PROPERTIES OF THE BEREZIN TRANSFORM OF BOUNDED FUNCTIONS

Jaesung Lee

We find the spectrum of the Berezin operator T on $L^{\infty}\left(B_{n}\right)$, then we show that if $f \in L^{\infty}\left(B_{n}\right)$ satisfies $S f=r f$ for some r in the unit circle, where S is any convex combination of the iterations of T, then f is M-harmonic.

Finally we decompose the subspace of $L^{\infty}\left(B_{n}\right)$ where $\lim T^{k} f$ exists into the direct sum of two subspaces of $L^{\infty}\left(B_{n}\right)$.

1. Introduction

Let B_{n} be the unit ball of $\mathbf{C}^{\mathbf{n}}$ and ν be Lebesgue measure on $\mathbf{C}^{\mathbf{n}}$ normalised to $\nu\left(B_{n}\right)=1$. For $f \in L^{1}\left(B_{n}, \nu\right), T f$ (the Berezin transform of f) is by definition,

$$
(T f)(z)=\int_{B_{n}} f\left(\varphi_{z}(w)\right) d \nu(w)
$$

where $\varphi_{a} \in \operatorname{Aut}\left(B_{n}\right)$ is the canonical automorphism given by

$$
\varphi_{a}(z)=\frac{a-P z-\left(1-|a|^{2}\right)^{1 / 2} Q z}{1-\langle z, a\rangle}
$$

where P is the projection into the space spanned by $a \in B_{n}, Q_{z}=z-P z$. Equivalently we can write

$$
(T f)(z)=\int_{B_{n}} f(w) \frac{\left(1-|z|^{2}\right)^{n+1}}{|1-\langle z, w\rangle|^{2 n+2}} d \nu(w)
$$

The invariant Laplacian $\widetilde{\Delta}$ is defined for $f \in C^{2}\left(B_{n}\right)$ by

$$
(\widetilde{\Delta} f)(z)=\Delta\left(f \circ \varphi_{z}\right)(0)
$$

The M-harmonic functions in B_{n} are those for which $\widetilde{\Delta} f=0 . \tau$ is the measure on B_{n} defined by

$$
d \tau(z)=\left(1-|z|^{2}\right)^{-n-1} d \nu(z)
$$

Received 1st April, 1998
Research partially suppoted by GARC-KOSEF.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 \$A2.00+0.00.
and satisfies

$$
\int_{B_{n}} f d \tau=\int_{B_{n}}(f \circ \phi) d \tau
$$

for every $f \in L^{1}(\tau)$ and $\phi \in \operatorname{Aut}\left(B_{n}\right)$.
We denote by $L_{R}^{p}(\tau)$ the subspace of $L^{p}(\tau)$ which consists of radial functions. That is, $f \in L_{R}^{p}(\tau)$ if and only if $f \in L^{p}(\tau)$ and $f(z)=f(|z|)$ for all $z \in B_{n}$. Throughout the paper, we follow notations in [1] and [7]. [1] is our main reference, and we've got motivations from it. One of the main theorems of [1] is that if $f L^{\infty}\left(B_{n}\right)$ satisfies $T f=f$, then f is M-harmonic. Here we generalise that result and investigate further properties of the operator T on $L^{\infty}\left(B_{n}\right)$ and $L^{1}(\tau)$ by finding the spectrum of T, which gives us an essential connection to our investigation of the iteration of the Berezin transform. The theorem of Katznelson and Tzafriri [5] on the spectrum of contractions plays an important role.

We start from basic properties of T on $L^{p}(\tau)$. The operator T is not bounded in $L^{1}(\nu)$ [1, 2.2], but the next lemma shows that T has nice behaviour on $L^{p}(\tau)$ for $1 \leqslant p \leqslant \infty$.

