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Homological Aspects of Semigroup Gradings
on Rings and Algebras
W. D. Burgess and Manuel Saorı́n

Abstract. This article studies algebras R over a simple artinian ring A, presented by a quiver and relations and
graded by a semigroup Σ. Suitable semigroups often arise from a presentation of R. Throughout, the algebras
need not be finite dimensional. The graded K0, along with the Σ-graded Cartan endomorphisms and Cartan
matrices, is examined. It is used to study homological properties.

A test is found for finiteness of the global dimension of a monomial algebra in terms of the invertibility of
the Hilbert Σ-series in the associated path incidence ring.

The rationality of theΣ-Euler characteristic, the HilbertΣ-series and the Poincaré-BettiΣ-series is studied
when Σ is torsion-free commutative and A is a division ring. These results are then applied to the classical
series. Finally, we find new finite dimensional algebras for which the strong no loops conjecture holds.

Introduction

There is a vast literature on the use of gradings (usually over Z or N) to extract ring theoretic
information. Our purpose is to examine semigroup gradings on algebras which are not
necessarily finite dimensional over a base ring A, where A can be a simple artinian ring;
and to use them to obtain (mostly) homological information about the algebras. All rings
below are unitary and modules are unitary left modules. We shall see that the gradings used
arise quite naturally in many contexts. Before proceeding with a summary of the contents,
here are the basic definitions.

All semigroups Σ considered in this work are written multiplicatively and have a zero
element, 0, so that 0σ = σ0 = 0 for all σ ∈ Σ. There is also a distinguished family of non-
zero orthogonal idempotents {ε1, . . . , εn}, so that Σ =

⋃
i j εiΣε j . That family is uniquely

determined by Σ, up to reordering. When σ ∈ εiΣ or, equivalently, σ = εiσ, we say that εi

is the origin σ and write o(σ) = εi . We put Σ∗ = Σ − {ε1, . . . , εn}. Every Σ-grading on a
ring R is assumed to have R0 = 0. Finally, we set R1 = Rε1 ⊕ · · · ⊕ Rεn .

We now specify the type of graded ring which will be the subject of the paper.

Definition 0.1 Let Σ be a semigroup with distinguished family of orthogonal idempo-
tents {ε1, . . . , εn}. A Σ-grading R =

⊕
σ∈Σ Rσ is called (left) admissible if the following

hold:

a) I =
⊕

σ∈Σ∗ Rσ is a two-sided ideal of R.
b) For every σ ∈ Σ, there is a positive integer nσ such that whenever n ≥ nσ and ν is a left

divisor of σ, (In)ν = 0.
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c) R1 is a semisimple artinian ring.
d) Each Rσ is finitely generated as a left R1-module.

The following identifies a class of semigroups which is important in what follows.

Definition 0.2 A semigroupΣ with 0 is called a Möbius semigroup (adapted from [8]) if,
in addition to the conventions above,

(i) each 0 6= p ∈ Σ∗ has only finitely many factorizations p = p1 p2 in Σ∗; and
(ii) the only elements p ∈ Σ with pm = pn 6= 0 for distinct m, n are the εi .

Given a semigroupΣ, two related rings will be especially important for us. The additive
abelian group Z[[Σ]] = { f : Σ→ Z | f (0) = 0} contains ZΣ = { f ∈ Z[[Σ]] | f (σ) = 0
for almost all σ ∈ Σ} as a subgroup. The latter admits a convolution product ( f ∗ g)(σ) =∑

ντ=σ f (ν)g(τ ), which makes it into a ring, called the (truncated) semigroup ring of Σ.
When, in addition, Σ is Möbius, the product is also valid in Z[[Σ]] and Z[[Σ]] becomes
a ring of which ZΣ is a subring. The ring Z[[Σ]] is called the incidence ring of Σ. For
convenience, we write an element f ∈ Z[[Σ]] as f =

∑
σ∈Σmσσ, where mσ = f (σ) for

all σ ∈ Σ.
For the rest of this introduction we shall simplify matters by assuming that our Σ-graded

ring R is an algebra over a field, Σ is Möbius and each simple direct summand of R/I occurs
exactly once. We often need that our Σ-graded modules M have resolutions (as ungraded
modules) by finitely generated free modules. More general situations are studied in the body
of the article.

We consider the subcategories (R,Σ)fd -gr and (R,Σ)lfd -gr of finite dimensional and lo-
cally finite dimensional Σ-graded modules, respectively, with maps which are degree pre-
serving homomorphisms. Their classical Grothendieck groups, K0[R,Σ]fd and K0[R,Σ]l f g

are studied. When M ∈ (R,Σ)lfd -gr one can consider the Hilbert Σ-series of M, ∆M =∑
σ∈Σ c(Mσ)σ ∈ Z[[Σ]], where c(∗) denotes the R1-composition length. We then look

at the group K∗0 [R,Σ]lfd = K0[R,Σ]lfd/B, where B is the subgroup generated by the dif-
ferences M − N , which M,N ∈ (R,Σ)lfd -gr and ∆M = ∆N . The key tools developed in
the paper (Theorems 1.8 and 1.9) are that K0[R,Σ]fd and K∗0 [R,Σ]lfd have canonical struc-
tures as right ZΣ- and Z[[Σ]]-modules, which are isomorphic to ZΣZΣ and Z[[Σ]]Z[[Σ]],
respectively. The assignment to every simple graded module of a projective module which
is a cover as a graded module is shown to yield a Z[[Σ]]-module Cartan endomorphism
of K∗0 [R,Σ]lfd

∼= Z[[Σ]], which is multiplication by ∆R; there is a corresponding Cartan
matrix (Proposition 2.2 and Corollary 2.3).

We apply these results to homological questions. Section 3 is about computing the
projective dimensions of simple graded modules over (not necessarily finite dimensional)
monomial algebras (Theorem 3.1). This yields a new test for the global dimension of the al-
gebra (Corollary 3.3). Section 4 proves the rationality of the so-called Anick-Poincaré-Betti
Σ-series of an algebra where the ideal of relations has a finite Gröbner basis. In that case,
the rationality of the Hilbert and Euler characteristic Σ-series follows and, when the Anick
resolution is minimal, so does that of the Poincaré-BettiΣ-series (Theorem 4.4). In the last
section we improve on one of the few known results on the “strong no loops conjecture”
for finite dimensional algebras.
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1 Admissible Gradings on Rings

The terminology and notation presented in the introduction are used.

Lemma 1.1 Let R =
⊕

σ∈Σ Rσ be a Σ-grading on the ring R such that I =
⊕

σ∈Σ∗ Rσ
is a two-sided ideal of R with

⋂
n≥1 In = 0. Then 1 ∈ R1 and we have a R1-bimodule

decomposition R = R1 ⊕ I.

Proof Clearly R = R1 ⊕ I as abelian groups. If now 1 = e + f , with e ∈ R1 and f ∈ I, one
gets e f = e − e2 = f e and so e f = f e = 0. But then 1 = (e + f )2 = e2 + f 2, from which
it follows that e = e2 and f = f 2. The latter implies that f ∈

⋂
n≥1 In = 0. So 1 = e ∈ R1.

The rest is obvious.

Remark 1.2 Let M be a Σ-graded module (i.e., M =
⊕

σ∈ΣMσ as an abelian group and
RσMτ ⊆ Mστ , for all σ and τ ). Then

⋂
n≥1 InM = 0. Indeed, since N =

⋂
n≥1 InM

is a graded submodule of M, we need to check that Nσ = 0, for every σ ∈ Σ. From
I2nM = InInM, [I2nM]σ =

∑
ντ=σ(In)ν(InM)τ . Now Definition 0.1 b) guarantees that, for

n ≥ nσ , [I2nM]σ = 0. Then Nσ = 0, as desired.

