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A Generalized Characterization
of Commutators of Parabolic Singular Integrals
Steve Hofmann, Xinwei Li and Dachun Yang

Abstract. Let x = (x1, . . . , xn) ∈ Rn and δλx = (λα1 x1, . . . , λ
αn xn), where λ > 0 and 1 ≤ α1 ≤ · · · ≤

αn. Denote |α| = α1 + · · · + αn. We characterize those functions A(x) for which the parabolic Calderón
commutator

TA f (x) ≡ p.v.

∫
Rn

K(x − y)[A(x)− A(y)] f (y) dy

is bounded on L2(Rn), where K(δλx) = λ−|α|−1K(x), K is smooth away from the origin and satisfies a certain
cancellation property.

0 Introduction

Multilinear singular integrals with parabolic homogeneity arise naturally in the theory of
parabolic PDE (this is analogous to the elliptic case; see, for example [8] and [6]). The
prototypical example in the elliptic case is the first Calderón commutator defined by

TA f (x) = p.v.

∫
R

A(x)− A(y)

(x − y)2
f (y) dy.

It was proved by A. P. Calderón in [1] that TA is bounded on L2(R) if and only if A
satisfies a Lipschitz condition.

Recently, the first author of this paper generalized this result to the case of the parabolic
dilations:

x 7−→ δλx = (λx1, . . . , λxn−1, λ
2xn), λ > 0,

where x = (x1, . . . , xn) ∈ Rn; more precisely, the author in [13] characterized those A such
that the operator defined by

TA f (x) = p.v.

∫
Rn

K(x − y)
(

A(x)− A(y)
)

f (y) dy(0.1)

is bounded on L2(Rn), where K(λx1, . . . , λxn−1, λ
2xn) = λ−n−2K(x1, . . . , xn) and K is

smooth away from the origin and satisfies a certain cancellation condition (see (2.7) in
[13], see also (1.15)). One of the typical examples of such K is given by

K(x1, . . . , xn) = x−1−n/2
n exp

(
−
|x1|2 + · · · + |xn−1|2

4xn

)
χ{xn>0}.(0.2)
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For this K, if we consider x ′ = (x1, . . . , xn−1) and xn respectively as space variables and
time variable, then the corresponding operator TA f , defined as in (0.1), is the first order
commutator which arises in the series expansion of the caloric double layer potential on
a domain with a time dependent boundary

(
x ′, xn,A(x ′, xn)

)
∈ Rn+1, see [14]. In fact,

TA = [H1/2,A], where H ≡
∑n−1

j=1
∂2

∂x2
j
− ∂

∂xn
is the heat operator on Rn, see [13].

It turns out that, to obtain L2 boundedness of the operator (0.1), it suffices that A satisfy
a kind of “Lipschitz” condition, and furthermore, that A is expressed as the (parabolic)
fractional integral operator of order 1 acting on a (parabolic) BMO function. And this
condition is sharp in the sense that it is necessary for certain special cases, in particular for
K as in (0.2) (see [13]).

In this note, we generalize the result of [13] to the space Rn endowed with arbitrary
parabolic dilations (see (1.1)). We are motivated to treat this problem by our desire to
develop a theory of singular integral operators applicable to the study of higher order
parabolic operators such as ∆2 − ∂

∂t , (corresponding to the case 1 = α1 = · · · = αn−1,
αn = 4 of (1.1)), which we hope to treat in future papers. One might wonder whether the
results of the present paper remain true in the more general setting of a space of homoge-
neous type, but at the present time, our problem is not well posed in that situation—see
our comments following (1.9) below.

In the present paper, we obtain a necessary and sufficient condition for the L2 bound-
edness of the Calderon commutator in the setting of generalized parabolic dilations. The
said condition, consisting of two parts, comprises the hypotheses of our sufficiency result,
Theorem 1 below. The necessity of this two part condition is the content of Theorems 2
and 3 below. The proof of Theorem 1 is a rather direct application of the non-isotropic
T1 Theorem. For higher order multi-linear singular integrals of parabolic type, there is a
problem of “roughness” of the kernel which arises due to the lack of a true product rule for
fractional order derivatives. For such operators, the use of the T1 Theorem to establish L2

bounds is less routine. We do not discuss the higher order case here, but we plan to treat it
in future.

1 Notation, Statements and Preliminaries

We equip Rn with the group of parabolic dilations

δλx = (λα1 x1, . . . , λ
αn xn), λ > 0,(1.1)

where x = (x1, . . . , xn) ∈ Rn and α ′js are real satisfying 1 ≤ α1 ≤ · · · ≤ αn. Denote |α| =
α1 + · · ·+αn. We also denoteα0 = 0 and αn+1 =∞ for convenience. For β = (β1, . . . , βn)
and γ = (γ1, . . . , γn) with β j , γ j reals, we denote β · γ =

∑n
j=1 β jγ j , and xβ = xβ1

1 · · · x
βn
n

and ∂β

∂xβ =
∂β1

∂x
β1
1

· · · ∂
βn

∂xβn
n

where β j ’s are non-negative integers.

