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SLICE CONVERGENCE OF PARAMETRISED SUMS OF
CONVEX FUNCTIONS IN NON-REFLEXIVE SPACES

ROBERT WENCZEL AND ANDREW EBERHARD

The objectives of this study of slice convergence are two-fold. The first is to derive
results regarding the passage of certain semi-convergences through Young-Fenchel
conjugation. These semi-convergences arise from the splitting of the usual slice
topology in the primal and dual spaces into (non-Hausdorff) topologies: the up-
per slice topology T+; a topology r+ generating a convergence closely resembling the
bounded-weak* upper Kuratowski convergence; along with the respective primal and
dual lower Kuratowski topologies. This gives rise to topological convergences not
reliant on sequentially-based definitions found in many such studies, and associated
topological continuity results for conjugation (in normed spaces), in contrast to the
usual sequential continuity exhibited by analogues of Mosco convergence. The second
objective is to study the passage of slice convergence through addition. Such sum
theorems have been derived in other works and we establish previous theorems from
a unified framework as well as obtaining a new result.

1. INTRODUCTION

Within the context of reflexive Banach spaces Mosco-convergence has shown itself
to be the natural variational convergence to use in the study of approximation and con-
vergence of infima of convex functionals [l]. This is largely due to the fact that the
Young-Fenchel conjugation f *-> f* defined on T(X), the proper lower semi-continuous
convex functions, is bi-continuous with respect to the associated Mosco topology. How-
ever, in [8] it is shown that even sequential continuity must fail when the underlying space
is not reflexive. In the context of non-reflexive spaces slice convergence displays many
of the desirable properties that Mosco convergence does in reflexive spaces [6]. Another
variational convergence which has attracted attention in the non-reflexive context is that
induced by the Attouch-Wets or epi-distance topology [7]. Despite the applicability
of this metrisable topology to the quantitative analysis of stability and convergence of
infima it has one undesirable property from the point of view of approximation. In or-
der for a increasing sequence (in the sense of set inclusion) of finite-dimensional subsets
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{CVjngN to epi-distance converge to another set C then the limit set must be locally
compact with respect to the strong topology. On the other hand slice convergence of such
a sequence only implies separability of C. Unfortunately this gain comes at a cost. One
requires more stringent assumptions to deduce slice convergence of a sum {/„ +gv}vew of
proper convex functions fv,gv £ F{X) from the slice convergence of the individual fami-
lies {fv}vew and {gv}vew (here W is some topological space containing w and v —> w).
Such results will be referred to as "sum theorems". Some authors have preferred to study
the problem of convergence of {Nv ("I Mv}vew, the intersection of two convergent families
of closed convex sets {Nv}veW and {Mv}v€:W, [5, 19]. Such results can easily be deduced
from a sum theorem by simply choosing each of /„ and gv to be the indicators of the
closed convex sets Ny and Mv, respectively. Indeed it is possible to deduce such sum the-
orems from results regarding the convergence of intersection of sets. Thus either point
of view has equal utility. Sum theorems are important as they enable one to study the
approximation and convergence of abstract convex optimisation problems [2, 9]. Such
results are readily applicable to specific problems as we demonstrate in our example in
Section 5.

In this paper we restrict our attention to the study of sum theorems for slice con-
vergence. Indeed much weaker assumptions may be made to ensure such a sum theorem
holds for epi-distance convergence (see [5] and [7, Section 7.4 and the associated exercise
set 8.1]). One could argue that sum theorems for epi-distance convergence have been
more extensively studied than those for slice convergence, an observation which moti-
vates this study. Our main tools are the bi-continuity of Young-Fenchel conjugation
with respect to the slice topology and the properties of the infimal convolution

(/D</)(*) ~M{f(y) + g(x-y))

with respect to conjugation. The slice topology T, may be viewed (see [7]) as the join of
two non-Hausdorff topologies, one of which is the topology corresponding to the lower
Kuratowski convergence of epigraphs. The other half of slice convergence is associated
with a topology we shall refer to as the "upper slice topology" (denoted by r5

+). This
is a topology on the hyperspace C(X x R) of all (nonempty) closed convex subsets of
X x H, generated by the subbasis consisting of all sets of the form

(Bc)++ := {A\A closed convex with A + B(0,e) C BC for some e > 0},

where B is a closed bounded and non-empty convex subset of X x R and Bc denotes its
complement. Then we say / 6 r.+- lim /„ when:

V-Ml

epi /„ € (Bc)++ for all v near w whenever epi / G (Bc)++ .

The join of these two topologies gives rise to the (Hausdorff) topology inducing slice
convergence and it is usually this convergence which is studied. Similar considerations
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apply to the dual slice topology r*. The two associated non-Hausdorff topologies are often
better viewed as inducing semi-continuities rather than convergences and this is the point
of view we take here. In the development of our sum theorems we shall need to understand
how the Young-Fenchel conjugation interacts with such (topological) semi-continuities.
This is investigated in Section 3. The results presented here yield (in the context of
normed spaces) topological versions of existing sequential continuity results [1, 4, 24],
without reflexivity or even completeness of the underlying space. (The cited results were
derived with a view to proving sequential bi-continuity for Young-Fenchel conjugation
relative to Mosco convergence). In the context of the slice topology, this appears to be
the first time such a study has been undertaken (for the component topologies of TS) in
that it is usually only the interaction of conjugation with the join of these topologies
(that is, the slice topology TS) which is considered. From this point of view the results
presented here also augment those already found in the literature on slice convergence
[6, 7].

In Section 4 we apply this machinery to the development of sum theorems for slice
convergence. Our goal here is to deduce a number of results already appearing in the
literature from one unified approach for the case of Banach spaces. Indeed we are able to
deduce results previously obtained by Lahrache [7, page 275] and Penot [19] in Banach
spaces. In doing so we are able to obtain a new result using the notion of compactly
epi-Lipschitz sets, see [10, 17, 18]. Denote by recC the cone of recession directions
of the convex set C. We say a family {gv}vew has uniformly compactly epi-Lipschitz
recession cones if there exists a compact set H in X, r > 0 and neighbourhood W of w
such that for all v S W we have

(1.1) 5 (0 , r) Crecg v - H

for all v e W where rec <?„ := rec {x 6 X \ gv(x) ^ a}. Note that for gv 6 T(X) the cone
rec<7u is independent of a. If we also assume cone (dom /„; — d o m ^ ) = X and that the
following weak* and strong lower closures coincide;

(1-2) /£•& =/£•&

then slice convergence of {fv}vew and {gv}v^w implies that of {/„ + gv}v^w- The lower
closure condition (1.2) is satisfied immediately if X is reflexive, and is also implied by a
number of conditions including the strengthened interiority condition 0 € core (dom /„ -
domgw) (that is, cone (dom fw - domgw) — X) or when both /„ and gv are uniformly
bounded below. When gv is the indicator of a linear subspace Nv C X the condition (1.1)
corresponds to the following uniform finite-codimensionality assumption: There exists a
finite-dimensional subspace F C X* and a neighbourhood V of w such that U N£ C F.

From [7, Exercise 8.1.6] we know that slice convergence of the intersection of two families
of slice-converging subspaces {Mv}v&v and {Nv}vey may fail when neither of these spaces
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satisfy this uniform finite-codimensionality condition. Thus the condition (1.1) cannot
be omitted in general from this sum theorem.

2. PRELIMINARIES

In this section we draw together a number of results and definitions. This is done to
make the development self-contained. A reader conversant with set-convergence notions
and the infimal convolution need only read the first part of this section, only returning
to consult results and definitions as needed.

We shall let C(X) stand for the class of all nonempty closed convex subsets of
a normed space X and CB(X) the closed bounded convex sets. Place d(a,B) =
inf{ \\a - b\\ | b € B }, B{0, p) = {x € X \ \\x\\ < p } and B(0, p) = {x € X | ||z|| ^ p }.
Corresponding balls in the dual space X* will be denoted B*(0,p) and B (0, p) respec-
tively. The indicator function of a set A will be denoted SA, and S(A,-) will denote
the support function. The polar of A C X will be written as A", and for A C X*, "A
denotes the polar as a subset of X. We shall use u.s.c. to denote upper-semicontinuity
and l.s.c. to denote lower-semicontinuity. Recall that a function / : X —> R is called
closed, proper convex on X if and only if / is convex, l.s.c, is never - co , and is not
identically -f oo. The class of all closed proper convex functions on X is denoted by
T(X), and F*(X*) denotes the class of all weak* closed proper convex functions on X*.
We shall use the notation A for the closure of a set A in a topological space (Z, T)
and, to emphasise the topology, we may write ~/C. For x € Z, NT{x) denotes the
collection of all r-neighbourhoods of x. For a function / : Z —> R, the epigraph of
/ . denoted epi / , is the set {{x,a) € 2 x R | f(x) < a}, and the strict epigraph
epis / is the set {(a;, a) € Z x R | f(x) < a } . The domain, denoted dom/ is the set
{x € Z | f(x) < +00}. The (sub-)level set { i e 2 | f{x) < a} (where a > in f z / ) will
be given the abbreviation {/ ^ a). Any product X x Y of normed spaces will always
be understood to be endowed with the box norm ||(a;,2/)|| = max{||x||, \\y\\}; any balls in
such product spaces will always be with respect to the box norm. We also shall assume
the following convention for products Z x R where (Z, r) is topological: We assume the
product topology, where R has the usual topology, and for any subset C C Z x R, its
closure in this topology is written as ZT. If / : (Z, T) —>• R, its r-l.s.c. hull, denoted f, is
denned by ~~f (x) - liminf f(x'). The (extended) lower closure clT/ is defined to coincide

with / if the latter does not take the value —00 anywhere, and to be identically —00

otherwise.