Lemma 1.1. For $1 \leqslant p \leqslant \infty, 1 / p+1 / q=1(p=\infty$ means $q=1)$:
(a) T is a linear contraction on $L^{p}(\tau)$.
(b) For $f \in L^{p}(\tau)$ and $g \in L^{q}(\tau)$

$$
\int_{B_{n}}(T f) g d \tau=\int_{B_{n}} f(T g) d \tau .
$$

Proof: (a) Let $f \in L^{1}(\tau)$. Then

$$
\begin{align*}
\int_{B_{n}}|T f(z)| d \tau(z) & =\int_{B_{n}}\left|\int_{B_{n}} f(w) \frac{\left(1-|z|^{2}\right)^{n+1}}{|1-\langle z, w\rangle|^{2 n+2}} d \nu(w)\right| d \tau(z) \\
& \leqslant \int_{B_{n}}|f(w)| \int_{B_{n}} \frac{\left(1-|w|^{2}\right)^{n+1}}{|1-\langle w, z\rangle|^{2 n+2}} d \nu(z) d \tau(w) \\
& =\int_{B_{n}}|f| d \tau \tag{1}
\end{align*}
$$

Let $f \in L^{\infty}\left(B_{n}\right)$. Then

$$
\begin{align*}
\|T f\|_{\infty} & \leqslant\|f\|_{\infty} \sup _{z \in B_{n}}\left|\int_{B_{n}} \frac{\left(1-|z|^{2}\right)^{n+1}}{|1-\langle z, w\rangle|^{2 n+2}} d \nu(w)\right| \\
& =\|f\|_{\infty} . \tag{2}
\end{align*}
$$

By (1), (2) and the Riesz-Thorin interpolation theorem, we get (a).
(b)

$$
\begin{aligned}
\int_{B_{n}}(T|f|)|g| d \tau & \leqslant\|T|f|\|_{p}\|g\|_{q} \\
& \leqslant\|f\|_{p}\|g\|_{q}<\infty \quad \text { by }(a)
\end{aligned}
$$

Hence by using Fubini's theorem and simple calculation, we get the proof of (b).

2. The spectrum of T

From Lemma 1.1, the operator T on $L^{\infty}\left(B_{n}\right)$ is the adjoint of T on $L^{1}(\tau)$, and since $L^{\infty}\left(B_{n}\right)=L^{1}(\tau)^{*}$, the spectrum of T on $L^{\infty}\left(B_{n}\right)$ is the same as the spectrum of T on $L^{1}\left(B_{n}, \tau\right)$. We get the following theorem.

THEOREM 2.1. The spectrum of T on $L^{\infty}\left(B_{n}\right)$ is

$$
\left\{\left.\frac{\Gamma(z+1) \Gamma(n+1-z)}{\Gamma(n+1)} \right\rvert\, 0 \leqslant \operatorname{Re} z \leqslant n\right\}
$$

Before proving Theorem 2.1, we need some preliminaries. Since $T f$ is radial for a radial f, by Lemma $1.1 T$ is a contraction on $L_{R}^{1}(\tau)$, which is a commutative Banach algebra under the convolution

$$
(f * g)(z)=\int_{B_{\mathbf{n}}} f\left(\varphi_{z}(w)\right) g(w) d \tau(w)
$$

for $f, g \in L_{R}^{1}(\tau)$. Hence if $f \in L_{R}^{1}(\tau)$, we can write $T f=f * h$ where

$$
h(z)=\left(1-|z|^{2}\right)^{n+1} \in L_{R}^{1}(\tau)
$$

From this, we get the following Lemma.
Lemma 2.2. The spectrum of T on $L_{R}^{1}(\tau)$ is

$$
\left\{\left.\frac{\Gamma(z+1) \Gamma(n+1-z)}{\Gamma(n+1)} \right\rvert\, 0 \leqslant \operatorname{Re} z \leqslant n\right\}
$$

Proof: For $f \in L_{R}^{1}(\tau)$, the Gelfand(or spherical) transform of f is defined by (see $[3,4])$

$$
\begin{equation*}
\widehat{f}(\alpha)=\int_{B_{\mathbf{n}}} f(z) g_{\alpha}(z) d \tau(z) \tag{1}
\end{equation*}
$$

where g_{α} is a spherical function defined by [7, 4.2.2]

$$
g_{\alpha}(z)=\int_{S} P^{\alpha}(z, \xi) d \sigma(\xi)
$$

$\widehat{f}(\alpha)$ exists if α lies in the vertical strip

$$
\Sigma_{\infty}=\{0 \leqslant \operatorname{Re} \alpha \leqslant 1\}
$$

which is the maximal ideal space of $L_{R}^{1}(\tau)$, and satisfies

$$
(f * g) \mathcal{}(\alpha)=\widehat{f}(\alpha) \widehat{g}(\alpha),\|\widehat{f}\|_{\infty} \leqslant\|f\|_{1} .
$$