Without loss of generality, we can always assume α1 = 1. Let n0 be the smallest integer
such that αn0 > 1. Then n0 > 1, and the case n0 = n + 1 corresponds to the classical case
(α1, . . . , αn) = (1, . . . , 1).

Let ρ(x) be a non-isotropic norm on Rn defined as the unique positive solution of the
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following identity (see [9]):

1 =
n∑

j=1

x2
j

ρ(x)2α j
.(1.2)

It is immediate that ρ(δλx) = λρ(x) and ρ(x) '
∑n

j=1 |x j |1/α j , for all λ > 0 and x ∈ Rn.
With this norm, Rn is a space of homogeneous type in the sense of Coifman and Weiss [7]
with homogeneous dimension d = |α|. In particular, there is a constant c0 ≥ 1 such that
ρ(x + y) ≤ c0

(
ρ(x) + ρ(y)

)
for all x, y ∈ Rn. We say a monomial xβ1

1 · · · x
βn
n (β j ’s are

non-negative integers) is homogeneous of degree m if α1β1 + · · · + αnβn = m, and the
homogeneous degree of a polynomial is defined by the highest homogeneous degree of its
monomials with non-zero coefficients.

One has the polar decomposition

x = δrσ(1.3)

with σ ∈ Sn−1, r = ρ(x) and dx = rd−1 dr J(σ) dσ, where J(σ) is a smooth and non-
negative function of σ ∈ Sn−1 and is even in each of σ1, . . . , σn separately.

We define the parabolic fractional integral of order 1 for suitable f by

(I1 f )∧(ξ) = ρ(ξ)−1 f̂ (ξ), ξ ∈ Rn,(1.4)

and its inverse by

(P1 f )∧(ξ) = ρ(ξ) f̂ (ξ), ξ ∈ Rn.(1.5)

By a parabolic cube Q ⊆ Rn, we mean a set of the form

Q = I1 × I2 × · · · × In,(1.6)

where I j ⊆ R1 is an interval with the length rα j . The ball of radius r and center x0 is defined
by

Br(x0) = {x0 ∈ Rn : ρ(x − x0) < r}.(1.7)

And the parabolic BMO space is defined as the collection of all locally L1(Rn) functions
modulo constants with norm

‖b‖BMO ≡ sup
Q

1

|Q|

∫
Q
|b(x)− bQ| dx,(1.8)

where Q is as in (1.7), bQ ≡
1
|Q|

∫
Q b(y) dy, |Q| is the Lebesgue measure of Q and |Q| = rd

(recall d = |α|).
As in [13], we follow Strichartz [19] to define the parabolic BMO Sobolev space as fol-

lows

I1(BMO) = {A(x) : A = I1a, a ∈ BMO}.(1.9)
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As in [19], for all b ∈ BMO, I1(b) is well-defined modulo polynomials of homogeneous
degree≤ 1. This space will play a crucial role in this paper. At present, it remains an open
problem to define Sobolev spaces of order α = 1 on a general space of homogeneous type
(we are grateful to Y. S. Han for this observation). This obstacle restricts us to the more
concrete setting considered here.

An interesting fact about an element A in I1(BMO) is the following lemma (see also
Lemma 3.1 in [13]).

Lemma 1 If α1 = · · · = αn0−1 = 1 < αn0 , then for all j ≥ n0,

|A(x1, . . . , x j + h, . . . , xn)− A(x1, . . . , x j , . . . , xn)| ≤ c‖P1A‖BMO |h|
1/α j .(1.10)

We sketch the proof here.

Proof of Lemma 1 For the sake of simplicity, we suppose j = n, the other cases being
similar. Denote x = (x1, . . . , xn−1, xn) = (x ′, xn). Then, with a = P1A, we have

A(x ′, xn + h)− A(x ′, xn) =

∫ ∞
−∞

∫ n−1

R
a(y ′, yn)[K(x ′ − y ′, xn − yn + h)

− K(x ′ − y ′, xn − yn)] dy ′ dyn,

(1.11)

for an appropriate even K ∈ C∞(Rn \ {0}), where K satisfies

K(δλx) = λ−d+1K(x).(1.12)

Since the expression in square brackets has mean value zero, we may assume that a
has mean value zero on the parabolic ball B|h|1/αn (x). Furthermore, (1.12) implies that

the expression in square brackets is bounded in absolute value by |h|
(
ρ(x − y)

)−d−αn+1
,

whenever |h|1/αn <
(
ρ(x − y)

)
/2, and by

(
ρ(x − y)

)−d+1
+
(
ρ
(
(x ′, xn + h) − y

))−d+1

otherwise. In the former case, one may then obtain the desired bound by adapting to the
parabolic case a well known argument from [11]. In the latter case, one first dominates the
corresponding piece of the integral in (1.11) by
∫
ρ(x−y)<2|h|1/αn

a(y)
(
ρ(x − y)

)−d+1
dy +

∫
ρ(x−y)<2|h|1/αn

a(y)
(
ρ
(
(x ′, xn + h)− y

))−d+1
dy.