DEFINITION 2.1: Let F:W —> 2X be a multifunction from topological spaces W to

X.

U F(v);
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2. liminfF(u) = f| U F(v)\

3. F(-) is lower-semicontinuous at w if and only if F(w) C liminf F(v). For
V—¥W

a net {A\}xei of subsets of X;

4. l imsup^A= fl U AW
A J residual in / \€J

5. Hminfi4A= fl U ^A-
A J cofinal in / XeJ

REMARK 2.1. It is easily seen that this notion of lower-semicontinuity is equivalent
to the classical formulation—namely: For any open set U intersecting F(w) there is a
neighbourhood V of w for which F(v) D U is nonempty for every v in V.

REMARK 2.2. For metrisable X, the above definitions can be shown to have the equiv-
alent forms:

1. limsup.F(i>) = {x £ X | 3 a net vp —> w and x^ € F{vp) with i j - » i j
V—HO

= (x € A: I liminfd(a:,F(i;)) = o ) .

2. liminf F(v) = {x € X | V nets D^ —> w, 3xp —> x with xp € F(vp)

eventually }

= {x € X | limsupd(x, F(u)) = o}

with obvious analogs for nets of sets.

DEFINITION 2.2: Let A be a convex set in a topological vector space and x € A.
Then

cone A := I ) \A (the smallest convex cone containing A).
A>0

qri A := {x € A\ cone (/I — x) is a subspace of X} (the quasi relative interior of A).

The infimal convolution plays a central role in our development.

DEFINITION 2.3: Let / and g be closed convex functions on X into the extended
reals. Then

(fDg)(x) :=mf(f(y) + g(x-y))

is called the inf-convolution.

It is well known that the strict epigraph of the inf-convolution is equal to the set-
addition of the strict epigraphs of the individual functions:

epi5(/D#) = epij + episg.

Also dom (/ D g) — dom / -I- dom g; epi / D g D epi / + epi g, and
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where f*(x*) = sup((x,x*) — f{x)) is the Young-Fenchel conjugate of / .

Lower semi-continuity of the epi-graphical multi-function v i-> epis(fv0gv) may be
deduced from that of its components using the following lemma. We include its derivation
due to a lack of a solid reference.

LEMMA 2 . 1 . If Fi(-) and F2(-) are multi-functions l.s.c. at w then F(v) :=
Fi{v) + F2(v) is l.s.c. at w.

P R O O F : We use the classical formulation of l.s.c. (Remark 2.1). Let N be a neigh-
bourhood of a point yQ S F(w). There exist y< € Fi(w) such that y0 = j/i + y2. Take two
neighbourhoods Ni of yt such that Ni + N2 C TV; there then exist neighbourhoods V$ of
ro for which Fi(v) n J V ^ O for all u G V{. Hence for all w € Vx nV2,

0 / Fi{v) HNX + F2(v) n /V2 C (Fi(«) + F2(«)) n (/Vx + 7V2) C F(u) n N

giving the result. D

In [22, Lemma 4.1], it is shown that the epigraphs of the closures fvOgv (in the
strong topology on X) satisfy

liminf epi (fvO gv) D epi (/„,D gw)
v—tw

under the condition that dom /* ndom g* ̂  0 for v in a neighbourhood of w. This result,
however, is of limited use here as we are interested in this occurring in the dual space.

We conclude this section with a summary of variational limit notions used in this
paper. Let X and W be topological spaces, then for x € X, w e W, and {fv}vew a
collection of R-valued functions on X, define the lower and upper epi-limits by:

(e-li fv)(x) := sup sup inf inf /„(?/),
" - > ' " USAf(i) V€M(w) veVy^U

(e-ls/„)(£) := sup inf sup inf fv(y).
v*w verfM vsu

It is well known [20] that these limits correspond to the Kuratowski(-Painleve) limit
of the epi-graph multifunction in the sense that

epi (e-ls /„) = lim inf epi /„ ,
V—¥W V—yw

(2.1) epi (e-li /„) = lim sup epi / „ .

These definitions and relations have natural counterparts for nets {/7}7e; of functions.

DEFINITION 2.4: Let {fv}vew be a family of functions. We say that {fv}vew is
epi-u.s.c. at w 6 W if for all x we have

(e-ls /„)(!) ^ /„(*)
v-tw

and epi-l.s.c. if for all x

fw{x) ^ (e-li / , )(*).
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Equivalently for an epi-u.s.c. family the epi-graphs of /„ are lower Kuratowski-
convergent to epi /„,.

DEFINITION 2.5: A family of functions {fv}vew in R- is epi-convergent to a func-
tion fw (as v -» w) if it is both epi-u.s.c. and epi-l.s.c. at w.

Since e-li /„ ^ e-ls /„ on X, the relation defining epi-convergence is in fact an

equality.

3. S E M I - C O N T I N U I T I E S O F THE Y O U N G - F E N C H E L C O N J U G A T E

In this section we investigate the primal upper topology and dual upper topology
whose join with their respective strong lower Kuratowski topologies gives rise respectively
to the primal and dual slice topologies. These may be investigated independently without
forming slice convergence. First consider the dual space and what would correspond to
one half of dual slice convergence.

DEFINITION 3.1: Let {fv}vew be a family of functions on X and {f*}vew the
family of conjugate functions on X* (for a normed space X). We denote the bounded-
weak* upper epi-limit (as v —> w) of {f^}vew by

bw*- limsup epi /„* := j (x*, a) € X* x R | 3 nets vp -* w; (y* aff) £ epi /*

such that ag -> a; y* norm bounded; y* ^ x* \.

The above closely resembles the limit-superior of epigraphs, relative to the bounded-
weak* topology on X* (hence the terminology). The bounded-weak* topology is de-
scribed in, for example, [16]. Clearly this set recedes to +co in the vertical direction and
so resembles the epigraph of some function. This prompts us to define

DEFINITION 3.2: For x* € X*,

(3.1) {bw'- e-li / ; ) (*• ) := in f / a 6 R I (x\a) € bw*- lim sup epi /„*}.

It then follows that

(3.2) epis (bw*- e-li f * ) C 6iy*-limsup epi/u* C epi (bw*- e-li f * ) .
\ v-*w J v_¥w \ v-tw )

Thus bw*- e-li /* is essentially a variational limit in the sense of [4] or [20]. Analogous
v-*w

definitions can be made for nets {/7}76/ of functions, that is,

bw*-lim sup epif* := Ux*,a) e X* x R | 3 subnet jp : (y*,a0) e epi f*0

such that a0 —> a; y* norm bounded; y* ^> x* >.
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with (bw*-e-li f!)(x') defined as in (3.1).
7 '

We require one half of the so-called slice convergence. The following is the best
definition for our purposes although many others are available on modification of existing
material (see [6] or [7]).

DEFINITION 3.3: We say {fv}v<zw in F(X) is upper slice convergent to / € T(X)
(as v —> w) if whenever va —> w is a convergent net, {xa} a bounded net in X we have
for each {y*,rj) G epi,/* that fVa(xa) > (xa,y*) — r] eventually. Denote the set of all
/ G r(X) satisfying the above by r.+- lim /„. (This choice of notation will be clarified in

v-*w
the next paragraph.) Hereafter we shall denote the pointwise supremum of this class by

TS- e-li /„ = sup ( r + - lim fv) .

Again, analogous definitions follow for nets of functions.

The definition is better understood on noting that rj > f*{y*) if and only if f(x) >
(x, y*) — r) for all x. A topological way of writing this [7] is to introduce the cylindrical
slices S := {{x,a) G X x R | ||a;|| ^ n; a = (x,y*) — 77} for any (y*,rj) G X* x R and
the upper slice topology rf on C(X x R) via the neighbourhood subbasis consisting of
the elements

(Sc)+ + := {,4 G C(X x R) | A+ B(0,e) C SC for some e > 0},

for all slices 5. Then / G T+- lim /„ amounts to epi/« G (Sc)++ for all v near w whenever
V—*U)

e p i / G (S c ) + + (in other words, fv -* f m the topology T+) . Another subbasis is that
generated by (Bc)++ where B is a closed bounded and non-empty convex subset of X.