(Note that g_{α} is bounded if and only if $\alpha \in \Sigma_{\infty}$ by [7, 1.4.10].) Since $T f=f * h$ where $h(z)=\left(1-|z|^{2}\right)^{n+1}$, the spectrum of T on $L_{R}^{1}(\tau)$ is the same as the spectrum of h in the commutative Banach algebra $L_{R}^{1}(\tau)$, which is $\left\{\widehat{h}(\alpha) \mid \alpha \in \Sigma_{\infty}\right\}$. From (1),

$$
\widehat{h}(\alpha)=\int_{B_{n}} h g_{\alpha} d \tau=\int_{B_{n}} g_{\alpha} d \nu
$$

By [1, Proposition 3.4 and 3.5]

$$
\int_{B_{n}} g_{\alpha} d \nu=\frac{\Gamma(1+n \alpha) \Gamma(n+1-n \alpha)}{\Gamma(n+1)}
$$

This completes the proof of the lemma.
Proof of Theorem 2.1: Since the operator T on $L_{R}^{\infty}\left(B_{n}\right)$ is the adjoint of T on $L_{R}^{1}(\tau)$, the spectrum of T on $L_{R}^{\infty}\left(B_{n}\right)$ is

$$
\begin{equation*}
\left\{\left.\frac{\Gamma(1+z) \Gamma(n+1-z)}{\Gamma(n+1)} \right\rvert\, 0 \leqslant \operatorname{Re} z \leqslant n\right\} . \tag{1}
\end{equation*}
$$

Now let λ be in the spectrum of T on $L^{\infty}\left(B_{n}\right)$. Then there exists a sequence $\left\{f_{k}\right\}$ in $L^{\infty}\left(B_{n}\right),\left\|f_{k}\right\|_{\infty}=1$, for which

$$
\lim _{k \rightarrow \infty}\left\|T f_{k}-\lambda f_{k}\right\|_{\infty}=0
$$

Let $\phi_{k} \in \operatorname{Aut}\left(B_{n}\right)$ satisfy $\left\|R\left(f_{k} \circ \phi_{k}\right)\right\|_{\infty}=1$ where $R f$ is the radialisation [7, 4.2.1] of f. Since T and R are contractions on $L^{\infty}\left(B_{n}\right)$,

$$
\begin{aligned}
\left\|T\left(R\left(f_{k} \circ \phi_{k}\right)\right)-\lambda R\left(f_{k} \circ \phi_{k}\right)\right\|_{\infty}= & \left\|R\left(T\left(f_{k} \circ \phi_{k}\right)\right)-R\left(\lambda f_{k} \circ \phi_{k}\right)\right\|_{\infty} \\
\leqslant & \left\|T\left(f_{k} \circ \phi_{k}\right)-\lambda f_{k} \circ \phi_{k}\right\|_{\infty} \\
= & \left\|\left(T f_{k}\right) \circ \phi_{k}-\lambda f_{k} \circ \phi_{k}\right\|_{\infty} \\
& (\text { by Proposition } 2.3 \text { of }[1]) \\
= & \left\|T f_{k}-\lambda f_{k}\right\|_{\infty} \rightarrow 0 \text { as } k \rightarrow \infty
\end{aligned}
$$

Hence λ is in the spectrum of T on $L_{R}^{\infty}\left(B_{n}\right)$.
Thus from (1), we complete the proof.
The next corollary plays an important role in this paper.
Corollary 2.3. Let $f \in L^{1}(\tau)$ and $g \in L^{\infty}\left(B_{n}\right)$. Then

$$
\lim _{k \rightarrow \infty}\left\|T^{k}(f-T f)\right\|_{1}=0 \quad \text { and } \quad \lim _{k \rightarrow \infty}\left\|T^{k}(g-T g)\right\|_{\infty}=0
$$

