J. Appl. Prob. 45, 800-817 (2008)
Printed in England
© Applied Probability Trust 2008

FUNCTIONAL LARGE DEVIATIONS
AND MODERATE DEVIATIONS FOR
MARKOV-MODULATED RISK
MODELS WITH REINSURANCE

FUQING GAO * ** AND
JUN YAN,* *** Wuhan University

Abstract

We establish a functional large deviation principle and a functional moderate deviation
principle for Markov-modulated risk models with reinsurance by constructing an
exponential martingale approach. Lundberg’s estimate of the ruin time is also presented.
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1. Introduction

1.1. Markov-modulated risk model

Firstly, let us introduce the Markov-modulated risk model (cf. [13]). A process {N(¢), t > 0}
is said to be a point process if

oo
N(@) = Zl{Tzﬁ}v

=1

where {T;, [ > 1} is a sequence of stopping times such that 77 > 0 almost surely (a.s.),
T; < Ti41 on{T; < oo} forany!/ > 1, and lim;_, o, 7; = o0 a.s. A point process {N (), t > 0}
is said to be a Markov-modulated Poisson process if it is a doubly stochastic Poisson process with
intensity Ay, where J = {J(¢), t > 0} is an irreducible continuous-time Markov chain with
finite state space E and the A;, i € E, are positive numbers, i.e. the conditional characteristic
function of {N (¢), ¢ > 0} has the following expression:

t
E(explid (N(t) — N(s))} | F) = exp{(ei" -1 / AJw) du},

where 5, =o(N(u), u <s)vo(J(u), u > 0).

Let 7;, i € E, denote the stationary distribution of the Markov chain J.

Let {U;, I > 1} be a sequence of positive random variables, and let G;, i € E, be probability
distributions with supports in [0, +00). Assume that, for alli € E, u; := fOOOxGi(dx) < 0
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and that
e U, I >1,and {N(t), t > 0} are conditionally independent given J,
e foreach/ > 1, the conditional distribution of U; given J is G y (7).

A reinsurance policy is a measurable function from R : [0, co) x [0, co) — [0, co) which
satisfies 0 < R;(«) < o, where R;(a) = R(t, ®). The condition 0 < R;(x) < o represents
the part of the claim that the company pays when a claim of size « occurs at time ¢.

A Markov-modulated risk process with a reinsurance policy R is defined by

Xz() =x+ pr(t) — Sz(1),

where x > 0 is the initial capital; pg(t) = pt — qx(¢) is the deterministic premium, p is a
constant premium rate which has the form

p=0+1)Y mikip
icE
for some relative safety loading k > 0, and g®(¢) is the premium up to time ¢ paid by the
insurer to the reinsurer which has the form

t [ee)
gm0 = (1 +m 3wk /0 (m— fo Rs<x>Gi(dx>> ds

icE
for some relative safety loading n > 0; and

N(1t)

Sa(t) =) Ry (U)

=1

is the aggregate claims process, {R7,(U;), [ > 1} is the sequence of claims, N (¢) is the claims
number process, which is a doubly stochastic Poisson process with intensity A (), and J =
{J(t), t = 0} is an irreducible continuous-time Markov chain with finite state space E.

The Markov-modulated risk process with reinsurance is a generalization of the classical case.
For example, if G; = G and A; = Aforalli € E, and {U;, [ > 1}, {N(¢), t > 0}, and J are
independent, then S (¢) is the classic case. Recently, Macci and Stabile [13] studied the large
deviations and ruin probability of the Markov-modulated risk process with reinsurance and
obtained a functional large deviation principle for the classic case. Large deviations of some
risk processes and applications of large deviations to insurance have received much attention
in the research literature; see, for example, [1, p. 306], [2], [6], [9, p. 85], [12], [13], and [14].
In this paper we present an exponential martingale method to establish large deviations and
moderate deviations for risk processes, and obtain the functional large deviation principle,
the functional moderate deviation principle, and Lundberg’s estimate of the ruin time for the
Markov-modulated risk process with reinsurance.