Observe that if / G r + - l im/ , ; and g < / , then g £ r+- l im /„, since epig € (Bc)++

implies e p i / G (Bc)++. This exemplifies the non-Hausdorff nature of rs
+. The lower

Kuratowski limit is generated by the neighbourhood subbasis consisting of all sets N~
:= {B G C(X x R) I BnN ^ 0} where N CXxRis norm-open. Thus we may speak of
a lower topology r~ and the associated lower convergence e-ls /„ ^ / by demanding that
epi / G iV~ imply epi/,, G TV" for all v in a neighbourhood of w. The slice topology rs is
the join of the topologies r / and r_ (that is, has as subbasis the union of the subbases
of r+ and r_).

Recall also the definition of the dual slice topology T* on X* x R. It is the topology on
C* (X* x R) (the class of nonempty weakly* closed convex subsets of X* x R) generated by
the subbasis {V | V strongly open in X* x R } U {{Bc)++ | B G CB*{X* x R ) } , where
CB* (X* x R) denotes the set of all bounded nonempty weakly* closed convex subsets of
X* x R. As for the slice topology, the dual topology is expressible as the join of upper
and lower topologies, denoted r+ and T~ respectively. Note by weak* compactness of
B e CB*{X' x R) that (Bc)++ = (Bc)+ := {A G C*(X* x R) | B n A = 0}. The dual
slice topology T* on V(X*) is that induced by the map T*(X') B / i ->epi/ G C*(X*xR).
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LEMMA 3 . 1 . Let X be normed, W topological, and {fv}vew be a family of closed
proper convex extended-real-valued functions on X. Then

e-is /„ > (bw*- e-u rvy,
V~HO V—YW

and ifV := e-ls /„* is in V(X'), then V* G r+- lim /„.
V—*W V—tW

PROOF: We first prove the second statement. We show that V* G r + - lim/,,.
V-iW

Indeed, let (x*, rf) € epis(V*)* = epi^V ^ 0. Also, let u7 -> iu, and let (x7) be a bounded
net in X. Pick /3 G R such that T) > f3 > V(x'). As (x*,/?) G epiV = liminfepi/*
there is a strongly convergent net (x*,/97) ->• (x*,/3) with /„* (x*) ^ /?7 eventually. Place
e := r\ - P > 0. Then eventually, /?7 < /? + e/2 and ||x* - x*|| < e/2M, where M is a
bound on the norms of the x7. For such 7 we have from the Fenchel Inequality,

<x-,x7) - (\\x; - x ' | | | | i 7

Hence, if V 6 r*(X*) (so V" 6 T(X)) then V e r.+- lim /„.
u->tu

For this part write U := kw*- e-li /* and V :— e-ls /„. We show that U* < V on
X. Let x € A". If V(x) = +00 or U = +00, (so £/* = -00) there is nothing to prove.
We then give a proof in the case where V(x) < +00 and U is not identically +00 on
X*. Let x* G domC/. Let a, £ G R with a > K(x), /? > £/(x*). Then (x,a) G epiV,
(x*,/3) G epî C/ C &io*-lim sup epi /J , so there are nets u7 —> to, x* —> x (weak*),

v—m>

/?7 -^ /9, with (x*,/?7) G epi/M' for each 7 and the x* are uniformly norm-bounded.
Also, since (x,a) G liminfepi /„, there exists (X 7 ,Q 7 ) (G epi/U7) —* (x,a). For each 7,
a7 + /?7 ^ /B*7(x*) -I- /U7 (x7) ^ (x7, x ' ) by the Fenchel inequality. As a result, passing to
the limit, a + /? ^ (x, x*). (This is permissible as the x* are norm-bounded and x7 —> x

strongly). Rearrange to obtain a > (x,x*) - /?. Since the a > V(x) and (3 > U(x")

are arbitrary, we conclude that ^(x) ^ (x,x*) — U(x*) and since x* G domC/ is also
arbitrary, it follows that V(x) ^ U*(x) as claimed. D

The following is motivated by the proof of [4, Theorem 7.5.1].
THEOREM 3 . 2 . Let X be a normed space, W a topological space and fv (v G W)

proper closed convex extended-real-valued functions on X. Suppose also that either:

1. the strong epi-limit supremum (as v -> w) of {fv}vew is not identically

+00, or alternately,

2. for each net vp -¥ w we have rs-e-\ifv not identically +00.
0

Then for each f € r + - lim /„,

e-ls / ; ^ /•
v-nu

where the epi-limit supremum is in the strong topology ofX*.
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P R O O F : Let / e r+- lim /„. Write V := e-ls f*. Let x* € X* and we assume that
V—*W V—¥W

V{x*) > — oo, otherwise there is nothing to prove. We show that A ̂  /*(x*) whenever
A < V(x"). Suppose A < V(x*). Then (x*,A) $ epiV = liminfepi/* Then using the

V-HU
alternative definition in Remark 2.2 we have limsupd((x*, A),epi/U*) > 0 and so there is

V—IW

a net vp —> w and e > 0 for which

(V/3) ((x',A) + 5 * ( O , £ ) ) n e p i / ; = 0

where S*(0, e) is a ball in the box norm for X* x R. By the Hahn-Banach Separation
Theorem, for each /? there is \\(xp, —or̂ ) |j = 1 (after rescaling in the box norm) in X x R
such that

sup ({xp,-ap),{xp,fj.p)) *S inf _ ((x0,~ap),{y*,5)).
) 6 i / ; {y,S)G(x',\)+B'(0,e)

As inf(y.i(5)6B-(o,E) ( ( ^ . -«/?)> (y*>5)) ^ ~£ r ' i < ; follows that

(3.3) (V/?)(V(4, w ) e epi/^Hfo.zJ) - â /ẑ  ̂  (Xft,x') - a0X - e).

From this follows that ap ^ 0 for such ^ (for if otherwise, take xp e domfp ^ 0,
and up — fv0{x*p) + k, and let k —> +oo in (3.3) to obtain the contradiction +oo ^
(x0,x*) -apX-e).

Now, if limsupa^j > 0, there exist 8 > 0 and subnet ap such that ap > 6 for all 7.

Define xy := Xp^/ap^. These have norm bounded above by 1/6. Dividing (3.3) through by
aPl, letting z£7 edomf^ ^ 0 and / i^ = / ^ ( i ^ ) therein, we get ( x 7 ) i ^ ) - / ^ ( a : ^ ) <
(i71a;*) — A, and taking supremum over x*^ e dom/^ we have fVfi (x7) ^ (57,x*) - A
for all such 7, where x7 is a bounded net. Since / € T.+- lim /„, we must have that

V—*W

A ̂  f'(x').
In particular, if x* € dom V (so V(x*) is finite—recall the assumption that V(x*)

> — 00), we can show that lim inf ap > 0, so A < f*(x*) for all / € r + - lim /„ by the pre-
vious paragraph. To see this, put p := V(x*)-X > 0. As (x*, V(x*)) e lim inf epi /* then

u-»tu

for the net vp described above, there is a norm-convergent net (x0:fj,p) -> (x*,K(x*)),
with fvg(x*0) ^ \ip. Then for all sufficiently large /?, ||x^ -x* | | ^ e/2 and fip ^ V(x*) +p .
We may then use (3.3) to obtain for such (5:

0 ^ (xp, x* - xp) + ap{np - A) - e $ ||x* -xp\\+ ap(V{x*) -X + p)-e

^ e/2 + 2pap - e

which gives ap ^ e/4p, so lim inf ap ^ e/4p. We are then done, for the case of V(x*)

< +00.
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It only remains to deal with the final case of V(x*) = +00. We clearly only need
consider the case where lim sup a^ = 0. We claim the existence of a subnet vpy for

which there exists a bounded net (<77,p7) with (qy,py) € epifVff for each 7. In the
case that e-ls /„ is not identically +00, the claim follows immediately. If instead the

v-+ty

assumption is made on the lower slice epi-limit (see the list of hypotheses), we argue this
by contradiction as follows: Suppose for all bounded nets qp (over the same index set of the
0) that lim inf fVp (qp) = +00. Then for any y* € X* and any real r], fV0 (qp) > (qp, y*) - 77
eventually for any bounded net {qp}. Hence any proper convex function / will be in
rs

+- lim fV0. Consequently, TS- e-li fvg = +00, a contradiction.

Let (<77,p7) € e p i / ^ with ||g7|| < M for all 7, and |p7| ^ M, as per the above. Let
H > 0 be such that A ̂  fj£ - M ( l + ||z*||), and multiply (3.3) by fi. Then for all 7 ,

(V(z7,M7) € epi f*gJ {fJ,Xf}y,x*y) - a^fifj.^ ^ {nxp^,x*) - a^pX - [ie.