The desired bound now follows for these last two integrals by applying Holder’s inequality
and the John-Nirenberg lemma. We omit the routine details.

Next we suppose that K ∈ C∞(Rn \ {0}) satisfies

K(δλx) = λ−d−1K(x), λ > 0, x ∈ Rn.(1.13)

If we write K(x) = ρ(x)−d−1Ω(x), then Ω is smooth on Sn−1 and parabolically homoge-
neous of degree zero. We shall also impose a certain cancellation assumption on K. As
above, we let n0 be the smallest integer such that an0 > 1, i.e.,

1 = α1 = · · · = αn0−1 < αn0 .(1.14)
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Then we assume

∫
Sn−1

Ω(σ)σ j J(σ) dσ = 0 for j = 1, . . . , n0 − 1.(1.15)

In particular, this includes the case that K(x) is even in (x1, . . . , xn0 ). We know that (1.15)
cannot be relaxed: consider the case A(x) = x j , j < n0 (see [10]).

We are interested in characterizing those A for which the following Calderón commuta-
tor

TA f (x) = p.v.

∫
Rn

K(x − y)[A(x)− A(y)] f (y) dy(1.16)

is bounded on L2(Rn). Our main theorems are as follows.

Theorem 1 Suppose that A = I1a, where a ∈ BMO, and that K ∈ C∞(Rn \ {0}) satisfies
(1.13) and (1.15). Suppose also that

∥∥∥ ∂

∂x j
A
∥∥∥

L∞(Rn)
≤ B for j = 1, . . . , n0 − 1,(1.17)

then

‖TA‖op ≤ c(n,K)(B + ‖a‖BMO );

In particular, when n0 = n and αn = 2, we recover Theorem 2.1 of [13].

Remark 1 The assumptions (1.10) and (1.17) imply the parabolic Lipschitz condition

|A(x)− A(y)| ≤ c(‖P1A‖BMO + B)ρ(x − y),(1.18)

for all x, y ∈ Rn. Thus, K(x− y)[A(x)−A(y)] satisfies the standard (parabolic) Calderón-
Zygmund kernel conditions.

Remark 2 The regularity assumption K ∈ C∞(Rn \{0}) can certainly be relaxed—we im-
pose it here only so that we may simplify certain arguments by invoking symbolic calculus
results of [10]. Our primary purpose here is to establish the sharp condition on A, so we
shall be content with smooth K.

As pointed out in [13], the sufficient conditions required for TA to be bounded are also
necessary in certain important special cases. The kernel K defined in (0.2) provides such an
example (see Theorem 2.2 in [13]). Actually, there are more general results. Let e j denote a
unit vector in the x j direction. In the next theorem, we shall assume that K satisfies a certain
“non-degeneracy” condition; namely that there exists a j, 1 ≤ j ≤ n, and a neighborhood
N j ⊆ Sn−1 of at least one of the poles e j (or−e j), such that for all σ ∈ N j , either

|K(σ)| ≥ c > 0, or |K(σ) + K(−σ)| ≥ c > 0,(1.19)
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for some positive constant c. By continuity, this means that K(σ) (resp. K(σ) + K(−σ))
has constant sign in N j .

Theorem 2 Let K ∈ C∞(Rn\{0}) satisfy (1.13) and (1.19). Then, if TA, defined as in (1.16),
is bounded on L2(Rn), we have

|A(x)− A(y)| ≤ c‖TA‖opρ(x − y).

Remark 3 The kernel K(x1, . . . , xn) in (0.2) is an example satisfying Theorem 2. More
examples include K(x) = 1

ρ(x)d+1 and also any kernel which is C∞ and positive away from
the origin, is homogeneous of degree−d − 1, and is even in the variables (x1, . . . , xn0−1).

In addition, the condition that A can be expressed as the fractional integral operator of
order 1 acting on a BMO function is also necessary in some sense. This is the content of
the following Theorem 3 and the Corollary (see also the example in [13]). Before stating
the result, we make a definition.

Let K ∈ C∞(Rn \ {0}) and K(δλx) = λ−d−1K(x). Define

H f (x) = p.v.

∫
Rn

K(x − y)
(

f (y)− f (x)
)

dy(1.20)

for all f in S(Rn), where S(Rn) is the Schwartz class on Rn. Denote by m(ξ) the symbol of
H in the sense that

∫
Rn

(H f )(x)ϕ(x) dx =

∫
Rn

m(ξ) f̂ (ξ)ϕ̂(ξ) dξ(1.21)

for all f , ϕ ∈ S(Rn). We also call m the symbol associated with K.
The following proposition characterizes the relation between such a kernel K and its

symbol m. The construction of m from K is crucial in proving the Corollary after The-
orem 3. The proof of this proposition may be readily obtained by adapting the ideas
from [10], and we therefore omit it.