The rest of the paper is organized as follows. In Subsection 1.2 we introduce some large
deviations terminology, the Gértner—Ellis theorem, and a result on functional large deviations
used in this paper. In Section 2 we construct an exponential martingale associated with the
Markov-modulated risk model which plays an important role in this paper. The functional
large deviation principle is established in Section 3. The moderate deviations are studied in
Section 4. In Section 5 we give an estimate for the ruin probability (Lundberg’s estimate) using
the exponential martingale method.
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1.2. Preliminaries

In this subsection we introduce large deviations (cf. [4, Chapter 2] and [5, Chapter 4]). Let S
be a metric space with metric d, and let {Y,, : & > 0} be a family of S-valued random variables.
Denote the law of Y, by uq. Let A(x) be a sequence of positive real numbers satisfying
Ma) »> oo asa — oo.

(i) A function I (-): § — [0, 4o¢] is said to be a rate function if it is lower semicontinuous
and it is said to be a good rate function if its level set {x € S: I (x) < a} is compact for
alla > 0.

(i) The family of probability measures {it,: @ > 0} (or the family {¥,: « > 0}) is said to
satisfy a large deviation principle (LDP) with speed A(«) and rate function 1 (-) if, for
any closed set F' and open set G in S,

1
li 1 F} < — inf I(x), lim inf
im sup ) og ua{F} < Inf (x) im in )

In short form, we say that (uq, 1(-), 1/1()) satisfies an LDP.

log 1te{G} > — inf I ().
xeG

(iii) The family {u, : @ > 0} is exponentially tight with speed A () if, for every L > 0, there
is a compact set K, in § such that

1
lim sup
o—> 00 Ol)

log ue(Ky) < —L.

Lemma 1.1. (Girtner-Ellis theorem.) Let {Yy, o > 0} be a family of random variables taking
values in R, Suppose that, for any y € R?,

) 1
AQy) = lim "

@ log E(exp{A(a)(Yy, y)}) € (—00, +0o0]

exists and that A(-) is finite in a neighborhood of 0, where (x,y) = Z?:l xiyi forx,y € R4,
If A is essentially smooth then {Yy, o > 0} satisfies the LDP with speed A(a) and rate function
AN* defined by
A*(x) = sup {{x,y) — A}
yeRd
In particular, if A is finite and Gdteaux differentiable then {Y,, o > 0} satisfies the LDP
with speed A(«) and rate function A*.

Let D([0, 1]) be the space of cadlag functions (i.e. those which are right continuous with left
limits) from [0, 1] to R equipped with the uniform metric d(x, y) := sup,c(g 1} X (@) — y(©)[.

Lemma 1.2. (cf. [7].) Let {uq, ¢ > 0} be a family of probability measures on D([0, 1]).
For any finite subset {t1,...,t;} C [0, 1], set uf)} """ = JTe 71,11””,[, where w4t X —
(X1, - - ., Xy) denotes the projection from D([0, 1]) to R. If, for any finite subset {t|, ..., t;} C
[0, 1], {MQ """ tl, a > 0} satisfies the LDP with speed \(a) and rate function Iy, . . (x1, ..., X1)

in R! and for any § > 0,

1
lim sup limsup ) log,ua( sup |x(¢) —x(s)| > 8) = —00,

e>0,¢[0,1] a—o0 o s<t<s+e

then {q, o« > 0} satisfies the LDP on D([0, 1]) with speed A(a) and good rate function
defined by

I(x) = sup Iy Xy s ooy X))
{t1,..., 1}Cl0,1]
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2. Exponential martingale and Laplace functional

The main purpose of this section is to construct an exponential martingale associated with
the Markov-modulated risk model with reinsurance and to calculate the Laplace functional of
the model.

Theorem 2.1. (i) Set

t o
M, := Sz (t) - fo fo Ru ()G 1y (dx)A s oy dut.
Then {M;, §;, t > O} is a martingale, where §; = o(N(u), u < s) Vo(J(u),u > 0) Vv
o (U, 1 < N(s)).
(i1) If, for some § > 0,

o0
sup/ e?* G, (dx) < 0o
ice Jo

then, for any measurable function 0(t) satisfying sup,-, 0(t) <4,

t t o0
Zf = exp{/(; O(u)dSz(u) —/0 /0 (exp{@ @) Ry (x)} — DGy (dx)X ) du}

is a {$¢}-martingale. Equivalently,

t t poo
E(exp{/o 0 (u) dSR(u)} ‘ J) = exp{/o /0 (exp{@ W) Ry (x)} — DG juy (dx)A j ) du}.

