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Abstract

With the proliferation of gridded data products, modeling the relationship between a scalar response and a functional
covariate over the points on a regular lattice is becoming increasingly important. In this work, our overall aim is to
better understand the relationship between high quantiles of surface-level ozone and the vertical temperature profile
(VTP), a functional covariate, over the US Southwest in the summer. We develop our penalized functional quantile
regression based approach within the framework provided by functional data analysis. As we assume that coefficient
functions at points on the lattice exhibit spatial similarity, we obtain improved estimates by penalizing dissimilarity
between nearby coefficient function estimates. In order to better account for the high degree of diversity of this region,
we more strongly weight differences between coefficient function estimates at cells that exhibit a higher degree of
geographical and climatological similarity. Our analysis suggests that the VTP is associated with acute surface-level
ozone events during the summertime over this region, and the nature of this relationship differs spatially.

Impact Statement

Acute surface-level ozone events have a multitude of negative health consequences. Meteorology plays a major
role in the development and intensification of these events; therefore, better understanding the complex interplay
between meteorology and surface-level ozone is paramount. For this purpose, in this work, we develop a
methodology to model the relationship between vertical temperature profiles and high quantiles of surface-level
ozone.We find that acute surface-level ozone events are associated with air temperature inversions over much of
the US Southwest in the summer; however, hot weather conditions look to be the primary driver over the Sierra
Nevada Mountains and in far Northern California.

1. Introduction

Surface-level ozone (O3) has negative health consequences that may be further magnified when it reaches
its highest levels. The elderly and those with complicating health conditions, such as asthma, may be even
more vulnerable to the impacts of surface-level O3. O3 is formed via a chemical reaction betweenNOx and
volatile organic compounds (VOCs) in the presence of sunlight. Therefore, emissions play a role in
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characterizing O3 levels on the surface. However, it is not uncommon for 2 days with identical NOx and
VOCs emissions to have drastically different surface-level O3 amounts. It is well established that local and
regional meteorological conditions account for a large portion of this discrepancy (Jacob and Winner,
2009; Tai et al., 2010; Liu andCui, 2014; Porter et al., 2015). Broadly speaking, these works conclude that
meteorological variables such as surface-level air temperature, circulation, and stagnation are related to
surface-level air pollution; however, there are often several approaches for characterizing these meteoro-
logical conditions.

One way to capture these types of meteorological conditions is by considering atmospheric profile
variables (APVs). An APVis considered to be a function mapping the altitude above a location on Earth’s
surface to a scalar measurement. The vertical temperature profile (VTP), which reports the temperature of
the air at increasing altitude is an important APV in climate sciences. Modeling surface-level air pollution
as a function of APVs has been considered previously (Du et al., 2013; Rendón et al., 2014 Wolf et al.,
2014; Russell et al., 2017; Russell and Porter, 2021), but has received much less attention in the literature
in comparison to approaches that consider surface-level (scalar) covariates exclusively. In this work, we
investigate the association between the VTP and high levels of surface-level O3 through the use of
methods developed within the framework of functional data analysis (FDA). In FDA, some or all
observations are taken to be functions, as opposed to scalars and/or vectors. To this end, in this work,
we consider the VTP to be a functional covariate.

Modeling a scalar response variable as a function of a functional covariate is often done via the use of
the functional linear model Horváth and Kokoszka (2012). As in a standard linear regression model, a
functional linear model (with a scalar response) estimates the conditional mean response given the
functional covariate. If one is interested in higher quantiles of the response distribution, a functional
quantile regression model may be of use. Along these lines, Russell and Dyer (2017) suggest a penalized
functional quantile regression model to investigate the impact of APVs on surface-level air pollution at
locations in South Carolina and Florida. These authors conclude that surface-level air pollution is related
to APVs at different pressure levels, and that these associations differ by location and season. As acute
levels of surface-level O3 may have a disproportionately higher impact on human health outcomes, we
focus on modeling higher conditional quantiles of the O3 response in this work.