Proposition Let m ∈ C∞(Rn \ {0}) such that m(δλξ) = λm(ξ). Moreover m is even in
each of the variables ξ1, . . . , ξn0−1. Then there exists a function K ∈ C∞(Rn \ {0}) satisfying

1) K(δλx) = λ−d−1K(x);
2) If K(x) = Ω(x)

ρ(x)d+1 , then
∫

Sn−1 Ω(σ)σ j J(σ) dσ = 0, j = 1, . . . , n0 − 1;
3) The operator defined by

H f (x) = p.v.

∫
Rn

K(x − y)
(

f (y)− f (x)
)

dy for all f ∈ S(Rn),

has symbol m(ξ) in the sense (1.21).

Conversely, let K ∈ C∞(Rn \ {0}) satisfy (1.13) and (1.15). Then there exists a function
m ∈ C∞(Rn \ {0}) satisfying m(δλξ) = λm(ξ) and (1.21).
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Theorem 3 Suppose that K ∈ C∞(Rn \ {0}), K(δλx) = λ−d−1K(x) and K is associated to
a symbol m(ξ) ∈ C∞(Rn \ {0}) in the sense of (1.21), with m(ξ) 6= 0, for ξ 6= 0. If A satisfies
the Lipschitz condition,

|A(x)− A(y)| ≤ B0ρ(x − y), for all x, y ∈ Rn,

and TA, defined as in (1.16), is bounded on L2(Rn), then

‖P1A‖BMO ≤ c‖TA‖op + CB0.

As a consequence of the proposition, we shall also prove the following:

Corollary Let K ∈ C∞(Rn \{0}) satisfy (1.13), (1.15), and assume that K(x)+K(−x) 6= 0.
Let m be the symbol of K given by the Proposition. Then m(ξ) 6= 0 whenever ξ 6= 0. In
particular, such K satisfy the hypotheses of both Theorem 2 and Theorem 3.

Remark 4 The last two examples in Remark 3 both satisfy the conclusion of Theorem 3.
Another example satisfying Theorem 3 is the commutator [T,A], where the kernel K of
T has symbol m(ξ) = ρ(ξ). By the proposition, K satisfies our basic assumptions (1.13)
and (1.15).

2 Proof of Theorem 1

We shall require the following standard Lemma.

Lemma 2 Let m(ξ) ∈ L∞(Rn), and assume m is continuously differentiable on Rn \ {0} up
to order N with N > |α|/2. Moreover, assume that

1

R|α|

∫
R/2≤ρ(ξ)≤2R

∣∣∣Rα·β( ∂
∂ξ

)β
m(ξ)
∣∣∣2 dξ ≤ cm,

for all β = (β1, . . . , βn) with β j ’s non-negative integers satisfying |β| ≤ N, and |m(ξ)| ≤ cm

a.e., where constant cm is independent of R. Then the operator T with symbol m is a bounded
linear operator on H1. Since the same is true for T∗, T is a bounded linear operator on BMO.

Remark 6 The Lp(Rn) (1 < p < ∞) boundedness of T is proved in [9]. In the isotropic
Euclidean space Rn, the multiplier m in the Lemma is a Hörmander-Mihlin multiplier (see
[18, Chapter 4]), and the proof of the boundedness of T on the standard H p(Rn) (0 < p ≤
1) can be found in [12, Chapter 7]. The latter proof adapts readily to the parabolic case,
but one may also consult [4] and [17] for some more general results on parabolic Hardy
spaces. Thus, we omit the proof here.

Remark 7 If m(ξ) ∈ CN (Rn) (N > |α|/2) and is homogeneous of degree zero, it is easy to
verify that m(ξ) satisfies the conditions of Lemma 2 (see Chapter 4 in [18] for the isotropic
case).

Now we turn to the proof of Theorem 1. The main idea of the proof is the same as
before (see [13]): we use the (nonisotropic) T1-theorem; that is, since our kernels satisfy
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“standard” regularity estimates, it is enough to show that TA and T∗A map 1 into BMO, and
that TA satisfies the “Weak Boundedness Property” (defined below). The proof of the usual
T1 theorem given in [6] is easily adapted to the non-isotropic setting.

We impose (as we may) the a priori assumption that A is smooth. Our estimates will, of
course, not depend on this a priori regularization.

We first verify that TA1 ∈ BMO. The same argument can be used to show that T∗A1 ∈
BMO. We only give a formal proof of this fact. The proof can be made rigorous as in [13].
We use polar coordinates (1.3) and integrate by parts. Then,

TA1(x) = p.v.

∫
Rn

K(y)[A(x) − A(x − y)] dy

= p.v.

∫
Sn−1

Ω(σ)

∫ ∞
0

[A(x)− A(x − δρσ)]
dρ

ρ2
J(σ) dσ

= p.v.

∫
Sn−1

Ω(σ)
n0−1∑
j=1

σ j

∫ ∞
0

∂

∂x j
A(x − δρσ)

dρ

ρ
J(σ) dσ

+ p.v.