Proposition 1.3 (Nakayama Lemma for Graded Modules) Let R be a ring with an admis-
sible Σ-grading. If M is a graded module such that M = IM then M = 0. Moreover, if M is a
graded module and N a graded submodule such that M = IM + N, then N = M (i.e., IM is
a superfluous as a graded submodule).

Examples 1.4

1) An adequate Σ-grading on a left artinian ring in the sense of [19] is admissible.
2) Suppose that Σ is a Möbius semigroup. If A is a semisimple ring, then the canonical Σ-

grading on the (truncated) semigroup ring AΣ is admissible. An example of a Möbius
semigroup is the path semigroup Σ = P(Γ) of a quiver Γ with only a finite number of
vertices, in which case AΣ is the path A-algebra, AΓ.

3) (Factors of path algebras) Let us consider R = AΓ/H, where A is a simple Artinian ring,
Γ is as in 2) and H is an ideal of AΓ generated by a set ρ of A-linear combinations of
paths (called relations) of length ≥ 2, assuming that all paths appearing with nonzero
coefficient in an element r ∈ ρ share origin and terminus. We take the associated semi-
group [19] Σ = Σ(Γ, ρ) which is the factor of P(Γ) by the congruences: p ≡ q if and
only if the paths p and q both appear with nonzero coefficients in a relation in ρ. Then
R inherits a canonical Σ-grading as in [19, Proposition 2.1]. When R is left artinian
(the grading is finite) or when Σ is a Möbius semigroup, the grading is left admissible.
When ρ consists of paths, we say that R is a monomial A-algebra. Then the associated
semigroup is Σ = P(Γ). When ρ can be chosen to be finite, the algebra R is called
finitely presented.

4) If, as in [20, Proposition 1.1(iii)], one considers K〈X,Y 〉/( f1, f2), where f1 = Y 2X −
XY 2 and f2 = X2Y + Y X2 + Y 2, then the associated monoid Σ is Möbius. That can be
seen by taking N-degrees deg(Y ) = 2 deg(X) = 2 and noting that any way of writing a
word in X and Y has bounded X and Y -degrees.
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Remark 1.5 If R =
⊕

σ∈Σ Rσ is a left admissible grading and I =
⊕

σ∈Σ∗ Rσ , then R1 =
Rε1 ⊕ · · · ⊕ Rεn is also a decomposition of R1 as a ring, so that each Rεi is a semisimple ring
and, for each simple left R-module S with IS = 0, there is a unique i ∈ {1, . . . , n} such that
Rεi S 6= 0. In that case we shall say that the origin o(S) of S is εi . Any such a simple module
admits a canonical (trivial) grading by putting Sεi = S and Sσ = 0, for every σ ∈ Σ−{εi}.

We fix a left admissible Σ-grading on a ring R and consider the Grothendieck category
(R,Σ)-gr of Σ-graded R-modules. We observe that if M =

⊕
σ∈ΣMσ is a graded module,

then M[εi] =
⊕

σ∈Σεi
Mσ is a graded submodule of M, for every i = 1, . . . , n (of course,

by putting Mσ = 0, for all σ 6∈ Σεi). More generally, for every σ ∈ Σ we can form the σ-
shifting of M, denoted M[σ]: as an ungraded R-module M[σ] = M[εi], where εi = o(σ),
but the grading is given by M[σ]τ = ⊕{Mν | νσ = τ}. In particular, the support of M[σ]
is always contained in Σσ.

Definition 1.6 A Σ-graded left R-module M =
⊕

σ∈ΣMσ will be called finite-dimen-
sional (locally finite-dimensional) whenever we have

∑
σ∈Σ cR1 (Mσ) < ∞ (cR1 (Mσ) < ∞,

for every σ ∈ Σ), where cR1 (Mσ) is the composition length of Mσ as a left R1-module.

Terminology In the sequel (R,Σ)fd -gr and (R,Σ)lfd -gr will denote the full subcategories
of (R,Σ)-gr whose objects are the finite-dimensional and locally finite-dimensional graded
R-modules, respectively. Maps are degree preserving homomorphisms. Moreover, SI stands
for a set of representatives, up to isomorphism, of the simple left R-modules S such that
IS = 0.

Proposition 1.7 The categories (R,Σ)fd -gr and (R,Σ)lfd -gr are skeletally small abelian cat-
egories in which {S[σ] | S ∈ SI and o(S) = o(σ)} is a set of representatives, up to isomor-
phism, of the simple objects.

Proof It is immediately seen that, as full subcategories of (R,Σ)-gr, the two subcategories
are closed under finite direct sums, subobjects, factors and extensions. It then follows that
both are abelian categories. That (R,Σ)fd -gr is skeletally small is clear. For (R,Σ)lfd -gr,
we abbreviate cR1 (Mσ) by c(Mσ) and see that M is a factor in (R,Σ)-gr of

⊕
σ∈Σ R[σ]c(Mσ),

where R[σ] denotes the σ-shifting of R. As a consequence, if we take the direct sum Q
of countably infinitely many copies of P =

⊕
σ∈Σ R[σ], we see that every locally finite-

dimensional graded module is a factor of Q in (R,Σ)-gr, so that (R,Σ)lfd -gr is skeletally
small.

If S ∈ SI then, by definition, S[σ] 6= 0 if and only if o(S) = o(σ). The last assertion
follows as in Lemma 1.3 of [19], bearing in mind that a simple object T of either of the
subcategories satisfies IT = 0, by Remark 1.2.

In what follows, we shall denote the Grothendieck groups by K0[R,Σ]fd and K0[R,Σ]lfd ,
respectively. The notation is abused throughout by using of the same symbol for a graded
module and its image in the corresponding Grothendieck group.

Theorem 1.8 The operation M · σ = M[σ] yields a right ZΣ-module structure on
K0[R,Σ]fd , for which the following assertions hold:
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a) If S ∈ SI , then annZΣ S = (1− εi)ZΣ, where εi = o(S).
b) K0[R,Σ]fd =

⊕
{S · ZΣ | S ∈ SI}.

c) K0[R,Σ]fd is isomorphic to (ε1ZΣ)m1 ⊕ · · · ⊕ (εnZΣ)mn , where mi is the cardinality of
{S ∈ SI | o(S) = εi}.

Proof Since all objects of (R,Σ)fd -gr have finite length, it is well-known that, as an abelian
group, K0[R,Σ]fd is free and generated by the simple objects, i.e., by {S[σ] | S ∈ SI and
o(S) = o(σ)}. The fact that K0[R,Σ]fd becomes canonically a right ZΣ module with the
given multiplication is straightforward. If now f =

∑
σ∈Σ f (σ)σ ∈ ZΣ, where f (σ) ∈ Z

for every σ ∈ Σ, satisfies S · f = 0 and εi = o(S), then from the fact that S[σ] = 0 if
and only if σ 6∈ εiΣ one gets that the support of f is contained in

⋃
j 6=i ε jΣ, from which a)

follows.
The abelian group generating set given above yields that {S | S ∈ SI} is a generating

set of K0[R,Σ]fd as a right ZΣ-module. If x ∈ K0[R,Σ]fd belongs to the ZΣ-submodule
generated by S and, also, to the ZΣ submodule generated by the remaining elements of SI ,
then x can be expressed as a Z-linear combination of {S[σ] | o(σ) = o(S)} and as a Z-linear
combination of {S ′[σ] | S ′ ∈ SI , S ′ 6= S and o(σ) = o(S ′)}. The fact that K0[R,Σ]fd is
free as abelian group implies that x = 0, giving b). Finally, if εi = o(S) then, from a), one
gets that the assignment S · f 7→ εi · f yields an isomorphism of right ZΣ-modules between
S · ZΣ and εi · ZΣ. From this and b), assertion c) follows.

