/• oo 

(3.20) I fe^*?*{%) dt<*>9 

where p = (n - 1)(A + l)/2, a = fc(A + 1). 

COROLLARY 3.6. (fc>0). Condition (3.20) is sufficient for (3.14) to have a 
positive solution which is bounded by a constant multiple of |je|(1~n)/2efc,x' in some 
domain £lT. Condition (3.19) implies that (3.14) has two positive solutions ux(x) 
and u2(x) in (lT for which both 

\x\m e^u^x) and \x\m e~k]xlu2(x), m = 1^—^ 

are bounded and bounded away from zero in flT. 

REMARK 3. A question naturally arises: If the integral in (3.18) diverges to 
oo, does there always exist an unbounded positive solution of equation (3.14) 
(fc = 0, n > 3)? There are analogous questions in the cases k > 0 and n = 2. We 
note that the answer is affirmative in the radially symmetric case p(x) = p(\x\) 
because of Theorem 2.4. Consider the example 

(3.21) AH = 2 | X | X - 1 I < - \ A > 0 

in IÎ = {x GR3 : |x|> 1}. Since the integral in (3.18) diverges, Theorem 2.4 shows 
that every positive radially symmetric solution of (3.21) is unbounded. One 
such solution is M(JC) = |X|. 

If the hypothesis that <£>(*, u) in (3.1) is convex in u for each fixed t>0 is 
added, conditions (3.9) and (3.10) become necessary conditions for the conclu­
sions of Theorems 3.1 and 3.2, respectively, provided <ï> is replaced by <fi. The 
proof based on spherical means, Jensen's inequality for convex functions, and 
our results in §2, is essentially the same as in [7, 8]. If we make the additional 
mild assumption that 

sup — r<°°, 
t>a,u>0 <P\t, U) 

it follows that (3.9) and (3.10) characterize equations (1.1) for which solutions 
exist satisfying the conclusions of Theorems 3.1 and 3.2, respectively. In 
particular, since p(x)u~k is convex in u, (3.15)-(3.18) are necessary and 
sufficient conditions for the existence of positive solutions of (3.14) with the 
properties stated in Corollaries 3.4 and 3.5. 
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