Proof: By [1, Proposition 3.7(b)], $\widehat{h}(\alpha)<1$ when $\alpha \in \Sigma_{\infty} \backslash\{0,1\}$ and $\widehat{h}(0)=$ $\widehat{h}(1)=1$. Hence the spectrum of T on $L^{1}(\tau)\left(\right.$ or $\left.L^{\infty}\left(B_{n}\right)\right)$ intersects the unit circle only at one point $z=1$. Hence by [5, Theorem 1$]$,

$$
\lim _{k \rightarrow \infty}\left\|T^{k}(I-T)\right\|=0 \text { on } L^{1}(\tau)\left(\text { or } L^{\infty}\left(B_{n}\right)\right)
$$

This completes the proof.

3. The iteration of T

Here we use the results of the previous section to get the behaviour of functions in $L^{\infty}\left(B_{n}\right)$ or its predual $L^{1}(\tau)$ under the infinite iteration of T. First we generalise one of the Main Theorems of [1].

Lemma 3.1. Let $f \in L_{R}^{1}(\tau)$. Then

$$
\lim _{k \rightarrow \infty} \int_{B_{n}}\left|T^{k} f\right| d \tau=0 \quad \text { if and only if } \int_{B_{n}} f d \tau=0
$$

Proof: Since

$$
\begin{gathered}
\int_{B_{n}} T^{k} f d \tau=\int_{B_{n}} f d \tau \text { for every } k \geqslant 0 \\
\lim _{k \rightarrow \infty} \int_{B_{n}}\left|T^{k} f\right| d \tau=0 \quad \text { implies } \quad \int_{B_{n}} f d \tau=0
\end{gathered}
$$

On the other hand, if we define

$$
L O_{R}^{1}=\left\{\dot{f} \in L_{R}^{1}(\tau) \mid \int_{B_{n}} f d \tau=0\right\}
$$

then

$$
(I-T) L_{R}^{1}(\tau) \subset L O_{R}^{1}
$$

Now let $\ell \in L_{R}^{\infty}\left(B_{n}\right)$ satisfy

$$
\int_{B_{n}}(f-T f) \ell d \tau=0 \quad \text { for every } f \in L_{R}^{1}(\tau)
$$

Then by Lemma 1.1

$$
\int_{B_{n}} f(\ell-T \ell) d \tau=0 \quad \text { for every } f \in L_{R}^{1}(\tau)
$$

Hence $T \ell=\ell$, which means ℓ is radial M-harmonic by [1]. Thus ℓ is a constant. Hence we get

$$
\int_{B_{\mathrm{n}}} g \cdot \ell d \tau=0 \quad \text { for every } g \in L O_{R}^{1}
$$

By the Hahn-Banach theorem, this means $(I-T) L_{R}^{1}(\tau)$ is dense in $L O_{R}^{1}$. Hence from Corollary 2.3,

$$
\lim _{k \rightarrow \infty} \int_{B_{n}}\left|T^{k} g\right| d \tau=0 \quad \text { for every } g \in L O_{R}^{1}
$$

THEOREM 3.2. Let $0 \leqslant \alpha_{k} \leqslant 1$ satisfy $\sum_{k=1}^{N} \alpha_{k}=1$ and let m_{k} be positive numbers for $k=1,2, \cdots, N$. If $f \in L^{\infty}\left(B_{n}\right)$ satisfies

$$
\left(\sum_{k=1}^{N} \alpha_{k} T^{m_{k}}\right) f=r f \quad \text { for some } r \text { with }|r|=1
$$

then f is M-harmonic.
Proof: Let

$$
S=\sum_{k=1}^{N} \alpha_{k} T^{m_{k}}
$$

and

$$
X=\left\{f \in L^{\infty}\left(B_{n}\right) \mid S f=r f\right\}
$$

Fix j which satisfies $0<\alpha_{j}<1$, and define U on $L^{\infty}\left(B_{n}\right)$ by

$$
U=\frac{1}{1-\alpha_{j}} \sum_{k \neq j} \alpha_{k} T^{m_{k}}
$$

If $f \in X$, then

$$
S T^{m_{j}} f=T^{m_{j}} S f=r T^{m_{j}} f
$$

Hence $T^{m_{j}} f \in X$ and in the same way $U f \in X$. Thus by Lemma 1.1, $T^{m_{j}}$ and U are contractions on the Banach space X. And on $L^{\infty}\left(B_{n}\right)$

$$
\begin{equation*}
S=\alpha_{j} T^{m_{j}}+\left(1-\alpha_{j}\right) U \tag{1}
\end{equation*}
$$