To every M in (R,Σ)lfd -gr we can associate the element f M = ( f M
S )S∈SI of Z[[Σ]]SI

given by f M
S =

∑
σ∈Σ,o(σ)=o(S) cS(Mσ)σ, where cS(Mσ) denotes the multiplicity of S as a R1-

composition factor of Mσ . Notice that f M ∈ (ZΣ)SI when M is finite-dimensional. While
f M characterizes a finite-dimensional module M as an element of K0[R,Σ]fd , the same is
not true for a locally finite-dimensional graded module as an element of K0[R,Σ]lfd .

Terminology To avoid problems caused by this, we work with a factor group, K∗0 [R,Σ]lfd :=
K0[R,Σ]lfd/B, where B is the subgroup generated by all differences M − N, with M,N ∈
(R,Σ)lfd -gr and f M = f N . The canonical composition K0[R,Σ]fd → K0[R,Σ]lfd →
K∗0 [R,Σ]lfd is an injective homomorphism of abelian groups, thus allowing us to view
K0[R,Σ]fd as a subgroup of K∗0 [R,Σ]lfd .

Theorem 1.9 Let Σ be a Möbius semigroup and R =
⊕

σ∈Σ Rσ be an admissible grading
on the ring R. The operation M · σ = M[σ] yields a right Z[[Σ]]-module structure on
K∗0 [R,Σ]lfd with the following properties:

a) If S ∈ SI , then annZ[[Σ]] S = (1− εi)Z[[Σ]].
b) K∗0 [R,Σ]lfd =

⊕
{S · Z[[Σ]] | S ∈ SI}.

c) K∗0 [R,Σ]lfd is isomorphic to (ε1Z[[Σ]])m1⊕· · ·⊕(εnZ[[Σ]])mn , where mi is the cardinality
of {S ∈ SI | o(S) = εi}.

d) There is a commutative diagram:

K0[R,Σ]fd −−−−→ (ε1ZΣ)m1 ⊕ · · · ⊕ (ε1ZΣ)mny y
K∗0 [R,Σ]lfd −−−−→ (ε1Z[[Σ]])m1 ⊕ · · · ⊕ (ε1Z[[Σ]])mn
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where the vertical arrows are the canonical inclusions and the horizontal ones are the given
isomorphisms of right ZΣ- and Z[[Σ]]-modules respectively.

Proof The assignment M → f M is additive on short exact sequences, from which we get an
abelian group homomorphismφ : K∗0 [R,Σ]lfd → Z[[Σ]]SI . On the other hand, an element
of K∗0 [R,Σ]lfd can be written in the form (M − N) + B, where M,N ∈ (R,Σ)lfd -gr. If it is
in kerφ, then f M = f N and so M + B = N + B. Hence φ is injective.

Moreover, if we put f M = ( f M
S )S∈SI as above, then f M

S ∈ εiZ[[Σ]], where o(S) = εi .
By using direct sums of graded simples, for example, one derives that Im φ =⊕

S∈SI
o(S)Z[[Σ]], which is clearly isomorphic to (ε1Z[[Σ]])m1 ⊕ · · · ⊕ (εnZ[[Σ]])mn as

an abelian group. So φ can be viewed as an isomorphism of abelian groups between
K∗0 [R,Σ]lfd and (ε1Z[[Σ]])m1 ⊕ · · · ⊕ (εnZ[[Σ]])mn . By transporting the right Z[[Σ]]-
module structure from the latter to the former via φ, we get K∗0 [R,Σ]lfd as a Z[[Σ]]-module
satisfying all the requirements.

2 Graded Cartan Matrices and Graded Cartan Endomorphisms

When R =
⊕

σ∈Σ Rσ is an admissible grading on the ring R, we fix a numbering of the
elements of SI , {S11, . . . , S1m1 , . . . , Sn1, . . . , Snmn}, with o(Si j ) = εi , for i = 1, . . . , n and
j = 1, . . . ,mi . There is a family {e11, . . . , e1m1 , . . . , en1, . . . , enmn} of primitive orthog-
onal idempotents, with each ei j homogeneous of degree εi and Rei j /Iei j

∼= Si j . In the
sequel, we put Pi j = Rei j , viewed as a graded module. We have seen in the proof of Theo-
rem 1.9 that the assignment M → f M can be thought of as an abelian group isomorphism
φ : K∗0 [R,Σ]lfd

∼= (ε1Z[[Σ]])m1⊕· · ·⊕(εnZ[[Σ]])mn , so that it makes sense to talk about the
(i, j) component of f M . Before giving our key definition, we notice that, even when Z[[Σ]]
does not have a ring structure, the abelian group εiZ[[Σ]]ε j = { f ∈ Z[[Σ]] | f (σ) = 0,
for all σ 6∈ εiΣε j}makes sense.

Definition 2.1 Given an admissible grading R =
⊕

σ∈Σ Rσ , we define the associated
graded Cartan matrix, denoted CR, as a n × n block matrix CR = (Ci j), where the (i, j)
block Ci j is the mi ×m j-matrix with entries in εiZ[[Σ]]ε j whose (k, l) entry Ci j(k, l) is the
(i, k) component of f P jl .

The l-th column within the j-th block column of CR,

(
C1 j(1, l), . . . ,C1 j(m1, l), . . . ,Cn j(1, l), . . . ,Cn j(mn, l)

)T
,

is f P jl . In particular, when R is finitely graded (and, hence, artinian), the graded Cartan
matrix has entries in ZΣ. From now on we shall think of the elements of (ε1Z[[Σ]])m1 ⊕
· · · ⊕ (εnZ[[Σ]])mn as column-vectors

( f11, . . . , f1m1 , . . . , fn1, . . . , fnmn )T , where fi j ∈ εiZ[[Σ]].

Proposition 2.2 Let R =
⊕

σ∈Σ Rσ be an admissible grading. The following assertions hold:

a) If the grading is finite, then the assignment Si j → Pi j extends to a homomorphism of
right ZΣ-modules K0[R,Σ]fd → K0[R,Σ]fd , that, when we identify K0[R,Σ]fd with
(ε1ZΣ)m1 ⊕ · · · ⊕ (εnZΣ)mn , is left multiplication by CR.
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b) If Σ is a Möbius semigroup, assertion a) holds with K0[R,Σ]fd replaced by K∗0 [R,Σ]lfd

and ZΣ replaced by Z[[Σ]].