Also, the Fenchel inequality gives (qy, x*) < /* (1*) + fVffl (g7) and so for such 7, putting

M-r = /„;, K ) for x; e dom f;^ ± 0, we have (for all x*y G dom / ^ )

, x') + fvih {qy) + f^ (x*J - otp^X - fj£

ft0y(x'y) + (fixp^x*) + p7 - ap^X - \IE.

Note that we have ||x^|| ^ 1. Dividing through the preceding inequality by l + ap^fi, and
taking the supremum over x* 6 domf*0 (then with /** = fV0)

x*) - (g7,x') - nXap^ - fie

( 3 4 )

Since ap -t 0 and since also ||(g7 + fj.Xg^)/(l + a^/i) | | ^ M + fi, from (3.4) it follows on
using the definition of the upper slice convergence that

/•(**) £ - M ( l + | | z - | | ) + ^ O A.

This completes the proof. D

Similarly, a dual result holds for the bounded-weak* lower epi-limit. Initially we
assume the existence of the strong epi-limit of the net of functions on the primal space
X, but this assumption will be subsequently removed. As preparation, we need a lemma,
whose proof will be based on that of [4, Theorem 7.5.1]—however, the original argument
in the cited reference fails unless existence of the epi-limit is assumed, as we do in the
following proof. The point at which the original proof fails will be indicated at the
corresponding point in the modified proof below.
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LEMMA 3 . 3 . Let X be a normed space, and {fp}p£i a net of proper closed convex
extended-real-valued functions on X. Suppose also that the strong epi-limit of {j'f}}pei
exists. Also, assume that either:

1. this epi-limit takes a finite value somewhere, or

2. bw*-e-lif0 is not identically +oo.
0

Then

P R O O F : Write U := bw*-e-lif0 and V := e-ls/g(= e-lifp). Assume that V is not

identically —oo, otherwise the result follows trivially. Let x € X. It suffices to consider
the only non-trivial case—that where V(x) > -oo , and U(x*) > -oo for all x* in X*.
To show that V(x) ^ U*(x) we show that A < U*(x) whenever A < V(x). Suppose
A < V(x). Then (x, A) ^ epiV = limsupepi/g and by reasoning analogous to that in

0
the proof of Theorem 3.2, there are nets \\(x0, — 0:̂ 3) || = 1 in X* x R such that for some
£ > 0 and some /30 (compare with (3.3)),

(3.5) (V/3 > 0o)(^{x0,H0) € epif0)((x*0,x0)-a0fj,0 ^ (x*0,x) -a0X-e).

From this follows again as in the proof of the preceding Theorem that a0 ^ 0 for such v.
Now, if lim sup a0 > 0, we have the existence of 6 > 0 and subnet ap such that a0^ ^ 5

for all 7. Define q* := x*0 /a01. These have norm bounded above by 1/6. Dividing

(3.5) through by a0y, letting x01 € dom/^7 ^ 0 and \i0^ = fpy(x^) therein, we get for

all 7, {q*,x0y) - }^{x0y) < (q^,x) - A, and taking the supremum over x0i £ domf0i,

fff (ly) ^ (?7> X)~X for all such 7. By their norm-boundedness, the {<?*} has a convergent

subnet q*^ ^> q*, and so

{Qy,,, (q^ ,x)-X)^ (q*, (q',x) - A) € bw*- lim sup epi f0 C epi U.
0

Thus U{q*) ^ (q*,x) - A, so A ̂  U*(x). (Note that then q' € domU).

In particular, if x S dom V so V(x) is finite, we can show in an identical fashion to
the proof of Theorem 3.2 that liminf a0 > 0 and so A ^ U*(x) by the previous paragraph

0
and we are done, for the case of V(x) < +00.

Note that under the current assumption, either, there exists a point where V is finite
(at which point we may argue as above to conclude that domC/ ^ 0), or, no such point
exists, in which case it is assumed that domU is nonempty (see assumption 2).

It only remains to deal with the final case that V(x) — +00. Let q* s dom U (which
we know to be nonempty). Then U(q*) is finite (for at the beginning of this proof we
assume U > —00 on X*), so (q*,U(q*) + l) € episU C fau'-lim sup epi f0 and there is a

0
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subnet /?7 such that there exists (<77,p7) ^» (q*,U(q*) + l)> with for some M, \\q*\\ ^ M

for all 7, and f^(q*) ^ P7.
(From this point on, the argument from [4] is questionable, since if assumption (1)

holds only for the upper epi-limit, without requiring the existence of the epi-limit—this
being the assumption in [4, Theorem 7.5.1], so V = e-ls /„ ^ e-li /„, then (3.5) will
hold merely along some subnet. However the subnet just obtained in regard to U(q*) has
no clear relationship to that along which (3.5) is valid, so information derived on these
subnets cannot be merged as they are in the arguments to follow.)

Suppose limsupa/37 > 0. Then restricting (3.5) to the /?7 we may deduce again that

A ^ U*(x). We are left with the case of l ima^ = 0.

Let /i > 0 be such that (q*, x) - U(q*) + fie - I ^ X, and multiply (3.5) by fi. By
suitable imitation of arguments in the proof of Theorem 3.2 (compare with the derivation
on (3.4)), (3.5) implies

//?71 y r J ^ T T •

By passing to a subnet /?7n whereby x*0 has a weak* limit x*, then in the limit over

j n , the right-hand side of (3.6) goes to U(q*) + 1 + (fix*,x) - fie (since a^ -4 0), and

(g* -I- fix*B )/(l + a^fi) 4 ? ' + /xa;*. Since also ||(<7* + fix*0 ) /( l -f a^7/^)|| ^ M + /z, it

follows from (3.6) that

(q* + fix*, U(q*) + 1 + (fix*,x)-ne)e epi U.

That is:

C/(g* + fix') ^ U(q*) + (fix*,x) -fi£ + l

and so

U(q* + fix*) - (q* + fix*,x) ^ U(q*) - (q*,x)-fie + l.

Therefore

U*{x) > (q*+fix*,x)-U(q*+fix*) >(q*,x)-U(q*)+fie-l>X.

This completes the proof. D

We now remove the requirement that the epi-limit exists.

THEOREM 3 . 4 . Let X be a normed space, W a topological space; let {fv}vew
be a family of proper closed convex extended-real-valued functions on X. If either:

1. t ie strong epi-limit supremum e-ls /„ is not identically +00, and for each
V—»U>

x e X, (e-li fv)(x) > -00 ; or
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2. for each convergent net vp -¥ w, bw'-e-lif*^ is not identically +cx>, then,

PROOF: Let vp —> w. By Mrowka's Theorem [7] there is a strongly epi-convergent
subnet fV/j , so that

e-ls /„ $5 e-ls/,,- = e-\\fv ^ e-li /„.
V—*W 7 7 7 T V-iW

(So under assumption (1), the epi-limit of the fvg takes at least one finite value.) By
Lemma 3.3 (applied to fV0^),

^ (W-e- l i / ; ) ' .

Since this inequality holds for a subnet of each convergent net vp —> w, we conclude that

e-ls /„ ^ (bw*- e-li / ; ) • .

The reverse inequality is the result of Lemma 3.1. D

This result extends to non-separable X and non-first-countable parameter space W

(hence admitting nets and other generalisations of sequences), some existing results of
sequential character [1, 4, 24]. These use the sequential analogs of the bounded-weak*
lower epi-limits introduced in Definition 3.1. These shall (for sequences of functions f^)

be denoted by seq-u>*- e-li f*. It is easily verified if X is separable (so the weak* topology
is metrisable on bounded subsets of X*), complete, and W is first-countable, that

bw*- e-li /* = seq-iu*- e-li /* .
v—*w v—yw

Now, for the sequence fn € F(X), the equality

(3.7) e-ls /„ = (seq-w*- e-li /*)*
n—>oo n-K»

holds if either:

1. [4, Theorem 7.5.1] e-ls /„ is proper and X is separable; or
n-KX>

2. [1, Theorem 3.7] X is reflexive, and there is a bounded sequence x* in X*
for which sup/^(x*) < +00. (Note, however, that by [24, Theorem 1.2]

the semicontinuity result implied by (3.7) is in fact valid if the assumption
on X is weakened to that of separability, with no completeness assumption.
The result in [24] is in fact asserted for any separable metrisable topological
linear space, where the boundedness condition on the x*n is understood to
be relative to the appropriate topology).
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The proof given in [4], however, contains a gap: the argument therein at one stage
attempts to combine information derived on possibly incompatible subsequences; without
further assumption, it is not clear that these subsequences have even one point in common,
let alone an infinity of such (see also the in-line comment in the proof of Lemma 3.3).
This proof is rescued if an assumption on the strong lower epi-limit is appended, as in
assumption (1) of our Theorem 3.4.