Let P be the operator on X defined by

$$
\begin{equation*}
P=\alpha_{j} T^{m_{j}}-\alpha_{j} r I \tag{2}
\end{equation*}
$$

Now let q be an extreme point of A^{*}, the closed unit ball of X^{*}. Then from (1)

$$
\begin{equation*}
r q=\alpha_{j}\left(T^{m_{j}}\right)^{*} q+\left(1-\alpha_{j}\right)\left(U^{*} q\right) \tag{3}
\end{equation*}
$$

Since $\left(T^{m_{j}}\right)^{*}, U^{*}$ are contractions on X^{*}, (3) forces

$$
q=\frac{\left(T^{m_{j}}\right)^{*} q}{r}=\frac{U^{*} q}{r}
$$

Therefore on X^{*},

$$
P^{*} q=\alpha_{j}\left(T^{m_{j}}\right)^{*} q-\alpha_{j} r q=0
$$

But by the Krein-Milman theorem, A^{*} is the closed convex hull of the set of its extreme points. It follows that $P^{*} \equiv 0$ on A^{*}. That is, $P \equiv 0$. Hence $T^{m_{j}}=r I$ on X.

Now pick $\ell \in L_{R}^{\infty}\left(B_{n}\right) \cap X$ and $g \in L_{R}^{1}(\tau)$ with

$$
\int_{B_{n}} g d \tau=0 .
$$

Then

$$
\lim _{k \rightarrow \infty}\left|\int_{B_{n}} T^{m_{j} k} g \cdot \ell d \tau\right| \leqslant\|\ell\|_{\infty} \lim _{k \rightarrow \infty} \int_{B_{n}}\left|T^{m_{j} k} g\right| d \tau=0 \quad \text { by Lemma 3.2 }
$$

But for all $k \geqslant 0$,

$$
\begin{aligned}
\int_{B_{n}} T^{m_{j} k} g \cdot \ell d \tau & =\int_{B_{n}} g \cdot T^{m_{j} k} \ell d \tau \\
& =r^{k} \int_{B_{n}} g \cdot \ell d \tau
\end{aligned}
$$

Hence

$$
\int_{B_{n}} g \cdot \ell d \tau=0
$$

which implies that ℓ is a constant. For an arbitrary $f \in X$, consider the radialisation of $R\left(f \circ \varphi_{z}\right)$.

$$
\begin{aligned}
T^{m_{j}}\left(R\left(f \circ \varphi_{z}\right)\right) & =R\left(T^{m_{j}}\left(f \circ \varphi_{z}\right)\right)=R\left(T^{m_{j}} f \circ \varphi_{z}\right) \\
& \text { (by Proposition } 2.3 \text { of }[1]) \\
& =r R\left(f \circ \varphi_{z}\right) .
\end{aligned}
$$

Hence

$$
R\left(f \circ \varphi_{z}\right) \in X \cap L_{R}^{\infty}\left(B_{n}\right)
$$

which means $R\left(f \circ \varphi_{z}\right)$ is a constant. Hence for any $w \in B_{n}$

$$
R\left(f \circ \varphi_{z}\right)(w)=R\left(f \circ \varphi_{z}\right)(0)=f\left(\varphi_{z}(0)\right)=f(z)
$$

By [7, 4.2.4], f is M-harmonic. This proves the theorem.
Corollary 3.3. If $f \in L^{1}(\nu)$ satisfies $T f=r f$ for some r with $|r|=1$ and $R(f \circ \phi) \in L^{\infty}\left(B_{n}\right)$ for every $\phi \in \operatorname{Aut}\left(B_{n}\right)$, then f is M-harmonic.