Proof We prove the finite-dimensional case. The other one is similar. From Theorem 1.8
it follows that a typical element of K0[R,Σ]fd can be expressed in the form

∑
i, j Si j fi j ,

where fi j is a uniquely determined element of εiZΣ, for all i, j. Since annZΣ Pi j =
(1 − εi)ZΣ = annZΣ Si j , we see that the assignment

∑
i, j Si j fi j 7→

∑
i, j Pi j fi j is a well-

defined homomorphism of right ZΣ-modules ψ : K0[R,Σ]fd → K0[R,Σ]fd that maps Si j

onto Pi j .
On the other hand, left multiplication by CR yields a ZΣ-homomorphism

(ε1ZΣ)m1 ⊕ · · · ⊕ (εnZΣ)mn → (ε1ZΣ)m1 ⊕ · · · ⊕ (εnZΣ)mn ,

which in turn gives ψ ′ : K0[R,Σ]fd → K0[R,Σ]fd , by Theorem 1.8 (c). Since the simple S jl

corresponds to the column vector of (ε1ZΣ)m1 ⊕· · ·⊕ (εnZΣ)mn having ε j in its ( j, l) com-
ponent and zero elsewhere, we see that ψ ′(S jl) is the element of K0[R,Σ]fd corresponding
to the ( j, l) column of the graded Cartan matrix, i.e., ψ ′(S jl) = P jl, for j = 1, . . . , n and
l = 1, . . . ,m j , and so ψ ′ = ψ.

Terminology The endomorphisms of K0[R,Σ]fd and K∗0 [R,Σ]lfd from Proposition 2.2 a)
and b) are called the (graded) Cartan endomorphisms. There are two cases of particular
interest here. The first is when Σ is a monoid and {1} is the distinguished set, where CR

has a unique block whose size is m × m, with m the number of non-isomorphic simple
R-modules S such that IS = 0. In such a situation, K0[R,Σ]fd

∼= (ZΣ)m and, in the Möbius
semigroup case, K∗0 [R,Σ]lfd

∼= Z[[Σ]]m. When, instead, mi = 1, for i = 1, . . . , n, we shall
say, recalling terminology from finite dimensional algebras, that the grading is basic. In
this latter situation the (i, j)-block of CR is an element of εiZ[[Σ]]ε j , for every pair (i, j),
K∗0 [R,Σ]lfd

∼= Z[[Σ]]Z[[Σ]] and K0[R,Σ]fd
∼= ZΣZΣ. This has the following consequence.

Corollary 2.3 Let R =
⊕

σ∈Σ Rσ be a basic admissible grading on the ring R, CR = (Ci j)
the associated graded Cartan matrix and∆R =

∑
i, j Ci j . Then:

a) If the grading is finite, when we identify K0[R,Σ]fd with ZΣZΣ, the Cartan endomorphism
is left multiplication by∆R.

b) If Σ is a Möbius semigroup, when we identify K∗0 [R,Σ]lfd with Z[[Σ]]Z[[Σ]], the Cartan
endomorphism is left multiplication by∆R.

Proof Since in both cases left multiplication by ∆R defines an endomorphism ϕ of the
given module (ZΣZΣ or Z[[Σ]]Z[[Σ]]), we only have to check ϕ(S j) = φ(S j) for all j =
1, . . . , n, where φ is the Cartan endomorphism and S j is the unique simple, up to isomor-
phism, such that IS = 0 and o(S) = ε j . One should first notice that, under the canonical
isomorphisms K0[R,Σ]fd

∼= ZΣZΣ and K∗0 [R,Σ]lfd
∼= Z[[Σ]]Z[[Σ]], S j corresponds to ε j .

Now, viewed as a column-vector of ε1ZΣ ⊕ · · · ⊕ εnZΣ, φ(S j) is the j-th column of CR.
But, when we identify ε1ZΣ ⊕ · · · ⊕ εnZΣ with ZΣ in the obvious way, that element is∑n

i=1 Ci j = ∆R · ε j .
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Remark 2.4 When the grading is basic, if we consider f R as in the paragraph after The-
orem 1.8, we immediately see that ∆R is the sum of all components of f R. To generalize
this to a locally finite-dimensional graded R-module M, we denote by ∆M the sum of all
components of f M , i.e., ∆M =

∑
σ∈Σ cR1 (Mσ)σ: ∆M will be called the Hilbert Σ-series of

M.

We shall look at resolutions using the Pi j[σ], with o(σ) = εi . A direct sum P ∈ (R,Σ)-gr
of such modules will be called an isoprojective module. Then P is projective as an ungraded
module and it behaves like a projective in (R,Σ)-gr (Proposition 2.6 and Remark 2.8). We
adapt the standard definition to our situation.

Definition 2.5 Let M ∈ (R,Σ)-gr. An isoprojective cover of M is an epimorphism p : P→
M in (R,Σ)-gr, where P is a isoprojective and ker p ⊆ IP.

The following is fundamental.

Proposition 2.6 Let R =
⊕

σ∈Σ Rσ be an admissible grading on the ring R. Every M ∈
(R,Σ)-gr has an isoprojective cover and, hence, a minimal isoprojective resolution. Moreover:

a) If the grading is finite, then the isoprojective cover of every finite-dimensional graded mod-
ule is finite-dimensional.

b) If Σ is a Möbius semigroup, then the isoprojective cover of every locally finite-dimensional
graded module is locally finite-dimensional.

Proof The proof is similar to the proof for left perfect rings, bearing in mind that IM is
a superfluous subobject of M in (R,Σ)-gr (Proposition 1.3). One notes also that when Σ
is Möbius, a direct sum, P, of the Pi j[σ], where there are only finitely many summands of
each graded isomorphism type, is locally finite dimensional.

Definition 2.7 Let M be a graded left R-module. We say that the isoprojective dimension
of M is n ∈ N, written isopd(M) = n, if there exists an exact sequence in (R,Σ)-gr,
0→ Qn → · · · → Q0 → M → 0, with all Qi isoprojective modules and n is minimal with
this property. If there is no such n, isopd(M) =∞.

Remark 2.8 Suppose in Proposition 2.6 that (i) the grading is finite, or (ii) Σ is left can-
cellative. If P is a graded module which is projective as an ungraded module then it is
isoprojective. In particular, the projective and isoprojective dimensions of a graded mod-
ule coincide.

Proof In case (i), R is left artinian and I = J(R). Then an isoprojective cover is projective.
In case (ii), the proof of [17, Lemma I.2.1] applies here.

Recall [21, Definition 8.10] that the λ-dimension of a module M, written λ(M), is the
supremum (possibly ∞, the most useful case) of the natural numbers n ∈ N such that
there is an exact sequence Fn → Fn−1 → · · · → F0 → 0, with all the Fk free (or projective)
and finitely generated.
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Proposition 2.9 Let R =
⊕

σ∈Σ Rσ be an admissible grading on R.

a) If Σ is a Möbius semigroup, the Cartan map K∗0 [R,Σ]lfd → K∗0 [R,Σ]lfd is surjective. In
addition, if M ∈ (R,Σ)lfd -gr satisfies λ(M) = ∞ and isopd(M) < ∞, then a preimage
of M exists in K0[R,Σ]fd .

b) If the grading is finite, then every M ∈ (R,Σ)fd -gr with isopd(M) <∞ is in the image of
the graded Cartan map K0[R,Σ]fd → K0[R,Σ]fd .

Proof Take M ∈ (R,Σ)lfd -gr and consider its minimal isoprojective resolution · · · →
Qn → · · · → Q0 → M → 0. Then, Proposition 2.6 tells us that all its terms are in
(R,Σ)lfd -gr. We claim that

∑
n≥0(−1)nQn is a well-defined element of K∗0 [R,Σ]lfd . Indeed,

each Qm is a direct sum of modules of the form Pi j[σ], with only finitely many copies of
each Pi j[σ] appearing in a given Qm. Moreover, if Pi j[σ] appears as a direct summand of
Qm, then σ = ντ , for some τ ∈ Σ such that Pkl[τ ] appears as a direct summand of Qm−1,
where εk = o(τ ) and l ∈ {1, . . . ,mk}. Consequently, for σ ∈ Σ fixed, the appearance of
the graded modules {Pi j[σ] | j = 1, . . . ,mi} as direct summands of infinitely many Qm

would imply the existence of infinitely many right divisors for σ in Σ, which contradicts
our assumption on Σ. So, if we denote by c jmσ the number of times that Pi j[σ] appears
as direct summand of Qm, then cσ =

∑
1≤ j≤mi

∑
m≥0(−1)mc jmσ is a well-defined integer

and we can identify
∑

σ∈Σ cσσ with
∑

n≥0(−1)nQn. Then one has M =
∑

n≥0(−1)nQn in
K∗0 [R,Σ]lfd .