∫
Sn−1

Ω(σ)
n∑

j=n0

σ jα j

∫ ∞
0

∂

∂x j
A(x − δρσ)ρα j−2 dρ J(σ) dσ

≡
n0−1∑
j=1

L j +
n∑

j=n0

J j .

By the cancellation condition (1.15), each L j for 1 ≤ j ≤ n0 − 1 is an L2(Rn)-bounded
parabolic singular integral operator acting on a bounded function. Thus, ‖L j‖BMO ≤
c‖ ∂

∂x j
A‖L∞(Rn), 1 ≤ j ≤ n0 − 1.

To handle J j , j = n0, . . . , n, note that

∂

∂x j
A =

∂

∂x j
I1a(2.1)

has symbol ξ j/ρ(ξ), and is thus a “parabolic derivative” of order α j − 1. Moreover the
operator defined by

Ĩ j
1 f (x) ≡ p.v.

∫
Rn

Ω̃ j(x − y)

ρ(x − y)d−α j +1
f (y) dy

is parabolically smoothing of order α j − 1, where Ω̃ j(σ) = α jΩ(σ)σ j is parabolically

homogeneous of degree zero. Indeed, Ĩ j
1 has symbol m̃ j(ξ)/ρ(ξ)α j−1, where m̃ j(ξ) ∈

C∞(Rn \ {0}) and m̃ j(δλξ) = m̃ j(ξ), for all λ > 0. Thus, we have ( J j)∧(ξ) = m̂ j (ξ)ξ j

ρ(ξ)α j â(ξ),

and the multiplier m̂ j(ξ)ξ j/ρ(ξ)α j satisfies the conditions of Lemma 2. Therefore,
‖ J j‖BMO ≤ c‖a‖BMO, for j = n0, . . . , n.

Next, we will prove that TA satisfies the “Weak Boundedness Property” (WBP). Follow-
ing [13], we can define WBP as follows. Let Φ(x, δ) denote the space of all ϕ ∈ C∞0 (Rn),

https://doi.org/10.4153/CMB-1999-054-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1999-054-0


Commutators of Parabolic Singular Integrals 471

supported in Bδ(x) ≡ {y : ρ(x − y) < δ}, and satisfying

(i) ‖ϕ‖L∞(Rn) ≤ 1;

(ii) |ϕ(x)− ϕ(y)| ≤
1

δ
ρ(x − y);

(iii) sup
|γ|≤αn

{
δγ1+···+γn0−1+αn0γn0 +···+αnγn ×

∥∥∥( ∂
∂x

)γ
ϕ
∥∥∥

L∞(Rn)

}
≤ 1.

(2.2)

Then we say that T satisfies WBP if for all x ∈ Rn, δ > 0, and for all ψ, ϕ ∈ Φ(x, δ), we
have

|〈ψ,Tϕ〉| ≤ cδd.(2.3)

Let us now show that this property holds. By dilation invariance, we may take δ = 1. Then
ψ, ϕ are supported in the parabolic ball B1 ≡ B1(x0), for some fixed x0 ∈ Rn. Again, we
write TAϕ in polar coordinates and integrate by parts so that

TAϕ(x) = p.v.

∫
Sn−1

Ω(σ)

∫ ∞
0

[A(x)− A(x − δρσ)]ϕ(x − δρσ)
dρ

ρ2
J(σ) dσ

=

n0−1∑
i=1

p.v.

∫
Sn−1

Ω(σ)σi

∫ ∞
0

∂

∂xi
A(x − δρσ)ϕ(x − δρσ)

dρ

ρ
J(σ) dσ

+
n∑

i=n0

αi

∫
Sn−1

Ω(σ)σi

∫ ∞
0

∂

∂xi
A(x − δρσ)

× ϕ(x − δρσ)ραi−2 dρ J(σ) dσ

−
n0−1∑
j=1

∫
Sn−1

Ω(σ)σ j

∫ ∞
0

[A(x)− A(x − δρσ)]

×
∂

∂x j
ϕ(x − δρσ)

dρ

ρ
J(σ) dσ

−
n∑

j=n0

α j

∫
Sn−1

Ω(σ)σ j

∫ ∞
0

[A(x)− A(x − δρσ)]

×
∂

∂x j
ϕ(x − δρσ)ρα j−2 dρ J(σ) dσ

≡
n∑

i=1

Li −
n∑

j=1

J j .