Case (2) of Theorem 3.4 subsumes the cited result from [1] (or [24]), in the con-
text of normed X, since the assumption therein implies assumption (2) of our result.
Indeed, given a subnet np of N, x*n/} has a weakly* convergent subnet (from the as-
sumed boundedness) with a limit x*. Then if A £ R majorises sup/^(z*), we obtain

n€N
(a;*, A) s bw*- limsupepi fns, whence bw*-e-li/„. is not identically +oo.

0 0
The following theorem summarises the results obtained so far in this section.
THEOREM 3 . 5 . Let X be a normed space, W a topological space, and {fv}vew

a family of proper closed convex extended-real-valued functions on X. Then:

1. If /„ -^ fw and either e-ls /„ is not identically +oo, or for each net vn -*• w,
v->w

Ts-e-\ifv. is not identically +oo, then e-ls /* ^ /*
0 p v—*w

2. Iffv
 TA fm (that is, e-ls /„ ^ fw), then /,*, ^ bw'- e-li /„* on X*.

V—¥W V—¥W

3. If f* ^ bw*- e-li /* on X*, and either e-ls /„ is not identically +oo and
v—*w v—*w

(e-li fv)(x) > - oo for all x £ X, or for every convergent net vn -» w,

W-e- l i /* is not identically +oo, then fw ^ e-ls /„.
0 B v-*w

4- Iff; 5 f*w (that is, e-ls /„• ^ f'J, and e-ls / ' e T'(X'), then fv % /„.
V-HU V-+W

PROOF:

1. From Theorem 3.2.

2. By Lemma 3.1, fl ^ (e-ls /„)* < (bw*- e-li /„*)" ^ bw*- e-li /„*.
V—¥W V—¥W V—>W

3. By Theorem 3.4, e-ls /„ = (bw'- e-li /„•)* ^ / ; • - / „ .
V—VW V—IW

4. By Lemma 3.1, (e-ls/*)* € r+ - lim/,, and hence likewise for /„,, since
t)+tu V+W

D
As discussed earlier, the slice convergence /„ -»• /„, is characterised by:

e-ls /„ ^ /„, and /„, e r.+- lim /„.
v—tw v-+w

The result to follow, (combined with the bicontinuity of Young-Fenchel conjugation,
with respect to the respective slice topologies on X and X*), demonstrates that dual
slice convergence gv —¥ gw (for functions in T*(X*)) has the alternate form:

(3.8) e-ls go < gw ^ bw*- e-li gv on X*.
v-*w v-ywv-*w
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(Note since bw*- e-li gv ^ e-ls gv always, the inequalities in (3.8) are in fact equalities.)
V—*W V—tW

COROLLARY 3 . 6 . For functions fv € T(X), fv slice-converges to /„, if and only
if

e-ls /„* < / ; < bw'- e-li / ; .
V-*W «->UI

PROOF: The forward implication is immediate from the first two parts of Theo-
rem 3.5. Conversely, for any net vp —>• w,

and since frit/*-e-li/£ ^ e-ls f*g, the above forms a chain of equalities. Hence frio*-e-li/J

= fw> which is not identically +oo. Consequently /„ TA- fw by Theorem 3.5 (3). Also,

since e-ls /„* = /* € T*(X*), we have /„ 3 fw by Theorem 3.5 (4). D
V—»U>

4. SUM THEOREMS FOR SLICE CONVERGENCE

We shall now discuss the passage of slice convergence through addition. Such the-
orems are closely related to results regarding the passage of the upper (Kuratowski-
Painleve) epi-limit through addition. Indeed one only needs to conjoin such a result
with Lemma 4.10 (a relatively trivial sum theorem for the upper slice convergence) in
order to obtain a result pertaining to slice convergence. Even though Lemma 4.10 is true
in normed spaces it requires the coincidence of the weak*- and strong closure of a certain
convex function in the dual space. This condition may easily be established in a Banach
space under a weak assumption (see Remark 4.3) entailed by the hypotheses in the most
powerful results on epi-u.s.c. of sums [19], but it is unclear whether one can establish
this condition without X being complete. Thus the natural context to frame such results
appears to be in a Banach space. Thus we begin assuming X is normed but are often
compelled to invoke completeness in stating the main results.

Another approach to such results for slice convergence, to be the concern of this
Section, proceeds as follows: Using our duality results of Section 3 we note that the
upper slice convergence of /„ + gv to /„, + gw (as v -» w) dualises to the lower (Ku-
ratowski) epi-convergence of /* • g* to /,*, • g*w . This in turn relates to the lower
Kuratowski convergence of the sum of the (strict) epigraphical multifunctions v *-¥ epi /*
and v H-> epi g*, which may be established quite generally. Thus in order to establish slice
convergence of {/„ + gv}v^w we may utilise the continuity results of section 3 to reduce
the problem to one of establishing the dual upper slice convergence of {f*Og* } evv-
The dual upper slice topology is, similarly, related to the upper Kuratowski convergence
of epigraphs relative to the bounded-weak* topology, an observation which motivates us
to investigate the boundedness of the sets given in Definition 4.1. These considerations
appear to be fundamental to the approach taken here.
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DEFINITION 4.1: Following [3], define for i f e R ,

HK := {(set, x*.) €X'xX*\ /*(x*) + g'(x*2) < AT, ||x* + x*2\\ ^ K) ,

and for functions /„, gv (v € W),

HK{v) := {(x',y*) £ X* x X'\ K(x*) + g*v(y*) < K, ||x* + y*\\ ^ K) .

LEMMA 4 . 1 . Let f and g be in F(X) for a. Banach space X, such that HK is
bounded for each K 6 R. Then fUg* € T*(X*).

PROOF: For the weak* lower-semicontinuity, it suffices by the Krein-Smulian The-
orem [14], to prove that {/* Dp* ^ fi} PI B (0, M) is weak* closed for each /j,, M.

Let x% ^ x* with x*0 € {/*•</* < /i} D B*(0, M) for each 0, and let e > 0. Then
||i*|| ^ M by the weak* lower-semicontinuity of the dual norm. Also, for each 0, there
is y*, € X* such that

Then (a;*, - y*0, y*p) e //«• where K — max{^i + e, M}, so y% is bounded, and passing to a

subnet, we may assume y% ̂  y* for some y*. Then, since i*, ^> i*, we conclude

^ Unainf /'(x*, - ^ ) + liminfg*(y0)

^ liin inf ( /*(i j - $ ) + 5*(y;)) ^ /i + e,

and hence, on letting e —> 0, that the level-set of /* D g* is weakly* closed.

To verify the properness, suppose to the contrary that (/* D J * ) ( I " ) — - c o for some
x*. Then lim(/*(x*-j/*,)+5*(y*,)) = - c o for some net y0, and since (x'-y*,,y*,) e ^||i-| |,

we have y*, ^> «/* on taking a subnet. Then

- c o < / ' ( * • - y*) +g*(yt) < lirninf/*(x* - y'0) + \immfg'(y*0)

< Hrn inf (/*(** - y'0) + g'(y0)) = - c o ,

a contradiction. D

The following lemma provides bounds which will be of use in the next Theorem.

LEMMA 4 . 2 . Let {fv}vew be a family of proper closed convex extended-real-
valued functions on a normed space X. Suppose that {fv}vew is strongly epi-u.s.c. with
respect to fw. Then for each M > 0,

(4.1) (3V G Af(w))(3fi e R)(Vw e V')(V||x*|| ^ M) (/u*(x*) £ M ) .
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PROOF: Let M > 0 and suppose the assertion false. Then there are nets vp ->
ui, \\x*p\\ ^ M such that lim^/^(a;J) = -oo. By taking a weakly* convergent subnet
x*B —> x*, it follows for any real A, that (z*, A) € bw*- limsup epi /* C epi (bw'- e-li /*) ,

so (bw*- e-li f*){x*) = —oo, which in turn implies via Lemma 3.1, that /„, ^ e-ls /„

^ (bw*- e-li /*)* = +oo, contradicting the properness of fw. D
v—>w

We now state a preliminary version of our main result, which will be the starting-
point for all subsequent investigations in this Section.

THEOREM 4 . 3 . Let {fv}vew &nd {gv}v^w be families of proper closed convex
extended-real-valued functions on a normed space X, which are slice convergent (as
v —t w) to fw and gw respectively. Assume also the following:

1. /„• D 5 * € T*{X*) for all v near w;

2. for each K ^ 0, there is V S M(w) for which (J HK{V) is bounded.
vev

Then {/„ + gv}vew is slice convergent to fw + gw as v -* w.

PROOF: From the bicontinuity of the Young-Fenchel transform (with respect to the
slice topology), and the relation fv+gv = (f'Og*)*, it suffices to prove the dual slice
convergence of /„*•<?* to f^Hg^. From Corollary 3.6, v H-> epi/* and v H^ epi5* are
both strongly lower-semicontinuous at v = w. Then

epi,/,*, D g*w C epi / ; + epi g*w

C lim inf (epi /* + epi 0*) by Lemma 2.1
v-*w

C lim inf epi /* D g*
V—>W

and since the latter set is strongly closed,

epi / ; Og*w C e p i j ; Dp*, C lim înf epi /„* • g*v ,

that is, v »-> epi f* Dp* is strongly lower-semicontinuous at v = w.