By expanding that equality we get M =
∑

1≤i≤n

∑
1≤ j≤mi

Pi j · gi j , where gi j =∑
σ∈εiΣ

(∑
m≥0(−1)mc jmσ

)
σ. Since Pi j = φ(Si j), where φ is the Cartan map, we conclude

that M = φ(
∑

i, j Si j · gi j) ∈ Im φ. When λ(M) = ∞, all the Qm are finitely generated.
When in addition isopd(M) <∞, the gi j are elements of ZΣ. Therefore

∑
i, j Si j · gi j is an

element of K0[R,Σ]fd . This latter argument also works for part b) of the proposition, bear-
ing in mind that, since R is left artinian in this case, every finitely generated left R-module
M has λ(M) =∞.

Some important but straightforward consequences follow.

Corollary 2.10 Let R =
⊕

σ∈Σ Rσ be an admissible grading on R.

a) If Σ is Möbius then, for every M ∈ (R,Σ)lfd -gr, there is a column vector gM ∈
(ε1Z[[Σ]])m1⊕· · ·⊕(εnZ[[Σ]])mn such that CR·gM = f M. When, moreover, isopd(M) <
∞ and λ(M) =∞, gM can be chosen from (ε1ZΣ)m1 ⊕ · · · ⊕ (εnZΣ)mn .

b) If the grading is finite, then, for every M ∈ (R,Σ)fd -gr with isopd(M) <∞, there is a gM

in (ε1ZΣ)m1 ⊕ · · · ⊕ (εnZΣ)mn such that CR · gM = f M.

Corollary 2.11 Suppose that the admissible grading on R is basic.

a) If Σ is Möbius then, for every M ∈ (R,Σ)lfd -gr, there is a χM ∈ Z[[Σ]] such that ∆R ·
χM = ∆M. When, moreover, isopd(M) < ∞ and λ(M) = ∞, χM can be chosen from
ZΣ.

b) If the grading is finite, then, for every M ∈ (R,Σ)fd -gr with isopd(M) < ∞, there is a
χM ∈ ZΣ such that∆R · χM = ∆M.
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Corollary 2.12 Let R =
⊕

σ∈Σ Rσ be an admissible grading.

a) If Σ is Möbius, there is a block matrix D = (Di j) ∈ Mn(Z[[Σ]]), with Di j ∈
Mmi×m j (εiZ[[Σ]]ε j ) for each pair (i, j), such that CR · D = ε1Im1 ⊕ · · · ⊕ εnImn (di-
agonal sum). If, moreover, sup{isopd(S) | S ∈ SI} < ∞ and λ(R/I) = ∞, then D can
be chosen so that Di j ∈ Mmi×m j (εiZΣε j).

b) If the grading is finite and gl . dim .(R) < ∞, then there is a D as above, with Di j ∈
Mmi×m j (εiZΣε j) for all i, j, such that CR · D = ε1Im1 ⊕ · · · ⊕ εnImn .

c) When the grading is basic, there is a χR/I ∈ Z[[Σ]] such that∆R · χR/I = 1. If, moreover,
sup{isopd(S) | S ∈ SI} < ∞ and λ(R/I) = ∞, then χR/I can be chosen in ZΣ, this
latter fact is also true when the grading is finite, for any Σ.

Proof a) By Corollary 2.10, for each i = 1, . . . , n and j = 1, . . . ,mi , there is a column
vector gSi j ∈ (ε1Z[[Σ]])m1 ⊕ · · · ⊕ (εnZ[[Σ]])mn such that CR · gSi j = f Si j . If we now
consider the matrix D with entries in Z[[Σ]] whose columns are

gS11 , . . . , gS1m1 , . . . , gSn1 , . . . , gSnmn ,

we see that CR · D = ε1Im1 ⊕ · · · ⊕ εnImn as desired. Since gSi j has entries in ZΣ when
isopd(Si j ) < ∞ and λ(Si j ) = ∞, the last statement of a) follows from the corresponding
statement in Corollary 2.10.

Statement b) is clear and, for c), we only have to apply Corollary 2.11 (b) with M = R/I
and realize that, when the grading is basic,∆R/I = ε1 + · · · + εn = 1.

Observation 2.13.1 If, under the assumptions of Corollary 2.12, Σ is a monoid and m is
the number of elements in SI , assertion a) says that the Cartan matrix CR always has a right
inverse D in Mm×m(Z[[Σ]]), with entries in ZΣ whenever sup{isopd(S) | S ∈ SI} < ∞
and λ(R/I) =∞. When the grading is finite, the latter fact is true for arbitrary Σ; see [19,
Theorem 1.7], where the fact was used to confirm the Cartan determinant conjecture for
finite dimensional algebras in some new cases.

Observation 2.13.2 The proof of Proposition 2.9 yields a special element

gM ∈ (ε1Z[[Σ]])m1 ⊕ · · · ⊕ (εnZ[[Σ]])mn

such that CR · gM = f M , namely, gM = (g11, . . . , g1m1 , . . . , gn1, . . . , gnmn )T , where gi j =∑
σ∈εiΣ

(∑
k≥0(−1)kc jkσ

)
σ, and c jkσ is the number of times that Pi j[σ] appears as a di-

rect summand of the k-th term Qk of the minimal isoprojective resolution of M. Since
TorR

k (R/I,M) is isomorphic to Qk/IQk there is a canonical Σ-grading on each Tor group.
It is not hard to see that

gi j =
∑
σ∈εiΣ

(∑
k≥0

(−1)kcR1

(
TorR

k (R/I,M) j
σ

))
σ,

where TorR
k (R/I,M) j

σ is the trace of Si j[σ] in TorR
k (R/I,M). In particular, when the grad-

ing is basic, the index j may be omitted above and the element χM ∈ Z[[Σ]] such that
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∆R · χM = ∆M is

χM =
∑

1≤i≤n

gi =
∑
σ∈Σ

(∑
k≥0

(−1)kcR1

(
TorR

k (R/I,M)σ
))
σ.

We call χM the (graded) Euler characteristic of M. Govorov uses the name “multiplicity
series” for χM and [12, Theorem 3] proves the equality∆R ·χM = ∆M for classically graded
algebras, i.e., positively graded algebras, R =

⊕
n≥0 Rn, over a field K such that R0 = K and

R1 is a finite-dimensional K-vector space that generates R as a K-algebra. Equations like
∆R · χM = ∆M appear in many contexts. See, for example [2, p. 654] or [4, equation (2)]
and Section 4, below.

Example As a simple illustration, take R to be the path algebra KΓ of the quiver Γ : 1
α

�
β

2.

There are several possible gradings. Here we take Σ = P(Γ). Put Ω11 = ε1 +
∑

k(βα)k,
Ω22 = ε2 +

∑
k(αβ)k. Then∆R = Ω11 + Ω22α + Ω11β + Ω22 and χR/I = ε1 + ε2 − α− β.