Proof:

$$
T(R(f \circ \phi))=R(T(f \circ \phi))=R(T f \circ \phi)=r R(f \circ \phi)
$$

Thus $R(f \circ \phi)$ is a constant by Theorem 3.2. Then by the same argument as in the proof of Theorem 3.2, we can see that f is M-harmonic.

The next two propositions are about the iteration of T on $L^{1}(\tau)$. We need the following lemma first.

Lemma 3.4. If $f \in L^{1}(\tau)$ satisfies $T f=r f$ for some $|r|=1$, then $f \equiv 0$.
Proof:

$$
\begin{aligned}
|f(z)| & =|T f(z)| \leqslant \int_{B_{n}}|f(w)| \frac{\left(1-|z|^{2}\right)^{n+1}}{|1-\langle z, w\rangle|^{2 n+2}} d \mu(w) \\
& \leqslant \sup _{z \in B_{n}}\left(\frac{\left(1-|z|^{2}\right)\left(1-|w|^{2}\right)}{|1-\langle z, w\rangle|^{2}}\right)^{n+1} \int_{B_{n}}|f| d \tau \\
& =\int_{B_{n}}|f| d \tau<\infty
\end{aligned}
$$

So f is bounded, thus f is M-harmonic by Theorem 3.2. But the constant zero is the only M-harmonic function which belongs to $L^{1}(\tau)$.

Proposition 3.5. For $f \in L^{1}(\tau)$, if $\left\{T^{k} f\right\}$ has a subsequence that converges weakly, then

$$
\lim _{k \rightarrow \infty}\left\|T^{k} f\right\|_{1}=0
$$

Proof: Let $\left\{T^{m_{k}} f\right\}$ be a subsequence that converges weakly to some $g \in L^{1}(\tau)$. Then for any $\ell \in L^{\infty}\left(B_{n}\right)$ we get

$$
\begin{aligned}
\int_{B_{n}}(g-T g) \cdot \ell d \tau=(& \left.\int_{B_{n}} g \cdot \ell d \tau-\int_{B_{n}}\left(T^{m_{k}} f\right) \cdot \ell d \tau\right) \\
& +\left(\int_{B_{n}}\left(T^{m_{k}} f\right) \cdot \ell d \tau-\int_{B_{n}}\left(T^{m_{k}+1} f\right) \cdot \ell d \tau\right) \\
& +\left(\int_{B_{n}}\left(T^{m_{k}+1} f\right) \cdot \ell d \tau-\int_{B_{n}}(T g) \cdot \ell d \tau\right)
\end{aligned}
$$

As $k \rightarrow \infty$ the first and the third terms of the right hand side converge to zero since $T^{m_{k}} \rightarrow g$ weakly and the second term converges to zero by Corollary 2.3. Hence $T g=g$, which means $g \equiv 0$ by Lemma 3.4. Thus by Masur's Theorem, for any $\varepsilon>0$ there exists an operator

$$
S=\sum_{j=1}^{N} \alpha_{j} T^{m_{k_{j}}} \quad\left(0 \leqslant \alpha_{j} \leqslant 1, \sum \alpha_{j}=1\right)
$$

on $L^{1}(\tau)$ such that $\|S f\|_{1}<\varepsilon$. For $k \geqslant 0$,

$$
\left\|T^{k} f\right\|_{1} \leqslant\left\|T^{k} S f\right\|_{1}+\left\|T^{k} f-T^{k} S f\right\|_{1}
$$

where

$$
\left\|T^{k} S f\right\|_{1} \leqslant\|S f\|_{1}<\varepsilon
$$

and

$$
\lim _{k \rightarrow \infty}\left\|T^{k} f-T^{k} S f\right\|_{1}=0
$$

by Corollary 2.3. Therefore,

$$
\lim _{k \rightarrow \infty}\left\|T^{k} f\right\|_{1}=0
$$

and this completes the proof.
However $\lim \int_{B_{n}}\left|T^{k} f\right| d \tau$ exists for all $f \in L^{1}(\tau)$ since T is a contraction on $L^{1}(\tau)$. When f is radial we get a similar result to [2].