The remaining task (by Corollary 3.6), is to show that

or equivalently,

(4.2) bw*- lim sup epi /„* • g*v C epi f^Dg*w.

Let (x*,a) € bw*- lim sup epi f'Og*. Then there is M > 0, and nets vp -> w, (x^ap)

6 B*(0, M) Depif* Og* with the latter weakly* convergent to (x*,a). Redefining the
index set for the net, we may, without losing generality, assume that (a;*,, 073) is in the
strict epigraph of f
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For each /?, we then have the decomposition

(x*0,op) = ( ! ; , ,«! , ) + (x*2g,a2e) G (epi f*vg + epig*e) n f l ' ( 0 , M ) ,

from which follows that (x\e,x\$) G HM(vp) and hence are eventually bounded, from
assumption (2). This implies likewise for the a\f and a2ff. Indeed, if \\(x\ , x* )|| < M' for
some M', then from Lemma 4.2, there is \i G R such that eventually aig ^ f* (xj ) ^ fi
and a2^ ^ <?̂ , (x2g) ~Z M> a n d since a\g + a2/J ->• a G R, it follows that they are also
bounded above.

Hence, from the boundedness of | |ij \\, \aig\ (i = 1,2), we may extract convergent
subnets

^ 1 ^ ^ X*l ' X2^ ^ ^ 2 . " l f l 7 - > " 1 » " 2 ^ - > Q 2 ,

so

(x*,a) = u;*-lim7((x^,a1^) + (x^ ,a 2 ^ ) ) = (x\,ai) + (x;,a2)

€ 6ti)*- lim sup epi /* + bw*- lim sup epi </*
V—IW V—>tO

C epi (bw*- e-li /*) + epi (bw*- e-li 5;)

C epi/^, + epip^, from the slice convergence of /„ and gv (Corollary 3.6)

C e p i / ; • < £ .

hence proving (4.2). D

From this we can recover a result alternately deducible from a theorem of Penot [19]
(valid on a normed space) on the epi-upper-semicontinuity of sums.

COROLLARY 4 . 4 . Let {fv}vew and {gv}vew be families of proper closed convex
extended-real-valued functions on a Banach space X, which are slice convergent (as
v -+ w) to fw and gw respectively, such that for some \i > 0, S > 0

(4.3) 5(0,6) C {/„ ^ ix) n B(0, ft) - {gv ^ M} n B(0, fi)

for all v in a neighbourhood V ofw. Then {fv + gv}v^w is slice convergent to fw + gw as
v —¥ w.

PROOF: TO verify condition (4.3) in Theorem 4.3, we follow an argument in [3].
Indeed, it suffices, in view of the Uniform Boundedness Principle, to check that for each
element (x, y) of X x X there is a constant C(x, y) such that for all (x*, ym) € [_} HK(v),

we have (x*,x) + (y*,y) ^ C(x, y). Now, x - y e XB(0,S) for some A > 0, so that for
each v e V, x - y = X(xv - yv) with fv(xv) ^ n, gv(yv) ^ \i and \\xv\\ ^ fj,, \\yv\\ ^ ft.
Then, since (x*,y*) G HK(v) for some v,

(x*,x) + (y*,y) = \(x\xv) + X(y',yv) + (x'+y*,y- Xyv)

i ' ) + fv{xv) + 9l(y') + 9v(Vv)) + \\x* +V*\\- \\y - Ayo||
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Hence | J HK(v) is bounded for each K, which, along with Lemma 4.1, implies all the

conditions of the Theorem. D

This result itself subsumes an earlier result of Lahrache (see [7]).

COROLLARY 4 . 5 . In particular, the above result follows if {gv}v^w is uniformly

bounded above on a neighbourhood of some point ofdomfw.

PROOF: The epi-u.s.c. of {fv}vew at w along with the assumption implies (4.3). D

We now briefly digress, to discuss the derivation of Corollary 4.4 from the cited
result of [19]. This result asserts the epi-u.s.c. of the sum from that of its components,
under the condition (4.3), and is valid in general normed space. On combination with
Lemma 4.10 (a sum theorem for the upper slice topology) it yields the slice convergence
of the sum (if the components slice-converge) subject to (4.3) and the weak* closure
condition

(4.4) / '•<& = . /£ •&•

From Remark 4.3 following Theorem 4.11, 0 € int(domfw — domgw) implies, if X is
Banach, that /,*, Dg^ € T*(X*) which in turn implies (4.4). However, if X is not complete,
it is not immediately obvious that 0 € int (dom /,„ —dom gw) indeed entails (4.4). If it did,
then [19] would yield the assertion of Corollary 4.4 in a general normed space. However,
the above considerations suggest (but do not prcrve, of course) that completeness of X
seems necessary for slice convergence in this situation. We shall not further pursue the
resolution of this issue.

Note that the assumption (4.3) acts simultaneously on both {fv}V£w and {gv}vew,
whereas that of Corollary 4.5 is only on one of these families. (This condition however,
is so strong that in this context, it implies (4.3)). Guided by the form of this latter
assumption, we shall use Theorem 4.3 to seek conditions that can be isolated to one of
{fv}vew or {gv}V£\v, but not so strong that the results obtained are manifestly subsumed
by Corollary 4.4.

The sufficient conditions we shall derive rely on recession properties of level-sets.
We therefore begin with a review of some relevant concepts.

Recall for any closed convex subset A of a topological linear space X, the recession
cone rec A is defined by

rec 4 : = f] X(A -a)
A>0

for any fixed a € A. It is easily seen to be independent of the particular choice of a, so
is well-defined. Further, we have the equivalent form

rec A := {x € X \ x -f- A C A}.
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Evidently rec A is a closed convex cone.

The recession function [21] / 0 + of the closed convex function / is the (closed convex)
function with epigraph rec (epi / ) . An explicit formula for this function (when / is proper)
is (/0+)(y) = lim (f(x + Ay) — f(x))/X and is independent of the choice of x 6 dom/.

A-»oo

Thus clearly / 0 + is positively homogeneous. If / is also proper then all nonempty level-
sets {/ ^ a} have the same recession cones which at times will be denoted by rec/.
Indeed, by definition (fO+)(y) ^ 0 if and only if the recession cone for epi/ contains (y, 0)
and so f(x + Ay) ^ f(x) < a for all A ^ 0 and any x € {/ < a} or x + Ay € {/ ^ a}.
Hence y € rec {/ ^ a} if and only if (/0+)(y) ^ 0. Finally we note that if / € F(X),
then the support function to dom/ is the recession function /*0+ of/*, and the support
function to dom/* is the recession function / 0 + of / [21, Corollary 3D].

LEMMA 4 . 6 . Let g e T(X). Then (recg)° = cone1"'domg*.

PROOF: From the relations of the previous paragraph,

recg = {g0+ ^ 0} = {5(domg*, •) ^ 0} = {S(conet""dom</*, •) ^ 0} = o(conet"'dom</*).

Taking polars of both sides gives the result. D

LEMMA 4 . 7 . Suppose f and g are proper closed convex functions on a normed
space X. Then for any y* G dom/* + domj*,

(cone (dom/ — dorng))" = rec[/* + g*(y* - •)].

PROOF: Define g € T(X) by g(x) = g(-x) + (y*,x). Then if h := fUg, we have
h* = /*+5* = f*+g"{y'--) 6 T'(X') since y* e dom/'+domg*. Thus the closure h of
h is in r(X), and so S(dom/i, •) = 7To+, from which it follows that S(domh, •) — h*0+,
(since dom/i C dom/i C dom/i, so that S(domh,x*) — S(domh,x') by continuity of
x*). As a result,

(cone (dom/ - domg))" = (conedomh)°

= {5(dom h, - K 0} = {/i*0+ ^ 0} = rec h*.

D

REMARK 4.1. The hypothesis cone (dom/ — domg) — X in fact implies that xecHK

= {0}. Indeed, let (x',y*) € HK and {z\,z%) e xecHK. Then for all A ̂  0, /*(x* + \z{)
+ ff*(2/* + Az2*) ^ ^ and ||z* +y' + A(z* + zj)|| ^ K. The latter implies that z\ + z% = 0,
so placing 2* := z* = — z\ in the former, we obtain that z* € ree[f*(x* + -)+g*(y* — -)] =
rec [/ ' + g"{y' + x* - •)] = {0} by the Lemma, since x* + y* € dom/* + dom^*.

In finite dimensions the knowledge that the recession cone of a convex set is a
singleton is sufficient to deduce boundedness of the set. This generally fails in infinite
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dimensions. From Theorem 4.3, we want to establish the boundedness, uniformly in v,
of the sets HK(V). If we merely assume cone(dom/,, - domgv) = X at each v, then
HK(v) has no recession directions by Lemma 4.7, but as noted earlier, this is insufficient
to ensure even the boundedness of any one such set, much less a bound uniform in v.