The last 10 or 15 years have seen the proliferation of gridded data products, which offer climate and air
pollution data over large spatial domains with excellent temporal coverage and no missing values. By its
nature, the grid utilized in a gridded data product could be thought of as a regular spatial lattice. Others
have considered approaches for analysis of data in these contexts (Huang et al., 2010; Zhu et al., 2010;
Zheng and Zhu, 2012; Reyes et al., 2015), although our research objectives andmethods differ from these
works. We emphasize that our primary goal is to better understand the relationship between the VTP and
high surface-level O3 in the summer in the US Southwest based on output from a gridded data product.
That is, our objective is tomodel the relationship between a functional covariate and conditional quantiles
of a scalar response at points on a regular lattice.

A simple analysis approach would be to fit independent functional linear regression models at each
point on the lattice. Unfortunately, such an approach would likely be difficult to interpret due to the
presence of excess noise. For our data, we believe that it is reasonable to assume that the functional
regression relationships at adjacent points on the lattice are similar. For this reason, we consider an
approach that institutes a penalty for the dissimilarity between estimated coefficient functions at adjacent
locations on the lattice. This approach helps us with our objective of better understanding the relationship
between VTP and key quantiles of surface-level O3 at all points on the lattice.

2. Pointwise Functional Quantile Regression Modeling

For the random process Y , Xf g with iid copies Yt, X tf gt∈ℕ, assume the response variable of interest is
Yt∈ℝ, andX t : 0, H½ �!ℝ is a functional covariate. Further, assume that Xtf gt∈ℕ are inL2, the separable
Hilbert space determined by the set ofmeasurable real-valued square-integrable functions on [0,H]. Given
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the value of the functional covariate, we directly model Qτ YtjX tð Þ, the conditional τth quantile of the
scalar response variable for some τ∈ 0, 1ð Þ, via

Qτ YtjX tð Þ ¼ ατ þ
Z H

0
X c

t sð Þβτ sð Þds: (1)

We note that the intercept ατ∈ℝ, and we call X c
t sð Þ ¼ X t sð Þ�E X sð Þð Þ the centered covariate function.

Additionally, the twice differentiable function βτ is called the coefficient function for the τth quantile. In a
typical analysis, estimation and inference regarding βτ in equation (1) is a primary aim, as portions of
0, H½ � over which the coefficient function is positive (negative), imply a positive (negative) relationship
with that conditional quantile of the response. Additionally, we assume that β00τ ∈L2, and that βτ and β

0
τ are

both absolutely continuous.
As this is commonly done in FDA, we assume that βτ can be approximated by a linear combination of

a finite set of known basis functions, ϕkf gk¼1,…,K . This implies βτ sð Þ≈PK
k¼1bkϕk sð Þ ¼ ϕT sð Þbτ . In

reality, functional covariates xif gi¼1,…,n are infinite dimensional and therefore not fully be observed.
Instead, the analyst observes xi hð Þf gi¼1,…,n for h∈ h1, …, hUf g such that 0< h1 <⋯< hU≤H. We
further assume that we are able to identify ai∈ℝM such that xi sð Þ≈PM

m¼1ai,mψm hð Þ¼ψT hð Þai, where
ψmf gm¼1,…,M is another set of known basis functions. Therefore, the conditional quantile in equation

(1) can be expressed via

Qτ YtjX tð Þ ≈ ατ þ
Z H

0
aTt ψ hð Þ� �

ϕT hð Þbτ
� �

dh ¼ ατ þaTt Jbτ : (2)

Here, theM�K dimensional matrix J is constructed such that the entry in themth row and kth column isRH
0 ψm hð Þϕk hð Þdh. We estimate bτ and ατ via

bατ , bbτ� �T
¼ argmin

b∈ℝK ,α∈ℝ

Xn
t¼1

ρτ yt�α�aTt Jb
� �

, (3)

where ρτ is the check-loss function commonly used in quantile regression (Koenker and Bassett Jr., 1978).
The resulting optimum from equation (3) leads to the coefficient function estimator via the relationshipbβτ hð Þ¼ϕT hð Þbbτ .
3. Functional Quantile Regression Modeling on a Grid