The equation∆R · χR/I = ε1 + ε2 = 1 is readily verified.

Observation 2.13.3 If R = AΓ/H, with Γ finite, the associated semigroup is Möbius and
H has a finite Gröbner basis for some ordering of the paths in Γ, then a suitable adaptation
of the arguments in [10] proves that R is a not necessarily Noetherian Σ-graded ring for
which λ(R/I) =∞.

3 Applications to Monomial Algebras

The term “monomial A-algebra” will be as in Examples 1.4(3). We consider the canon-
ical P(Γ)-grading on it, except as noted. This grading is basic. As seen in (1.4 (3)), the
associated semigroup ring is ZΓ, while the associated incidence ring is the usual incidence
ring Z[[Γ]] of a quiver (see, e.g., [16]). Notice also that, by [8, Theorem 1.1],∆R is always
invertible in Z[[Γ]], implying, in particular, that the Cartan endomorphism of K∗0 [R,Σ]lfd

is bijective. By Corollary 2.12(c),∆−1
R = χR/I . If A = Mn×n(D), where D is a division ring,

then R = AΓ/H = Mn×n(DΓ/H) and so we may assume in our proofs that A is a division
ring. Clearly,∆R does not depend on the ground (division) ring A and, hence, neither does
∆−1

R = χR/I . To emphasize this, we shall use ∆−1
R instead of χR/I in the statements, but,

whenever necessary, will use the properties of χR/I .
Let the simple S ∈ SI be with o(S) = εi . Then, by Corollary 2.10(a), χS = ∆−1

R ·εi . For a
path p ∈ supp(∆−1

R · εi), we shall denote by ξ(p) the number of right divisors q of p, with
length ≥ 1 in P(Γ), such that q ∈ supp(∆−1

R · εi). Moreover, an element f ∈ Z[[Γ]] will
be said to be of bounded support in case there is a k ≥ 0, such that l(p) ≤ k, for every path
p ∈ supp( f ).

Theorem 3.1 (cf. [5, Proposition 1.4]) Let R = AΓ/H be a monomial A-algebra, where
A is a simple artinian ring. Suppose that S is a simple left R-module such that IS = 0 and
o(S) = εi . Then pd(S) = sup{ξ(p) | p ∈ supp(∆−1

R · εi), l(p) ≥ 1} and it is independent
of the ring A. If there is an upper bound on the lengths of paths in a generating set of H, the
following assertions are equivalent:
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a) pd(S) <∞.
b) ∆−1

R · εi has bounded support.

When, moreover, R is finitely presented, the above conditions are also equivalent to:

c) ∆−1
R · εi ∈ ZΓ.

Proof We again assume that A is a division ring. The second member of the proposed
equality is independent of A, so that we just have to prove that equality. On the other hand,
the last part of Observation 2.13.1 tells us that pd(S) = isopd(S). The method of Anick
and Green [3] applies in our setting and, as in [3, Lemma 2.8], one finds a graded projective
resolution · · ·Qk → Qk−1 → · · · → Q0 → S → 0, with Qk =

⊕
p∈Γi

k
Po(p)[p] for every

k ≥ 0, where Γi
k denotes the set of k-chains with terminus i. As in [3, Lemma 2.8], the

monomial condition of R implies that the resolution is minimal. Since the Γi
k, k ≥ 0, are

disjoint we cannot have a P j[p] ( j = o(p)) appearing as direct summand in Qk and Ql,
with k 6= l. It follows that p ∈ supp(χS) = supp(∆−1

R · εi) if and only if P j[p] appears
as direct summand of a (unique) Qk if and only if p ∈ Γi

k, for a (unique) k = 0, 1, . . . .
But, for k ≥ 2, p ∈ Γi

k if and only if p = pk pk−1 · · · p1, where the p(r) = pr pr−1 · · · p1,
r = 1, . . . , k, are the right divisors of p which appear in supp(χS) = supp(∆−1

R · εi). The
equality pd(S) = sup{ξ(p) | p ∈ supp(∆−1

R · εi), l(p) ≥ 1} now follows.
For the second part, using the equality even without our extra assumption on H, we have

b)⇒ a). Now t = sup{l(q) | q ∈ Γ2} is finite when the extra hypothesis is assumed. Since
every k-chain is an overlapping of k−1 of the 2-chains; the length of a path in supp(∆−1

R ·εi)
is≤ t · pd(S), and so b) holds.

Finally, when R is finitely presented, the equivalence b)⇔ c) is obvious, because, when
Γ is finite, an element f ∈ Z[[Γ]] has bounded support if and only if f ∈ ZΓ.

In this context, the global dimension is independent of A. This is known in the finite
dimensional case (see [14]). The more general version may be derived from the recent
results in [6], but this fact also falls out from the method of Theorem 3.1.

Lemma 3.2 Let R = AΓ/H be a monomial algebra, where A is a simple artinian ring. Then
sup{isopd(S) | S ∈ SI} = gr-gl . dim .(R) = gl . dim .(R).

Proof Let us denote by a, b and c the three members of the equalities. We always have
a ≤ b and, since isopd(M) = pd(M) for every graded module M (see Observation 2.13.1),
also b ≤ c. Finally, by [18, Corollary, p. 424], we know that c = pd(R/I) = sup{pd(S) |
S ∈ SI} = a.

Corollary 3.3 Let R = AΓ/H be a monomial A-algebra, where A is a simple artinian ring.
Then gl . dim .(R) = sup{ξ(p) | p ∈ supp(∆−1

R ), l(p) ≥ 1} and it is independent of A.
If there is an upper bound on the lengths of paths in a generating set of H, the following

assertions are equivalent:
a)gl . dim .(R) <∞.
b)∆−1

R has bounded support.
When, moreover, R is finitely presented, the above conditions are also equivalent to:
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c) ∆−1
R ∈ ZΓ.

Example Consider the free monoid Σ on the countable set X = {x1, . . . , xn, . . . }, so
that Z[[Σ]] is the free incidence ring on X. If ∆ ∈ Z[[Σ]] is the sum of all words not
containing a subword of the form xixi+1, unless i ∈ 3N = {3, 6, 9, . . .}, one readily sees
that∆−

∑
i≥1 xi∆ +

∑
i≥1,i 6∈3N xixi+1∆−

∑
i∈3N+1 xixi+1xi+2∆ = 1. Now if, for a simple

artinian ring A, R = R(3) = A〈X〉/I(3), where I(3) is the ideal of A〈X〉 generated by the
monomials {xixi+1 : i 6∈ 3N}, then its Hilbert Σ-series is∆R = ∆. Consequently,

∆−1
R = 1−

∑
i≥1

xi +
∑

i≥1,i 6∈3N

xixi+1 −
∑

i∈3N+1

xixi+1xi+2.

The above corollary states that gl . dim(R) = 3. This can be also checked by using the (min-
imal) Anick resolution of A = R/I. An analogous argument shows that gl . dim .

(
R(n)
)
=

n, for every n ≥ 2.
In a classically graded K-algebra R =

⊕
n≥0 Rn, K a field, the Hilbert series takes the

form∆R =
∑

n≥0 dimK (Rn)Tn ∈ Z[[T]]. In [12, Corollary 1] the author claims that when

∆−1
R = χK is a polynomial then gl . dim .(R) <∞. This seems not to be the case, even for

a finitely presented monomial algebra.

Proposition 3.4 There is a finitely presented monomial algebra R so that ∆−1
R = χK is a

polynomial while gl . dim .(R) =∞.