For this, some kind of (weak*) local compactness (uniformly in v) will be needed.
This will permit an argument by contradiction in that if there is no such uniform bound-
edness, then unbounded nets in these sets can be constructed, which, upon normali-
sation, converge weak* to a non-zero member of HK(w), contradicting the assumption
cone (dom/„, — doings) = X at w.

The following definition and lemma will furnish the required constraint qualification.

DEFINITION 4.2: For hx, ..,hm in X,

K(hu..,hm):={x*€X'\\\x*\\^ max Ux^h^}.

Clearly this forms a weak*.closed convex cone. Further, it is weak* locally compact [18].

LEMMA 4 . 8 . Let {gv}vew be a collection of functions in T(X). Then the condi-
tion

(4.5) (3r > 0; H compact in X;Ve Af{w)){Vv € V)(B(0,r) C iecgv - H )

holds if and only if there exist h\,..,hm in X such that

domgl C K{hi,..,hm)

for all v in a neighbourhood ofw.

REMARK 4.2. The condition (4.5) is equivalent to {recgv}v€W being compactly epi-
Lipschitz at 0, but uniformly in v near w. (For definition of "compactly epi-Lipschitz"
see [10, 17]). Also, as shown in [10, Lemma 2], the content of (4.5) is unaltered if H is
taken to be in addition, finite-dimensional.

PROOF: (The argument to follow is a specialisation of one used in [17].) Assume
m

(4.5). Let 0 < e < r be such that H C \J (kt + B(0,e)) for some kt € H (from
t=i

compactness of H). Place ht := ki/(r — e). Let v &V and x* 6 cone™* dom <?* = (rec^)0 .
Then (x*,x) ^ 0 for all x £ recgv. If ||u|| ^ 1, then ru G recgu - H, so ru + h € rec<7u

for some he H. Then since (x*,ru + h) < 0, we obtain

(x\ru) ^ -(x',h) < \(x',h)\ ^ Ki'.tyl+elli'H

for some i. Hence, since u is arbitrary,

x'.fe/C-e))! = max\(x*, tn)\
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that is, x* € K(hlt..,hm).

Conversely, if dom<7* C K, then (recg,,)0 = cone^'domg* C K and hence °K C
xe.zgv. As {°K)° — K is weak* locally compact, it follows from [10, Lemma 2.1] that
B(0, r) C °K - H for some r > 0 and compact H. Hence (4.5) obtains for such v. D

We have arrived at our first statement of a new sum theorem for slice convergence.

COROLLARY 4 . 9 . Let {fv}vew and {gv}vew be families of proper closed convex
extended-real-valued functions on a Banach space X, which are slice convergent (as
v —> w) to fw and gw respectively. Assume also the following:

1. /„ and gv are uniformly bounded below on X;

2- {9v}v£W satisfies condition (4.5);

3. cone (domfw — dom <?„,) = X.

Then fv + gv is proper for all v near w, and is slice convergent to fw + gw as v ->• w.

PROOF: We prove that

(4.6) (3V 6 JVH) (V/f ^ 1) (|J HK(v) is bounded].

Clearly this will imply the second condition of Theorem 4.3. That it also implies the
first, follows from Lemma 4.1 for each v e V.

To verify (4.6), we suppose it false and derive a contradiction. If so, then there
are nets v0 ->• w, K0 £ R, and (x\g,x'2g) € HK0(v0) with \\x*lf)\\, \\x'2g\\ ->• +co, and
\imK/i/\\x'lt\\=0.

To see this, note that (4.6) is false if and only if

(4.7) (W e M(w))(3K > 1)(V<J ^ 0)(3t; € V)(3{xl,x'2) € HK(v)){\\(xl,x'2)\\ > 6),

and from the freedom in 6 ^ 0 we may instead choose that ||(a;J,x5)|| ^ 8 + K2 in (4.7).
Since ftf(w) x (0, +oo) is a directed set under the partial order:

(V, 5) ^ (V, 6') if and only if both V C V and # > 6

(representing the limit as V 4- {w} and S —> +oo), we have nets «(v,«) —̂  ui,

K{Vj) := Kv > 1, (x'hvS),x'2(vs)) € HKv(v(V0) with I K ^ , , , ! ^ , , ) ! ! > 6 + Kv. As

ll^iw, + x^vJ < Kv, ^en \\xl{vj > 6 + Kv - Kv, so lim \\x*l{vJ = +oo. Further,
Kv/\\x\ || ^ Kv/(5 + Kv — Kv) —̂  0 if K(vtg) -> +oo, and if K(vj) does not converge

to +oo, so it has a bounded subnet, then along this subnet, limsup/i'v//||a;* || — 0,
(v,s) {V'6)

since \\x\ v \\ -* +cx>. In either case, this gives the desired construct.

Place 21, := x\J\\x\t\\ and T2g := x^ / | | x^ | | . Then | | ^ + r2(J|| ^ ^ / | | x ; J | -> 0.

Clearly the x\ and x^ are bounded. Passing to a subnet, we may assume that x\ —> u*
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and x20 ^» v* for some u* and v* which must then be in the unit ball and satisfy
u* + v* - 0.

Let A ̂  0. We first assert that

Indeed, for any \i € R such that +oo > \i > liminf/*fl(Ax^), {/? | f*0(Xx*l0) < /x} is

cofinal and so indexes a subnet. Therefore (Au*,^) € 6w'-limsupepi/^, and hence is in
V—H0

epi f£ by Corollary 3.6. The claim then follows from the arbitrariness of \i.

Similarly, g'w{-\u') = g^{XV) ^ lim infg*0(Xx'20). By convexity, since 0 G dom f*gC\

dom gl0 eventually in /?,

for all /? such that also A/||xifl|| ^ 1, and where the latter supremum is taken over a
neighbourhood of w, as per assumption (1). Then

(Ax^) + liininfg'V0{\x20)

Since A ̂  0 is arbitrary, and £ is independent of A,

u* e rec [/; + 5 ; ( - •)]
= (cone (domfw - d o m ^ ) ) 0 = {0} by Lemma 4.7, (3) and (1).

Since x^0 € domg*0 C K(hi,... , /iro) for all /?, the convergence x ^ ^ v* = —u* = 0
now implies Hx^H —> 0, and hence that 1 = ||a^J| —> 0, a nonsense. D

This sum property holds for the upper slice topology under much weaker hypotheses.
T+ T+

LEMMA 4 . 1 0 . Suppose that X is a normed space, /„ -^ fw and gv -^ gw in

with dom /„ ndom gv nonempty for each v near w. Assume also that

Then fv + gv ^> /„; + gw.

P R O O F : Note that (/„ + gwy = / ; Dg'w - / ; Dg*w. Let (y*, a) € epi,(/„ + gw)'.
Let 7 satisfy ( / i D 5^)(y*) < 7 < a and e be such that 7 + 5 ^ a. Let {x^} C B(0, M) be
a bounded net, and vp -> IU. There is y* such that \\y* -y*\\ ^ e/M with (f
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7. Then (f, 7) e epiJZ, Dg*w has the decomposition {y{, 7^ + (j/2', 72) € epi,/^, + e p i ^ .
Hence we obtain

(fvg + gv0){x0) > {y\,x0) - 7 l + (y*2,xp) - 72

= (y*,x0)-j^ (y',Xfi) -M\\y* -y"\\ - 7

5* <2/*> */?} - (e + 7) > (2/*, x0) - a

eventually in /?. D

Since upper slice convergence roughly corresponds to (strong) lower-Kuratowski
convergence of the conjugates (Theorem 3.5), the above lemma may be viewed as a
result on epi-upper-semicontinuity of inf-convolutions (see [22, Lemma 4.1]).

We now state our main sum theorem for slice convergence.

THEOREM 4 . 1 1 . Let {fv}V£w and {gv}v^w be families of proper closed convex

extended-real-valued functions on a Banach space X, which are slice convergent (as

v -> w) to fw and gw respectively. Assume also the following:

1- {gv}v€W satisfies condition (4.5);

2. cone (domfw — d o m ^ ) = X;

3. f*Dg*w
w" = fZOg*w.

Then {/„ + gv}v€w is slice convergent to fw + gw as v —> w.