Climate scientists often make use of gridded data products, which can be thought of as producing output
over the points on a regular spatial lattice. Assume that D is a spatial domain of interest, and that we
observe data over the set of points on a regular lattice D0⊂ℤ2, such that D0⊂D. Despite the fact that the
primary objective is to describe the association between the functional covariate and a key quantile of the
scalar response everywhere in D, we assume that modeling this relationship ∀ s∈D0 will be useful.
Additionally, we assume that the true coefficient functions at nearby locations are similar, which makes
the approach of borrowing information from nearby cells a potentially promising way to improve
coefficient function estimates.

Assume that at time t∈ 1, …, nf g, we observe realizations of a functional covariate and scalar response
at locations slf gl¼1,…,L such that sl∈D0 ∀ l∈f1,…,Lg, at a sequence of pressure levels
0< h1 <⋯< hU ≤H. We propose a procedure to simultaneously estimate all L coefficient functions
βτ,l
� �

l¼1,…,L, under the assumptions described above. We again assume that the true coefficient function

at sl is well approximated by a finite linear combination of known basis functions, giving

βτ,l hð Þ≈PK
k¼1bl,k,τϕk hð Þ ¼ ϕT hð Þbl,τ . Observations from the functional covariate are denoted by

xl,t hð Þf gl∈ 1, …, Lf g,t∈ 1, …, nf g, and assume further that there exists al,t∈ℝM such that
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xl,t hð Þ≈PM
m¼1al,t,mψm hð Þ ¼ ψT hð Þal,t. We then approximate the conditional τth quantile of the response

at time t and location sl by

Qτ Yl,tjX l,tð Þ ≈ αl,τ þ
Z H

0
aTl,tψ hð Þ� �

ϕT hð Þbl,τ
� �

dh ¼ αl,τ þaTl,tJbl,τ: (4)

One could consider the estimator

~A
T
τ , ~B

T
τ

� �T
¼ argmin

B∈ℝKL,A∈ℝL

Λτ Aτ , Bτð Þ; (5)

for Aτ ¼ α1,τ , …, αL,τð ÞT and Bτ ¼ bT1,τ , …, bTL,τ
� �T

, where

Λτ Aτ , Bτð Þ¼
XL
l¼1

Xn
t¼1

ρτ ytl�αl,τ �aTl,tJbl,τ
� � !

: (6)

The estimator in equation (5) does not incorporate any sort of penalty for dissimilarity between
neighboring estimated coefficient functions. As we believe that nearby coefficient functions exhibit
similarity in our data application, we supplement the loss function in equation (5) by an additional
penalty term.

3.1. Penalizing spatial dissimilarity

Our spatial region of interest is composed of lush forests, arid deserts, coastal regions, and high mountain
terrain. Because of this geographical heterogeneity, some pairs of neighboring cells on the lattice may
exhibit a higher (or lower) degree of spatial similarity in terms of their true underlying coefficient
functions. For this reason, for neighboring locations sl and sl0 (l 6¼ l0), we propose the weighting function

wθ,γ sl, sl0ð Þ ¼ θexp �γδ sl, sl0ð Þð Þ, (7)

where θ> 0 and γ ≥ 0 are unknown parameters and the function δ models geographic and or climato-
logical dissimilarity between two locations. We propose the penalized estimator

bAT

τ , bBT
τ

� �T
¼ argmin

B∈ℝKL,A∈ℝL
Λτ A, Bð ÞþΛspat A, B, θ, γ, τð Þ, (8)

where Λτ is defined in equation (6) and

Λspat A, B, θ, γ, τð Þ¼
X

1≤l<l0≤L

wθ,γ sl, sl0ð Þ
Z H

0
∣ϕT hð Þbl,τ �ϕT hð Þbl0 ,τ∣dh I sl � sl0f g: (9)