As before, by the cancellation condition (1.15), each Li (1 ≤ i ≤ n0 − 1) is a bounded
parabolic singular integral operator acting on ( ∂

∂xi
A)ϕ, and thus, by Schwarz’ inequality,

|〈ψ, Li〉| ≤ c‖( ∂
∂xi

A)ϕ‖L2(Rn) ≤ cB, where B is the constant in the theorem.
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To handle J1, . . . , Jn, we note that x ∈ B1 and also x − δρσ ∈ B1. From this, we deduce
that ρ ≤ c. Thus, by (1.17),

∣∣∣
n∑

j=1

J j

∣∣∣ ≤ c(‖PA‖BMO + B)

∫ c

0
‖∇ϕ‖L∞(Rn) dρ

≤ c(‖PA‖BMO + B),

by (2.2) (iii), and the desired bound for |〈ψ,
∑n

j=1 J j〉| follows immediately.
Finally, we consider Li , i = n0, . . . , n. Writing Li in rectangular coordinates, we have

Li(x) =

∫
Rn

Ki(x − y)
∂

∂yi
A(y)ϕ(y) dy(2.4)

where Ki ∈ C∞(Rn \ {0}) satisfies Ki(δλx) = λ−d−1+αi Ki(x). The convolution operator
with kernel Ki is parabolically smoothing of order αi − 1, (because αi > 1) and it has
symbol

K̂i(ξ) =
m̄i(ξ)

ρ(ξ)αi−1
,(2.5)

where m̄i ∈ C∞(Rn \ {0}) and m̄i(δλξ) = m̄i(ξ).
As before, the symbol of the operator which maps a to ∂

∂yi
A(y) is ξi

ρ(ξ) which is of ho-
mogeneous degree αi − 1. Following the same argument as [10, p. 111], we have that, for
each i = 1, . . . , n, there exists Hi(y) ∈ C∞(Rn \ {0}) which is of homogeneous degree
−d − αi + 1, and satisfies

sgn
(

Hi(y)
)
= c sgn(yi),(2.6)

with c ≡ 1 or−1, and

(Hi)∧(ξ) =
ξi

ρ(ξ)
.(2.7)

By (2.7), we have
∫

Sn−1

σβHi(σ) J(σ) dσ = 0,(2.8)

for all β = (β1, . . . , βn) where the β j ’s are non-negative integers satisfying

β j = 0 or |β| = β1 + · · · + βn is even.(2.9)

Let φ(x) = (a(x) − aB1 )η(x), where aB1 =
1
|B1|

∫
B1

a(x) dx, and η ∈ C∞0
(
B20(x0)

)
with

η ≡ 1 on B10(x0). By Taylor’s theorem, as ρ(x − x0)→ 0, we have

∣∣∣φ(x)−
[ ∑
|β|≤αi−1
β is in (2.9)

( ∂
∂x

)β
φ(x0)(x − x0)β

]
η0

(
ρ(x)
)∣∣∣ ≤ cρ(x − x0)αi ,(2.10)
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where η0(t) is a non-negative C∞0 (R)-function which is 1 on a neighbourhood of ρ(x0).
Thus, by (2.8) and (2.10), we can write ∂

∂yi
A(y) (we recall that we have made the a priori

assumption that A is smooth) as the sum of the following two well-defined integrals:

∂

∂yi
A(y) = p.v.

∫
Rn

Hi(y − z)(a(z)− aB1 )η(z) dz(2.11)

+ p.v.

∫
Rn

Hi(y − z)
(

a(z)− aB1

)(
1− η(z)

)
dz

≡ Aia1(y) + Aia2(y).

The term Aia2(y) has a bound as follows:

|Aia2(y)| ≤ c

∫
Rn

|a(z)− aB1 |

1 + ρ(x0 − z)d+αi−1
dz ≤ c‖a‖BMO .(2.12)

The last inequality follows from the parabolic version of the standard estimate in [11]. We
then write

Li =

∫
Rn

Ki(x − y)p.v.

∫
Rn

Hi(y − z)a1(z)
(
ϕ(y)− Pz(y − z)

)
dz dy

+

∫
Rn

Ki(x − y)p.v.

∫
Rn

Hi(y − z)a1(z)Pz(y − z) dz dy

+

∫
Rn

Ki(x − y)ϕ(y)Aia2(y) dy ≡ L1
i + L2

i + L3
i ,

where Pz(y − z) =
∑
|β|≤αi−1( ∂

∂z )βϕ(z)(y − z)β . Since supp ϕ ⊆ B1, by (2.5) and (2.13),

as x ∈ supp ψ ⊆ B1, |L3
i (x)| ≤ c‖a‖BMO

∫
ρ(x−y)≤c

1
ρ(x−y)d−αi +1 dy ≤ c‖a‖BMO, where the

second inequality follows from the fact that i ≥ n0, i.e., αi > 1. Thus, |〈ψ, L3
i 〉| ≤ c‖a‖BMO.