PROOF: Let M e R. Then fvVM := max{fv, M) and gv V M are uniformly
bounded below in x S X and v € W. Also, dom/v V M — domfv and similarly
for gv. Since {gv V M ^ A} = {gv ^ A} for all A ^ M, then rec^t, V M = recgv.
Further, we have the slice convergence /„ V M —>• /„, V M and gv V M -> gw V M, by
Corollary 4.5 (considered as a result on the slice convergence of intersections of sets,
applied to epifv V M = epifv fl (X x [M, +00))). We may now apply Corollary 4.9 to
infer that fv\/M + gvvM is proper for v near w, and slice-converges to fwVM + gwVM.
In particular, dom/w intersects dom^u, and

/ , V M + J B V M ^ e-ls(/0 VM + gvVM)^ e-ls{fv + gv)
V-tW V-¥W

and since M is arbitrary,

fw+gw> e-ls(fv + gv).
V-¥W

The upper slice convergence follows from Lemma 4.10. D

REMARK 4.3. Note that (3) is automatically satisfied in reflexive X. If X is not reflex-
ive, this condition can be taken care of as follows: If (2) is strengthened to

cone (dom /„, — dom gw) = X ,
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then f^Og^ € T'(X') by [3]; alternately, if instead, fw and gw are assumed bounded
below on X, we may apply the argument of Corollary 4.9 with W = {w} to deduce that
HK(W) is bounded for each K, implying by Lemma 4.1 that f^Og*j is in r*(X*).

Another option is to assume some (weak) compactness condition on the limit func-
tions, and to apply the following

LEMMA 4 . 1 2 . Let f and g be in F(X), with intersecting domains, and such that
for each K ^ 0, dom / D .0(0, K) is relatively weakly compact. Then

PROOF: The assumption on the domain implies that for each K, dom/ D B(0,K)
is weakly compact. Letting J : X —> X" denote the canonical embedding, J(dom /) n
B**(0, K) = J{domJnB(0, K)) is then a{X", X*)-closed in X*\ Indeed, if J(x0) ^ x"
with X0 € dom/nB(0, K), then by weak compactness xp -^ x S dom/(~)B(0,K) (along
a subnet), or equivalently J{x0) ^> J(x), so x" = J(x) 6 J(dom / n B(0, K)).

Hence J(dom / ) = J(dom / ) is cr(X",X*)-closed in X** by the Krein-Smulian
Theorem, with the consequence that the cr(X**,X*)-closure of <7(dom/) is in J(X).
Place ip := /* Dg*. Then since tp* = f + g e T(X), it follows that T*(X*) 9 ip" = 4?'
(the a(X*,X)-\.s.c. hull of ip), which implies that ip is also proper. Hence also the
a(X*,X**)-\.s.c. hull T̂" is proper, since V̂" < W" ^ $•

For emphasis, we distinguish the conjugation operator relative to the standard pair-
ing of (X',a(X\ X")) with (X", a{X",X')) by writing it as *, with * reserved for the
operation relative to the pairing of (X,a(X,X*)) with (X*,a(X*,X)). Then for any
function <p on X,

where ip : X" —» R is denned by

Then

onJ(X)
on X" \ J(X).

where the latter summands are o(X**, X*)-l.s.c. hulls, and since their domains intersect,
h is proper, with

dom^Cdom/ C dom/ = J ( d o m / ) 1 ' ' c J(X)

so h = ho for some proper ho : X —> R. Thus ip = ip** — h* = /ij, the latter
being a(X*,X)-c\osed, and so ip"1 = ip™, which coincides with the strong closure ip by
convexity. D

The above Theorem takes a neat form for the slice convergence of subspaces.
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COROLLARY 4 . 1 3 . Let Mv and Nv (v e W) be closed subspaces of the Ba-
nach space X, slice convergent (as v —> w) to Mw and Nw respectively, such that also
Mw + Nw = X, and for some Rnite-dimensional subspace F C X* and neighbourhood V

ofw, | J Nf C F. Then Mv fl Nv slice converges to Mw n Nw.
vev

PROOF: The condition on the Nj- is equivalent to assumption (1) of the Theorem.
Indeed, if (1) holds for Nv, then by Lemma 4.8, Nj- C K (for v near w) for some weakly*
locally compact cone K, and hence Nj- C K n —K := F', a weakly* locally compact
subspace, which must therefore be of finite dimension. The second part of the proof
of Lemma 4.8 yields the reverse argument, by the weak* local compactness of finite-
dimensional subspaces. D

We note that in general, the result does not hold if the uniform finite-codimensionality
condition (1) is omitted. For example, (see [7, Exercise 8.1.6]) let X = I2, Mn := {x £
I2 | xn+i — 0}, Nn := {x e I2 | xn+i = xi/n}. Then Mn and Nn are closed subspaces
slice converging to M = N = X. However, Mn D Nn = {x € I2 \ x\ = 0, xn+i = 0},
which slice converges to {x e I2 \ x\ = 0} ^ X = M D N. Since M£ = spanen+i and
N£ = span (ei — nen+i) for each n (where en denote the standard basis elements in /2),
the uniform containment of M^ or N^ in any fixed finite-dimensional subspace is not
possible.

This example also shows that any proposal to weaken the assumption in Corollary 4.4
to, say,

for v near w, will in general, fail to yield slice convergence for the sum fv + gv, since for
all n, Mn + Nn = X, so the indicator functions certainly satisfy this relation.

5. AN APPLICATION TO I1 CONTROL PROBLEMS

We end with a brief application, which resolves an issue in the theory of ^-optimal
control. All the system-theoretic concepts to be discussed can be found in detail in: [13]
for general systems theory; [23] for general control theory for linear systems; and [12] for
/'-optimal control.

We shall restrict ourselves to single-input/single-output linear time-invariant (LTI)
discrete-time systems.

Such systems always take the form of a convolution operator h* for some real se-
quence h = {hi}fl0 (called the pulse response, since h = h*S where 6 := (1,0,0,...) is
the unit pulse), with the operator acting on the space of all real sequences. It is known
that this operator is BIBO (bounded-input/bounded-output) stable (that is, h * e € l°°
Ve 6 l°°) if and only if h e I1 [13].

Let P be a LTI system (the 'plant' to be controlled). A system K is said to
(BIBO-)stabilise P if the closed-loop system depicted in Figure 1 is BIBO-stable in
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the sense that for any input w £ l°° and any bounded disturbances applied additively at
any point in the loop, all resulting signals within the loop are also bounded [13], [23].

w +

Figure 1. A closed-loop control system

The stated control problem amounts to finding, among all controllers K stabilising

P, that which performs best according to some chosen criterion. If we restrict P and K

to have rational z-transforms P, K (where P{z) := ^ Pi*' for z € C inside the radius of
t=0

convergence of the series) then by the use of the YJBK parametrisation [23] for the set of
all stabilising controllers K, the corresponding set of error signals e has the structure of an
affine set. It should be noted that there is a one-to-one correspondence between an error
e and the associated K, with a simple algebraic equation connecting them. Hence the
control problem can be restated as a minimisation over the affine space of error signals,
and hence is in a form nearer to that which can be treated by the traditional techniques
of optimisation theory.

If further, we require e g / 1 (this represents, if w $ I1, a "tracking" requirement for
the output, and is superfluous if w £ I1), then the set of prospective candidates for the
minimisation can be expressed as the subset of members with rational z-transform, of
{e € I1 | Ae - b}, where b e R" and A : I1 -»• Rn is bounded linear [12]. In the general
"multiblock" case, (which we do not consider here), A would map into some infinite-
dimensional space Z, with b € Z, where A usually has closed range—for more on this,
see [12].

If we also want to apply time-domain constraints on e, by requiring that e € C :=
{e £ I1 | S,- ^ e,- ^ A{ for all i}, this leads to the minimisation

(5.1) inf f(e)

for some performance measure / , say, the /'-norm. This is the abstract form of what is
computed in Z1-optimal control (see [12, 15]). However, since the YJBK parametrisation
applies only to K with rational z-transform (which then corresponds to rational e),
we observe that generally, (5.1) is merely a lower bound for the best performance by
'physically realisable' controllers (that is, those with rational transform). This leads to
the important question of whether equality obtains, that is:

(5.2) inf / = inf {/(e) | e G C D M , e rational}
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We henceforth assume that / is continuous on I1. Let Xo := {eel1 | e" is rational} (a

subspace of I1). Since it can be shown without much difficulty that M n Xo is dense in

M, it follows by an elementary convexity argument that if M n int C is nonempty, then

C n M n Xo = C n M, so the required equality follows in this case. If C lacks interior,

things are a bit less obvious.

From use of a duality theorem of Borwein and Lewis [11] in both X and XQ, it can

be shown that (5.2) obtains if qri (C) n M n I 0 / B . By use of our Corollary 4.4, we can

find a complementary sufficient condition.

COROLLARY 5 . 1 . If cone (C - M) = I1 then (5.2) follows.

PROOF: Place /„ := 5Cn, Cn := {e € C | e{ = 0 for all i ^ n}, gn :- g := 6M.

Then /„ slice converges to / and trivially gn converges. Since recM = M and M has
finite codimension, so gn satisfies (4.5), we may apply Corollary 4.9 to infer the slice
convergence Cn n M —> C n M. In particular, C n M HX0 is dense in Cn M since Cn

consists of elements of finite length, which must have rational z-transform. D
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