We note that equation (9) gives the sum of the spatial dissimilarity penalties over all pairs of adjacent cells
in D0. Here, I �f g denotes the indicator function, and sl � sl0 implies that sl and sl0 are adjacent. The
definition of adjacency is flexible and can be selected in a way that makes sense for a specific data

application. Importantly, the bBτ ¼ bbTs1,τ , …, bbTsL ,τ� �T
that minimizes (8) leads to the coefficient functions

estimates bβτ,ln o
l¼1,…,L

. The absolute loss penalty in equation (9) is used, because the absolute value

function can be expressed in terms of the check-loss function, as seen in equation (10). This makes it
straightforward to implement the penalty by augmenting the quantile regression design matrix.

4. Analysis of Surface-Level Ozone in the US Southwest

The primary research objective in this work is to gain a better level of understanding regarding the effects
of VTP on acute daily surface-level O3 events over the US Southwest. The O3 and VTP data come from
the GEOS-Chemmodel version 12.2.1 (Bey et al., 2001), run for the period of late summer (July/August)
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2016. Importantly, GEOS-Chem obtains meteorological variables from the Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (Gelaro et al., 2017). For illustrative purposes, we plot
surface-level O3 levels (in ppb) for all US Southwest grid cells on July 30, 2016, in the left panel of
Figure 1. On this day, surface-level O3 is fairly high over much of the region. The right panel of Figure 1
plots the VTP for the grid cell containing Riverside, CA on this day. For reference, Riverside, CA is
plotted on themap in the left panel. Typically, the temperature of the air warms at lower altitudes; however,
we see that this is not the case on this day. This plot of the VTP indicates the presence of a temperature
inversion, where cooler air at the surface is trapped under warmer air. The high levels of surface-level O3

in Riverside may be due in part to the presence of this inversion.
In order to more effectively penalize the dissimilarity between adjacent grid cells, we seek to identify a

data product that is able to assess the degree to which two adjacent grid cells are similar from a
geographical and climatological perspective. For this purpose, we use the PRISM data product (Daly
et al., 1997) as it explicitly incorporates information about rainfall and implicitly incorporates information
about geographical features such as elevation. Denote the 30-year average annual precipitation
totals for PRISM cell i i ¼ 1, …, NPrismð Þ via Pr30 ið Þ. We define δ sl, sl0ð Þ ¼ ∣η slð Þ�η sl0ð Þ∣, where
η slð Þ¼PNPrism

i¼1 Pr30 ið ÞI i∈ lf gð Þ=PNPrism
i¼1 I i∈ lf g, and i∈ l is the event that the midpoint of PRISM cell i

is contained in cell l. Essentially, η slð Þ is the average of all PRISM 30-year annual precipitation totals for
all PRISM locations in the grid cell l. The PRISMdata product takes both geographical and climatological
information into account, and therefore we find it useful to leverage it for this purpose.We implement our
analysis procedure using B-spline basis functions to represent both the coefficient function as well as the
functional covariates.We utilize 7 B-spline basis functions of order 4 with equally spaced interior knots to
represent the functional covariates and estimated coefficient functions. The parameters θ and γ are
estimated via a two-dimensional grid search using Bayesian information criterion (BIC) as the model
comparison criterion. In keepingwith our objective ofmodeling acute surface-level O3,we take τ ¼ 0:90.