Proof Consider the monomial K-algebra R = K〈X,Y 〉/H, where H is the two-sided ideal
of K〈X,Y 〉 generated by {XY 2,X2}, that we view as a classically graded algebra using total
degree. A K-basis of R is given by {1, x, xy, xyx, xyxy, . . . , y, y2, y3, . . . , yx, y2x, y3x, . . . ,
yxy, y2xy, y3xy, . . . , yxyx, y2xyx, y3xyx, . . . }. The associated semigroup, Σ, is the free
monoid on x and y and ∆R ∈ Z[[Σ]]. Putting Ω = 1 + x + xy + xyx + xyxy + · · · and
Φ = y + y2 + y3 + · · · , ∆R = (1 + Φ)Ω. The corresponding classical Hilbert series is
1/(1− T)2. However, the left ideal Rx appears as direct summand of every syzygy of K, so
that gl . dim .(R) =∞.

4 On the Rationality of the Hilbert Σ-Series

In this section, A is a division ring, Γ a finite quiver and Σ is a Möbius semigroup with
distinguished family of idempotents {ε1, . . . , εn} (n = |Γ0|), that grades AΓ in such a way
that the vertices and the arrows of Γ are homogeneous and the εi are the degrees of the
vertices. In that case, we have a canonical semigroup homomorphism P(Γ) → Σ, p 7→
deg(p) and we shall put p̃ = deg(p), for each path p. Finally, we will assume that H is a
two-sided ideal of AΓ generated by a finite number ofΣ-homogeneous linear combinations
of paths of length≥ 2, so that R = AΓ/H inherits a canonical admissible Σ-grading.

Definition 4.1 An element h ∈ (Z[[Σ]])[[T]] (resp. Z[[Σ]]) will be called rational if
there exist f , g ∈ ZΣ[T] (resp. ZΣ) such that h · g = f .
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The equality ∆R · χR/I = 1 shows that the rationality of χR/I implies that of ∆R. The
latter will be established in some particular situations.

According to Anick and Green [3], there is a projective resolution (not necessarily min-
imal), which is also a Σ-graded resolution, of R/I given by sets of paths Γ0,Γ1, . . . , where
there is an explicit construction (based on a fixed well-ordering of the paths in Γ) using Γ2,
which, in turn, is built from a finite generating set of H by Gröbner methods. Then the
resolution

· · · → Pm → · · · → P1 → R→ R/I → 0

has Pm =
⊕

p∈Γm
Reo(p) or Pm =

⊕
p∈Γm

Reo(p)[p̃], in Σ-graded form.
The gradablilty of the resolution must first be established.

Proposition 4.2 Let R = AΓ/H be a Σ-graded algebra as described above. Then the Anick-
Green resolution of R/I gives rise to a Σ-graded graded projective resolution.

Proof The approach of Farkas in [9] is useful here once the necessary modifications are
in place to pass from quotients of free algebras to quotients of path algebras (as remarked
in [13, p. 319]). (The notation used here is a hybrid of those of [3] and [9]. The two
indexings differ by 1; that of [3] is used.) The maps, δn, in the resolution are first defined
in terms of modules over the path algebra and then it is shown that they are compatible
with the ideal H. The maps are presented using two operations. The first is defined on a set
of paths, including those of Γn, which factor p = π1c1π2c2 · · · , where the ci are paths and
the πi ∈ Γ2. Then S(p) is obtained by replacing the paths πi by the corresponding relation
in the reduced Gröbner generating set being used (πi is the “tip” or leading term in the
relation). Since these relations are Σ-homogeneous, this operation is degree preserving.

The next maps to be considered are called Dα : I[n] → AΓ, α ∈ Γn, where I[n] is a left
ideal generated by a set of paths which includes Γn. These are not degree preserving since,
in particular, Dα

(
S(α)
)
= 1 (while Dα

(
S(β)
)
= 0 for α 6= β ∈ Γn).

We can now look at the maps making up the resolution, δn : Pn → Pn−1, as described
in [9]. For an indecomposable component Pn, say Ruα ∼= Rei[α̃], coming from α ∈ Γn,
δn(uα)(β) = Dβ

(
S(α)
)

uβ , for β ∈ Γn−1 and uβ in degree β̃. The result, if non-zero, will
be a linear combination of paths q so that qβ is of the same degree as α. Now, this image
will be in a graded projective in degree β̃ and, hence, the β-component of δn(uα) will be in

degree q̃β = α̃.

Definition 4.3 Let R = AΓ/H as described above, let Γ0 (the vertices), Γ1 (the arrows),
Γ2, . . . the sets of chains (with respect to a fixed suitable ordering of the paths in Γ). Then
G(Σ,T) =

∑
k≥0(
∑

p∈Γk
p̃)Tk will be called the Anick-Poincaré-BettiΣ-series of R. Let | ∗ |

denote A-dimension. The Poincaré-Betti Σ-series of R (cf. [4]) is P ∈ (Z[[Σ]])[[T]] given
by

P = P(Σ,T) =
∑
k≥0

(∑
σ∈Σ

|TorR
k (R/I,R/I)σ|σ

)
Tk.

By the proof of Proposition 2.9 for M = R/I, we know that G(Σ,−1) and P(Σ,−1) =
χR/I are (right) inverses of ∆R. Uniqueness of that inverse (cf. [8, Theorem 1.1]) im-
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plies G(Σ,−1) = P(Σ,−1) = χR/I . Moreover, when the Anick resolution is minimal,
G(Σ,T) = P(Σ,T). We study the rationality of∆R by looking at that of G(Σ,T).

We want an algorithmic way of getting G(Σ,T). We require that, for a suitable well-
ordering of the paths inΓ, the set of obstructionsΓ2 is finite, i.e., that H has a finite Gröbner
basis with respect to the well-ordering. This is assumed from now on in this section. One
property of the construction of the sets Γm is essential here. Namely, that the elements of
Γm+1 are built from those of Γm by a process which can be expressed as being independent
of m (for m ≥ 2).

We use the notation of [3] but written using left modules. If we can write a path p =
p2 p1, where both p1 and p2 have at least one arrow, p2 is called a proper left factor of p
(similarly for right factors). The method below recalls the construction of the syzygy quiver
of Cibils [7] and the reasoning in [4, Theorem 1]. The set of all paths is denoted B and M
is the set of paths which have no subpaths in Γ2. The elements of Γm, m > 2 have unique
factorizations γ = γ2γ1, where γ1 ∈ Γm−1 and γ2 ∈ M. Moreover, γ1 = β2β1, where
β1 ∈ Γm−2, β2 ∈ M and γ2β2 6∈ M. The uniqueness in the construction [3, Definition 2.1
and Lemma 2.3] says that γ2β2 has a left factor (necessarily unique) in Γ2. Hence, γ2 must
be a proper left factor of an element of Γ2.

The elements of Γ2 are listed in some fixed order, Γ2 = {γ1, . . . , γr}. For each γi we list
its proper left factors µi,1, . . . , µi,li , again with the order arbitrary but fixed. Notice that the
same path can appear with two different pairs of indices.

If p ∈ Γk, k ≥ 3, we have factorizations p = β2β1, β1 ∈ Γk−1 and β2 ∈ M, as well
as p = γiq, for some i = 1, . . . , r. Hence, β2 = µi, j for some j. When can we form
p ′ ∈ Γk+1 where p ′ = µi ′, j ′ p with left factor γi ′? Three conditions together are necessary
and sufficient:

(i) the product µi ′, j ′µi, j 6= 0;
(ii) µi ′, j ′µi, j has left factor γi ′ ; and
(iii) the following does not happen: µi ′, j ′ has a proper right factor ν so that νγi has a left

factor in Γ2.