Proposition 3.6. If $f \in L_{R}^{1}(\tau)$, then

$$
\lim _{k \rightarrow \infty}\left\|T^{k} f\right\|_{1}=\left|\int_{B_{\mathbf{n}}} f d \tau\right|
$$

Proof: Let

$$
A=\left\{\ell \in L_{R}^{\infty}\left(B_{n}\right) \mid\|\ell\|_{\infty} \leqslant 1\right\}
$$

and $E_{k}=T^{k} A$,

$$
E=\bigcap_{k=1}^{\infty} E_{k}
$$

Then for $f \in L_{R}^{1}(\tau)$,

$$
\begin{aligned}
\int_{B_{n}}\left|T^{k} f\right| d \tau & =\sup \left\{\left|\int_{B_{n}}\left(T^{k} f\right) \cdot \ell d \tau\right| \mid \ell \in A\right\} \\
& =\sup \left\{\left|\int_{B_{n}} f \cdot\left(T^{k} \ell\right) d \tau\right| \mid \ell \in A\right\}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|T^{k} f\right\|_{1} \geqslant \sup \left\{\left|\int_{B_{n}} f \cdot h d \tau\right| \mid h \in E\right\} \tag{1}
\end{equation*}
$$

On the other hand, for any $\varepsilon>0$ and $k \geqslant 1$ there exists $h_{k} \in A$ with

$$
\begin{aligned}
\left\|T^{k} f\right\|_{1} & \leqslant\left|\int_{B_{n}}\left(T^{k} f\right) \cdot h_{k} d \tau\right|+\varepsilon \\
& \leqslant\left|\int_{B_{n}} f \cdot\left(T^{k} h_{k}\right) d \tau\right|+\varepsilon
\end{aligned}
$$

Since E_{k} is weak * compact and $E_{k} \downarrow E, E$ is weak * compact. Thus if g is a weak * limit of a subsequence $\left\{T^{k_{j}} h_{k_{j}}\right\}$ of $\left\{T^{k} h_{k}\right\}$, then $g \in E$ and

$$
\begin{aligned}
\left|\int_{B_{n}} f \cdot g d \tau\right| & =\lim _{j \rightarrow \infty}\left|\int_{B_{n}} f\left(T^{k_{j}} h_{k_{j}}\right) d \tau\right| \\
& \geqslant \lim _{j \rightarrow \infty}\left\|T^{k_{j}} f\right\|_{1}-\varepsilon
\end{aligned}
$$

Hence

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|T^{k} f\right\|_{1} \leqslant \sup \left\{\left|\int_{B_{n}} f \cdot h d \tau\right| \mid h \in E\right\} \tag{2}
\end{equation*}
$$

From (1), (2) we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|T^{k} f\right\|_{1}=\sup \left\{\left|\int_{B_{n}} f \cdot h d \tau\right| \mid h \in E\right\} \tag{3}
\end{equation*}
$$

From (3) and Lemma 3.1, if $f \in L_{R}^{1}(\tau)$ then

$$
\int_{B_{n}} f d \tau=0 \quad \text { if and only if } \int_{B_{n}} f \cdot h d \tau=0
$$

for every $h \in E$. Hence

$$
E=\{c \in \mathrm{C}| | c \mid \leqslant 1\}
$$

and we can rewrite (3) as

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left\|T^{k} f\right\|_{1} & =\sup \left\{\left|\int_{B_{n}} c f d \tau\right|| | c \mid \leqslant 1\right\} \\
& =\left|\int_{B_{n}} f d \tau\right|
\end{aligned}
$$