For L2
i , choose β such that |β| ≤ αi − 1. Let H̃i(y − z) = Hi(y − z)(y − z)β , where H̃i is

of homogeneous degree−d− αi + 1 + |β|. Denote Ãi the convolution operator associated

with kernel H̃i . Then the operator with symbol m̄i (ξ)
ρ(ξ)αi−1

∂β

∂ξβ
( ξi

ρ(ξ) ) = m̃i (ξ)
ρ(ξ)|β|

, where m̃i(ξ) ∈
C∞0 (Rn) and is of homogeneous degree zero, is a nice parabolic singular integral operator
(bounded on L2(Rn)) when β = 0, and is a parabolic fractional integral operator when β 6=
0. Moreover, by (2.6), L2

i (x) =
∑
|β|≤αi−1(Ki ∗ Ãi)(a1Dβϕ)(x), where Dβ is the differential

operator ∂β

∂xβ . For each β above, we can choose 1 < pβ , qβ < ∞ such that 1
qβ
= 1

pβ
− |β|

d ,

and ‖(Ki ∗ Ãi)(a1Dβϕ)‖Lqβ (Rn) ≤ c‖a1Dβϕ‖Lpβ (Rn) ≤ c‖a‖BMO . Here we are using the non-
isotropic version of the Hardy-Littlewood-Sobolev theorem on fractional integration. The
proof in [18] carries over easily to the non-isotropic setting. Thus, |〈ψ, L2

i 〉| ≤ c‖a‖BMO.
For L1

i , we write

L1
i (x) =

∫
Rn

Ki(x − y)p.v.

∫
ρ(y−z)≤1

Hi(y − z)a1(z)
(
ϕ(y)− Pz(y − z)

)
dz dy

+

∫
Rn

Ki(x − y)p.v.

∫
ρ(y−z)>1

Hi(y − z)a1(z)
(
ϕ(y)− Pz(y − z)

)
dz dy

≡ L1
i,1 + L1

i,2.
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If ρ(y − z) ≤ 1, by Taylor’s theorem and (2.2), we obtain

|ϕ(y)− Pz(y − z)| ≤ cρ(y − z)αi .(2.13)

Thus,

| f1(y)| ≡

∣∣∣∣
∫
ρ(y−z)≤1

Hi(y − z)a1(z)
(
ϕ(y)− Pz(y − z)

)
dz

∣∣∣∣
≤ c

∫
ρ(y−z)≤1

1

ρ(y − z)d−1
|a1(z)| dz,

and therefore, f1 ∈ Lp(Rn), where 1 < p <∞, and

‖ f1‖Lp (Rn) ≤ c‖a1‖Lp (Rn) ≤ c‖a‖BMO .(2.14)

Since |L1
i,1(x)| ≤ c

∫
Rn |Ki(x − y)| | f1(y)| dy ≤ c

∫
Rn

| f1(y)|
ρ(x−y)d−αi +1 dy, and we can choose 1 <

p, q <∞ such that 1
q =

1
p −

αi−1
d , thus, we obtain, by (2.14), ‖L1

i,1‖Lq(Rn) ≤ c‖ f1‖Lp(Rn) ≤

c‖a‖BMO , and the desired bound for |〈ψ, L1
i,1〉| follows. For L1

i,2, since ρ(y − z) > 1, we
obtain the following trivial estimate:

|ϕ(y)− Pz(y − z)| ≤ c.(2.15)

We have

| f2(y)| ≡

∣∣∣∣
∫
ρ(y−z)>1

Hi(y − z)a1(z)
(
ϕ(y)− Pz(y − z)

)
dz

∣∣∣∣
≤ c

∫
ρ(y−z)>1

1

ρ(y − z)d+αi−1
|a1(z)| dz ≤ cM(a1)(y),

where M is the Hardy-Littlewood maximal function. Again, we obtain, for 1 < p, q < ∞
with 1

q =
1
p −

αi−1
d as before, ‖L1

i,2‖Lq(Rn) ≤ c‖M(a1)‖Lp (Rn) ≤ c‖a1‖Lp(Rn) ≤ c‖a‖BMO.

The estimate |〈ψ, L1
i,2〉| ≤ c‖a‖BMO follows. Therefore, we finish the proof of WBP and of

Theorem 1.

3 Proofs of Theorem 2 and Theorem 3

First, we prove Theorem 2. The proof is similar to that of [13, Theorem 2.2] (but see also
Murray [16], where these ideas had previously appeared in the 1-dimensional setting).

Let K as in Theorem 2. We may assume that K(σ) + K(−σ) > C > 0 in a neighborhood
of the “north pole” (0, . . . , 0, 1), the other cases being similar, or simpler. We suppose that
TA is bounded on L2(Rn). So by duality,

T∗A f (x) ≡ p.v.

∫
Rn

K(y − x)[A(y) − A(x)] f (y) dy(3.1)
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is also bounded on L2(Rn). Therefore TA − T∗A is bounded and its kernel is

h(x, y) =
(
K(x − y) + K(y − x)

)
[A(x)− A(y)] ≡ K(x − y)[A(x) − A(y)].

To prove the theorem, it suffices to show that for each parabolic Q with |Q| = rd, there
is a constant aQ such that

∫
Q
|A(x)− aQ| dx ≤ c‖TA − T∗A‖op rd+1 ≤ c‖TA‖op rd+1.(3.2)

Indeed, the well known result of N. Meyers [15] extends readily to the non-isotropic setting
(we omit the details, but we note that the key tool is an appropriate version of the Calderon-
Zygmund decomposition [9]).