This can be encapsulated in the following coefficients: a(i ′, j ′; i, j) = 1 if the three condi-
tions are satisfied, and a(i ′, j ′; i, j) = 0 otherwise.

These coefficients allow one to predict the indecomposable direct summands of the
(graded) projective module Pm+1 knowing the summands of Pm. (The maps between
them are much more complicated, see [3] and [9].) We now view the Anick-Poincaré-
Betti series as a generating function G = G(Σ,T) =

∑
k≥0 gkTk, where, for k ≥ 0,

gk =
∑

p∈Γk
p̃ ∈ ZΣ. The initial conditions are: g0 = ṽ1 + · · · + ṽn, g1 =

∑
α∈Γ1

α̃

and g2 =
∑

p∈Γ2
p̃. We further introduce auxiliary generating functions Gi, j , i = 1, . . . , r

and j = 1, . . . , li . To simplify notation, let Γk(i, j), k ≥ 3, be the set of elements β ∈ Γk

which factor β = γiβ
′ = µi, jβ

′ ′, β ′ ′ ∈ Γk−1. Then, Gi, j =
∑

k≥3

∑
p∈Γk(i, j) p̃Tk. Denote

the coefficient of Tk by g(i, j)k. Then G =
∑

i, j Gi, j + g2T2 + g1T + g0.

The coefficients a(i, j; i ′, j ′) connect the auxiliary generating functions by

g(i, j)k+1 =
∑
i ′, j ′

a(i, j; i ′ j ′)µ̃i, j g(i ′, j ′)k for k ≥ 3.
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This can be expressed in matrix form where A =
(

a(i, j; i ′, j ′)µ̃i, j

)t
∈ Ms(ZΣ), and s is

the number of pairs i, j:




G1,1
...

Gr,lr


 = A




G1,1
...

Gr,lr


T +




g(1, 1)3
...

g(r, lr)3


T3.

Let Is be the s × s identity matrix; then the existence of a “nice” formula for G depends
on being able to solve B(Is − AT) = Is in some reasonable fashion. When that occurs, we
get




G1,1
...

Gr,lr


 = B




g(1, 1)3
...

g(r, lr)3


T3.

Although the rationality question makes sense in the above general setting, we only
tackle it in the case when Γ only has one vertex, i.e., in the case when AΓ = A〈X1, . . . ,Xm〉.
By our initial assumptions, Σ is a monoid in this case. We shall refer to this case simply by
saying that R is a factor of a free algebra. In order to give our main result in this section, we
recall that a commutative monoid Σ is torsionfree in case xn 6= yn, whenever x 6= y and
n > 0.

Theorem 4.4 Let R = A〈X1, . . . ,Xm〉/H be a factor of a free algebra and letΣ be a torsion-
free cancellative commutative monoid which grades R in the way described at the beginning
of this section. If H has a finite Gröbner basis (for a suitable well-ordering of the monomials
in A〈X1, . . . ,Xm〉), then the corresponding Anick-Poincaré-Betti Σ-series of R is rational. In
such a situation, in particular:

a) The Hilbert Σ-series and the Σ-graded Euler characteristic of R are rational.
b) When the Anick resolution is minimal, the Poincaré-Betti Σ-series of R is rational.

Proof By [11, Theorem 8.1], ZΣ is a commutative integral domain in this case, so that
ZΣ[T] has a field of quotients, namely Q(Σ)(T), where Q(Σ) is the field of quotients of ZΣ.
Now, our previous considerations reduce the proof to checking that the matrix Is − AT ∈
Ms×s(ZΣ[T]) is invertible in Ms×s

(
Q(Σ)(T)

)
. But that is clear, for, by construction of A,

det(Is − AT) is a polynomial in T (with coefficients in ZΣ) whose constant term is 1.

Remark 4.5 The Anick-Green resolution is minimal for monomial algebras [3, Corol-
lary 2.9]. In particular, the above theorem implies [4, Theorem 1]. The Anick-Green reso-
lution is also minimal when Γ2 consists of paths of length 2 (cf. [13, Theorem 3] or, more
generally, the situation described in [19, Remark 2.4]). In general, if one can guarantee
that whenever p ∈ Γm, q ∈ Γm ′ , with p̃ = q̃, necessarily m = m ′, then the resolution is
automatically minimal. When dimA(AΓ/H) < ∞ or H is generated by a finite number of
paths, H has a finite Gröbner basis [10, Theorem 15].
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Example Consider the algebra R = K〈X,Y,Z〉/( f1, f2), for a field K with f1 = XY X −
XZX and f2 = X2Y − X2Z. Let Σ be the free commutative monoid on the variables x, s.
Then R has an admissible Σ-grading, by putting deg(X) = x and deg(Y ) = deg(Z) = s.

We take the order X > Y > Z. The only “overlap” between f1 and f2 is X f1 − f2X = 0.
Neither element reduces over the other. This means that { f1, f2} is a Gröbner generating
set for the ideal it generates. (See [10] for the methods.) Then Γ2 = {XY X,X2Y} and
in general Γn consists of words with x-degree n. It follows that the Anick resolution is
minimal. The three variable Poincaré-Betti series of R, P(x, s,T), is thus rational, as is the
classical Poincaré-Betti series.

5 A Remark on the “Strong No Loops Conjecture”

In this section A is a division ring and Γ a finite quiver, and we look at factors of path al-
gebras R = AΓ/H that are finite-dimensional as A-vector spaces. As remarked by Igusa in
[15], not much is known about the “strong no loops conjecture”: if RS is a simple module
and pd(S) < ∞ then Ext1

R(S, S) = 0 (equivalently, there are no loops at the vertex cor-
responding to S in the quiver). In this section the grading introduced in Example 1.43)
will be used to confirm the conjecture in some special cases. The following generalizes [15,
Corollary 6.2].

Proposition 5.1 Let R = AΓ/〈ρ〉 be a finite dimensional. Suppose there is a non-empty

subset L of the set of loops at v1 so that if some α ∈ L appears in a relation
∑l

i=1 ki pi ∈ ρ,
0 6= ki ∈ K, pi = e1 pie1 a path of length ≥ 2, which has more than one term, then either
each pi is a composition of loops from L or each pi contains an arrow which is not in L. Then
pd S1 =∞.

Proof Let Σab be the abelianized version ofΣ = Σ(Γ, ρ). Any path which is not a compo-
sition of loops becomes 0 in Σab , because of the orthogonal idempotents. If, now, each εi ,
i > 1, and each loop at ν1 not from L are also sent to 0, we get a commutative monoid, de-
noted Σ1

ab , where only ε1 and abelianized compositions of loops from L remain non-zero.
Let θ be the composition Σ → Σab → Σ1

ab , as well as the induced ring homomorphism
ZΣ→ ZΣab → ZΣ1

ab . Note that θ(ε1) may be denoted by 1.
If pd S1 <∞ then we know, by Corollary 2.3, that∆R ·χS1 = ε1. Apply θ to this equality

to get θ(∆R)θ(χS1 ) = 1 ∈ ZΣ1
ab . If now X denotes a maximal A-linearly independent set

of compositions of loops from L, modulo 〈ρ〉, then our assumption implies that θ(∆R) =
1 +
∑

p∈X θ(p). Note that |X| = m ≥ 1. Now apply the augmentation map α : ZΣ1
ab → Z

(which sends each image of a path to 1) to get (1 + m) · αθ(χS1 ) = 1, which is not possible
in Z.
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