The pupils should be asked to state in words, in various ways, what they have proved.

Peter Comrie.

Similar Figures.-(1) Let A, B, C represent Aberdeen, Glasgow, Edinburgh respectively on a map of Scotland. Let D, E, F represent the same places in order on a map of Scotland on a different scale. The straight line $A B$ represents the road from Aberdeen to Glasgow, the straight line AC represents the road from Aberdeen to Edinburgh. The angle A represents the angle between these roads. The angle D represents the same angle. Hence $\widehat{\mathbf{A}}=\widehat{\mathrm{D}}$. Similarly $\widehat{\mathbf{B}}=\widehat{\mathrm{E}} ; \widehat{\mathrm{C}}=\widehat{\mathrm{F}}$. The $\triangle s \mathrm{ABC}, \mathrm{DEF}$ are equiangular. Now suppose the scale of the first map is, say, $7^{\prime \prime}$ to 1 mile, and the scale of the second, $3^{\prime \prime}$ to 1 mile.

Then

$$
\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{7}{3} ; \frac{\mathrm{BC}}{\mathrm{EF}}=\frac{7}{3} ; \frac{\mathrm{CA}}{\mathrm{FD}}=\frac{7}{3} ; \text { or, } \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}} .
$$

Hence: If two triangles are equiangular, the ratio of corresponding sides is the same for all; and conversely.
(2) $\frac{\triangle \mathrm{ABC}}{\triangle \mathrm{DEF}}=\frac{\text { area of first map of Scotland }}{\text { area of second map of Scotland }}$,

$$
\text { or }=\frac{\text { area of the first map of any county }}{\text { area of the second map of the same county }}
$$

$$
\mathrm{or}=\frac{a n y \text { area on first map }}{\text { corresponding area on second map }}
$$

Now describe on AB, DE the similarly situated squares ABPQ , DEXY. P and X represent the same place; Q and Y represent the same place: $A B P Q, D E X Y$ are corresponding areas. Hence

$$
\frac{\triangle \mathrm{ABC}}{\triangle \mathrm{DEF}}=\frac{\mathrm{ABPQ}}{\mathrm{DEXY}}=\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}=\frac{\mathrm{CA}^{2}}{\mathrm{FD}^{2}}
$$

The ratio of the areas of similar triangles is the square of the ratio of corresponding sides of the triangles.
(3) Let ABCDE, PQRST be corresponding polygonal "counties" on the two maps. Then

$$
\frac{\triangle \mathrm{ABC}}{\triangle \mathrm{PQR}}=\frac{\triangle \mathrm{ACD}}{\triangle \mathrm{PRS}}=\frac{\triangle \mathrm{ADE}}{\triangle \mathrm{PST}}=\frac{\triangle \mathrm{ABCDE}}{\triangle \mathrm{PQRST}}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}} .
$$

Or, similar polygons may be divided into the same number of similar triangles, which bear to one another the same ratio as the polygons, and this ratio is the square of the ratio of corresponding sides.
(4) Let $\triangle \mathrm{ABC}$ have A a right angle; draw AD the perpendicular from A to $B C$. Then $\triangle s A B C, A B D, A C D$, being equiangular, may be regarded as three maps of the same three places in a country, on different scales. And $\triangle A B C=\triangle A B D+\triangle A C D$. Therefore any area of the map represented by $A B C=$ sum of corresponding areas of the maps represented by $A B D, A C D$.

$$
\therefore \quad \mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2} .
$$

The above are meant as illustrations of the corresponding propositions in geometry, or as the "proofs" necessary for a working knowledge of the propositions, in a preliminary course of geometry which includes similar figures.

P. Pinkerton.

Internal and External Bisectors, and an Example of Continuity.-I. To draw quickly a good figure of $\mathrm{A}, \mathrm{B}, \mathrm{C}$, $\mathrm{I}, \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$, etc. Draw a circle, and a chord BC. Mark L the middle point of the arc below BC by the "engineer's method," viz., with B as centre and a radius as near BL as can be judged by the eye, make a mark on the are, with C as centre and the same radius make another mark on the are, judge by the eye the middle point of the are between these marks; this is L. With centre L, radius LB or LC, describe a circle: I and I_{1} lie on this circle. Mark M the middle point of the arc above BC . With centre M , radius MB or MC, describe a circle : I_{2} and I_{3} lie on this circle. Now I and I_{1} lie on $\mathrm{AL} ; \mathrm{I}_{2}$ and I_{3} on AM. Mark A on the first circle, so that MA lies conveniently on the paper. The various collinearities and perpendicularities justify the figure to the eye; the properties of the mid-points of I_{1}, etc., $\mathrm{I}_{2} \mathrm{I}_{3}$, etc., and the loci of $\mathrm{I}, \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ as A varies, are emphasised.