Using Proposition 3.5 and 3.6 , it follows that there exists $f \in L^{\infty}\left(B_{n}\right)$ for which $\lim T^{k} f$ does not exist even pointwise. To see this, assume that $\lim T^{k} \ell$ exists for every $\ell \in L^{\infty}\left(B_{n}\right)$. Then for any $g \in L^{1}(\tau)$,

$$
\lim _{k \rightarrow \infty} \int_{B_{n}}\left(T^{k} g\right) \ell d \tau=\lim _{k \rightarrow \infty} \int_{B_{n}} g\left(T^{k} \ell\right) d \tau
$$

exists. This means $\left\{T^{k} g\right\}$ converges weakly since $L^{1}(\tau)$ is weak complete, which implies that, by Proposition 3.5,

$$
\lim _{k \rightarrow \infty}\left\|T^{k} g\right\|_{1}=0
$$

for any $g \in L^{1}(\tau)$, which is not true by Proposition 3.6.
The next theorem is about the subspace of $L^{\infty}\left(B_{n}\right)$ for which $\lim T^{k} f$ exists with the L^{∞}-norm, which is the unit ball analogue of [6 , Theorem 2.7] in the polydisc.

Theorem 3.7. Let X be the subspace of $L^{\infty}\left(B_{n}\right)$ defined by

$$
X=\left\{f \in L^{\infty}\left(B_{n}\right) \mid \lim _{k \rightarrow \infty} T^{k} f \text { exists }\right\}
$$

Then

$$
X=H \oplus N
$$

where

$$
\begin{aligned}
& H=\left\{f \in L^{\infty}\left(B_{n}\right) \mid f \text { is } M \text {-harmonic }\right\} \quad \text { and } \\
& N=\overline{(I-T) L^{\infty}\left(B_{n}\right)} .
\end{aligned}
$$

Proof: By Corollary 2.3, we get

$$
\lim _{k \rightarrow \infty}\left\|T^{k} g\right\|_{\infty}=0 \quad \text { for all } g \in N
$$

and for $h \in H, T h=h$. Hence

$$
H \cap N=\{0\}
$$

Let P be the operator on X defined by

$$
(P f)(z)=\lim _{k \rightarrow \infty}\left(T^{k} f\right)(z) \quad \text { for } f \in X
$$

Since T and P commute on X by the Dominated Convergence Theorem, if $f \in X$ then

$$
T(P f)=P(T f)=\lim _{k \rightarrow \infty} T^{k+1} f=P f
$$

Hence by Theorem 3.2, $P f \in H$. Since $f=P f+(f-P f)$, it remains to show that $f-P f \in N$ when $f \in X$. Let $d \in L^{\infty}\left(B_{n}\right)^{*}$ satisfy $d(g-T g)=0$ for all $g \in L^{\infty}\left(B_{n}\right)$, then we get $T^{*} d=d$. Hence

$$
\begin{equation*}
d(f-P f)=d\left(T^{k}(f-P f)\right) \text { for all } k \geqslant 0 \tag{1}
\end{equation*}
$$

But

$$
\lim _{k \rightarrow \infty}\left\|T^{k}(f-P f)\right\|_{\infty}=0
$$

By taking the limit as $k \rightarrow \infty$ in (1), we get $d(f-P f)=0$. Hence by the Hahn-Banach theorem, $f-P f \in N$. This completes the proof of Theorem 3.7.

References

[1] P. Ahern, M. Flores and W. Rudin, 'An invariant volume mean value property', J. Funct. Anal. 111 (1993), 380-397.
[2] Y. Derriennic, 'Lois 《zéro ou deux > pour les processus de Markov', Ann. Inst. Henri Poincaré XII (1976), 111-129.
[3] S. Helgason, Topics in harmonic analysis on homogeneous spaces (Birkhäuser, Boston, MA, 1981).
[4] S. Helgason, Groups and geometric analysis. Integral geometry, invariant differential operators and spherical functions, Pure and Applied Mathematics 113 (Academic Press, Orlando, FL, 1984).
[5] Y. Katznelson and L. Tzafriri, 'On power bounded operators', J. Funct. Anal. 68 (1986), 313-328.
[6] J. Lee, 'The iteration of the Berezin transform in the polydisc', Complex Variables Theory Appl. (to appear).
[7] W. Rudin, Function theory in the unit ball of $\mathbf{C}^{\mathbf{n}}$ (Springer-Verlag, Berlin, Heidelberg, New York, 1980).

Global Analysis Research Center
Department of Mathematics
Seoul National University
Seoul 151-742
Korea