Figure 2 plots the resulting coefficient function estimates at all locations in the spatial domain for a
sequence of eight equally spaced pressure levels: 825, 850,…, 975, 1,000. Recall that a pressure level of
approximately 1,000 corresponds with the Earth’s surface. At higher pressure levels (above 925 or 950),
warmer temperatures are associatedwith larger highO3 events. Around the pressure level 950,we begin to
see this relationship disappear over large portions of this region. Instead, as we go lower in the
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Figure 1.We plot surface-level O3 (in ppb) at all US Southwest grid cells on July 30, 2016 (left), and the
VTP for the grid cell containing Riverside, CA on this day (right). Riverside, CA is plotted on the map in
the left panel.
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Figure 2. For a sequence of eight pressure levels, we plot the resulting coefficient function estimates for
all cells on our spatial grid.
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atmosphere, larger high O3 events are associated with cooler air over Nevada, Southern Utah, and
Arizona, as well as coastal California. Interestingly, we see the opposite over the high mountains of
California and in the far northern part of the state. This implies that air temperature inversions are
associated with acute surface-level O3 events over the majority of the US Southwest; in contrast, warmer
air at the surface is linked to these types of air pollution events over the Sierra Nevada Mountains and in
Northern California.

5. Discussion

In thiswork, at each location on a spatial lattice,we estimate the relationship between theVTP andhighdaily
surface-level O3 events during the summer in the US Southwest states of California, Nevada, Arizona, and
Utah.We take a functional quantile regression approach, and aswe believe that nearby coefficient functions
are similar, we estimate at all points on the lattice simultaneously and penalize the spatial dissimilarity. In this
work, we model acute surface-level O3 events by estimating the conditional 0.90 quantile of the response
distribution. Because of the geographic heterogeneity of this diverse region, we weight differences between
coefficient function estimates at neighboring cells more if they are similar geographically and/or climato-
logically. Our analysis concludes that temperature inversions are a primary driver of acute O3 events over
Arizona, Utah, Nevada, and coastal California. In contrast, higher temperatures are associatedwith acute O3

events over far Northern California and the Sierra Nevada Mountains.
We determine two cells on the grid to be adjacent if they are connected to the N, S, E, orW. In the future,

we hope to expand this definition to further outlying cells. Doing so would complicate estimation, but may
improve estimates. Also, the model developed in this work does not incorporate temporal dependence.
Althoughwebelieve that the results presented herewould not changegreatly,we hope to refine themodeling
approach to account for temporal dependence in the future. We would also like to further refine our
methodology to simultaneously consider other quantiles of interest, and to investigate the impact of
alternative weighting functions. In the future, we believe that it would be interesting to consider combin-
ations of other regions and seasons, to compare and contrast the results presented here. Similarly, it would be
interesting to consider models other than GEOS-Chem model version 12.2.1. Other extensions to our
modeling procedure include developing modeling procedures that are able to incorporate both gridded
model output and in situ observations (O3 and VTP). We hope to consider these ideas in future work.

We note that equation (9), with its absolute value penalty terms written in terms of finite differences,
can also be expressed via the check-loss function, relying on the fact that ∀ τ∈ð0,1Þ and u∈ℝ:

∣u∣ ¼ ∣u∣I u> 0f gτþ ∣u∣I u> 0f g 1� τð Þ
þ ∣u∣I u< 0f gτþ ∣u∣I u< 0f g 1� τð Þ

¼ ∣0��u∣I 0��u> 0f gτþ ∣0�u∣I 0�u< 0f g 1� τð Þ
þ∣0�u∣I 0�u> 0f gτþ ∣0��u∣I 0��u< 0f g 1� τð Þ

¼ ρτ 0�uð Þþρτ 0��uð Þ:

(10)

Therefore, in practice, the optimization in equation (8) can be performed in a computationally efficient
manner by constructing the designmatrix determined by the loss function in equation (6), and augmenting
it with the design matrix determined by the penalty Λspat in equation (9), relying on the relationship in
equation (10)). For this reason, functions designed for quantile regression with scalar covariates, such as
R’s quantreg package, may be utilized for optimization. With a large number of adjacent cells, the
resulting design matrix will be very large, but also very sparse. This sparsity can be leveraged to make
estimation reasonable.
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