Let Q = J × [an, an + rαn ], where J is an n − 1 dimensional non-isotropic cube with
side lengths rα j in the x j direction, and let Q̃ = J × [an + (Nr)αn , an + (Nr)αn + rαn ], with
N a large number to be determined later (i.e., Q̃ is a copy of Q, translated “upward” by a
distance of (Nr)αn ). By Schwarz’ inequality,

1

|Q|

∫
Q

∣∣∣∣
∫

Q̃
h(x, y) dy

∣∣∣∣ dx ≤ c‖TA‖op .

On the other hand,

∫
Q̃

h(x, y) dy = [A(x)− (A)Q̃]

∫
Q̃

K(x − y) dy +

∫
Q̃

[(A)Q̃ − A(y)]K(x − y) dy

≡ F(x) + G(x),

where (A)Q̃ =
1
|Q̃|

∫
Q̃ A(x) dx.

For x ∈ Q and y ∈ Q̃, we have ρ(x− y) ≈ Nr. This implies that for sufficiently large N ,

|F(x)| ≥ c0|A(x)− (A)Q̃|

∫
Q̃
ρ(xy)−d−1 dy(3.3)

≥ c0|A(x)− (A)Q̃|

∫
Q̃
|xn − yn|

− d+1
αn dy

≥
c0|A(x)− (A)Q̃|

Nd+1r
.

Furthermore, using
∫

Q̃(A(x) − (A)Q̃) dx = 0, and standard non-isotropic Calderon-
Zygmund estimates, we obtain

|G(x)| ≤
c1

Nd+2r|Q̃|

∫
Q̃
|(A)Q̃ − A(y)| dy.(3.4)

Using (3.3) and (3.4), we can obtain (3.2) by following verbatim the argument in [13,
pp. 207–208], and therefore, we finish the proof of Theorem 2.
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We now proceed to prove Theorem 3. Define S by (S f )∧(ξ) = ρ(ξ)
m(ξ) f̂ (ξ), f ∈ S(Rn),

where m is the symbol of the kernel K (by abuse of notation, we shall also use K to de-
note the operator of convolution with the kernel K). Since ρ(ξ)

m(ξ) satisfies the conditions of
Lemma 2, S is a bounded operator on BMO. On the other hand, since K1 = 0, we have
TA1 = [K,A]1 = KA. By the hypotheses of the theorem, K(x − y)[A(x) − A(y)] satis-
fies the standard size and smoothness condition of a parabolic Calderón-Zygmund kernel
whose associated operator TA is bounded on L2(Rn). Hence TA1 ∈ BMO, with appropri-
ate bounds. Notice that P1 = SK. Therefore, ‖P1A‖BMO = ‖SKA‖BMO ≤ c‖KA‖BMO =
c‖TA1‖BMO . This finishes the proof of Theorem 3.

Finally, we give the proof of the Corollary. Without loss of generality, we may assume
that K(x) + K(−x) > 0 for all x 6= 0. We keep the notation in the proof of the Proposition.
From (3.5),

m(ξ) =

∫ ∞
0

1

λ

∫
Rn

K(x)ψ

(
ρ(x)

λ

)
[e−ix·ξ − 1] dx dλ

=

∫ ∞
0

1

λ

∫
Rn

K(−x)ψ

(
ρ(x)

λ

)
[eix·ξ − 1] dx dλ

by changing x to −x. To prove m(ξ) 6= 0, whenever ξ 6= 0, we need only to show that
Re m(ξ) 6= 0. But,

2 Re m(ξ) =

∫ ∞
0

1

λ

∫
Rn

(
K(x) + K(−x)

)
ψ

(
ρ(x)

λ

)(
cos(x · ξ)− 1

)
dx dλ,

which is never zero away from ξ = 0 by the assumption. This finishes the proof of the
Corollary.
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Notes in Math. 242, Springer-Verlag, Berlin, 1971.
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[15] N. Meyers, Mean oscillation over cubes and Hölder continuity. Proc. Amer. Math. Soc. 15(1964), 717–721.
[16] M. A. M. Murray, Commutators with fractional differentiation and BMO Sobolev spaces. Indiana Univ.

Math. J. 34(1985), 205–215.
[17] J. Peral and A. Torchinsky, Multipliers in H p(Rn), 0 < p <∞. Ark. Mat. 17(1978), 225–234.
[18] E. M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton,

New Jersey, 1970.
[19] R. Strichartz, Bounded mean oscillation and Sobolev spaces. Indiana Univ. Math. J. 29(1980), 539–558.

Department of Mathematics
University of Missouri Columbia
Columbia, Missouri 65211
U.S.A.
email: hofmann@math.missouri.edu

Department of Mathematics
Washington University
St. Louis, Missouri 63130-4899
U.S.A.
email: xli@math.wustl.edu
email: dyang@math.wustl.edu

Permanent address of Dachun Yang:
Department of Mathematics
Beijing Normal University
100875 Beijing,
The People’s Republic of China

https://doi.org/10.4153/CMB-1999-054-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1999-054-0