Proof. (i) Forany s < ¢,

N()
E(sm(rng»s)zsﬁ(swla( > RT,(Un‘g,s)
I=N(s)+1
N(t)—N(s)
=Sﬂ(s>+E( Y Ry (Unes) ‘ g)

=1

and
N()—N(s)

E( Z RTN(S)-H (UN(S)-‘rl) ’ 9’5)

=1

m
> EMna)-N)=m) Ry (Un1) | §s)
=1

o

3
X

M

EMn)-N )21} Ry (Uns)+1) | Gs)

~
—

M

oo
E<1{Tzsr—s}/0 Ry )G (745 (%) ‘ 93)

~
I

1

= E(/O l(O,t—s](u) /() Rs1u (X)Gl(s-i-u)(dx) d]\?(u) ‘ 9\8‘)7
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where
Nw)=N(G+u)—N(s), u>0, and T;=inf{u>0, Nu)=1}.

Since N(u) is a doubly stochastic Poisson process with intensity A j(s4u), N@u) — x J(s+u) 18
an {f'u := Fs4u, u > 0}-martingale and so
,)

o0 o0
= E(/o 1(0,:—3](M)/0 R4 (X)G j(s4u)(dX)A g (54u) du

E( /O 1041 (@0) /O Ry (0)G 140 (d) AN (1)

)

t oo
-/ fo Ru(9)G (@) o dit.
N
Therefore, {Sg (t) — fé fooo Ry (x)G ju)(dx)A ) du} is a {G;}-martingale.

(i) Set L, = fot 0(u)dSx (). Applying Itd’s formula (cf. [11, p. 242]) to exp{L,}, we have

1
exp(L) = 1+ [ explL,-1000 dSal) + 3 explLu-)exp(OLL) ~ 1= BL,)
0

O<u<t

t
=1 +/ exp{L,—}0(u)dSxr(u)
0

+ ) exp{Ly}exp{0 @) Ru(Unw)} — 1 — 00 Ru(Unw) Lanw=1)

O<u<t

t t oo
=1 +/ exp{L,—}6(u)dM, +/ / exp{L,—}0 )Ry (x)G ju)(dx)A ) du
0 o Jo

+ ) exp{Ly_, }expl(T) Ry, (UD} — 1 = 0(T) Ry (UD) Lzy=ay»
=1

where AL, = L, — L,_. Therefore, the conditional expectation E(exp{L,} | J) of exp{L;}
with respect to o (J(s), s > 0) satisfies the following equation:

t o0
E(exp(Le) | J) = 1 + /0 /0 E(exp{Lu_) | 100 Ru ()G () A y dit

+ ZE(GXP{LT,_I}(GXP{G(TI)RT,(UZ)} — 1 =0T Ry, (UD) Yigj<ry | J).
1=1
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Since

> EBlexp{Lz;_, }exp{f(T) Ry; (U} — 1 — 0(T) Ry; (UN) 1izi=ry | J)
=1

= Zf E(exp{L7;_, }(exp{6(T) Ry, (x)} — 1 — O(T) Ry, (%)) Li7y<1y Gy (1) (dx) | )
I=1

/)
/)

=, /0 E(exp{L,-} | J)(exp{0(u)Ru(x)} — 1 — 0(u) Ru(x))G j(u)(dx) Ay ) du,

=E</ f exp{Ly—Hexp{0 )Ry (x)} — 1 = 0() Ry ()) G sy (dx) AN ()

</ / exp{Ly—}(exp{@ @) Ry (x)} =1 = O@) Ry (x))G yu)(dx)A () du

we have

t [ee}
E(exp{L:} | /) =1 +/O /0 E(exp{Ly,-} | J)(exp{0(u) Ry (x)} = )G ju)(dx)Ayw) du,

which implies that

t oo
E(exp{L:} | J) = exp{/o /0 (exp{@@) Ry (x)} — )Gy (dx)A j ) du}.

Corollary 2.1. [f; for some § > 0,

o0
sup/ e G;(dx) < o0
ieE JO

then, foranym > 1,0 =1t <t <--- < ty,and0y,...,0, € (—00,96),

N()

E(exp{i@l > RTn(Un)HJ>

=1 n=N(_1)+1
m 1 o0
=exp{2/ /0 (exp{@,Ru(x)}—1)G,(u)(dx))\,(u)du}. 2.1)
=1

Furthermore,

m n—t—1 o0
[TintEieso] [ [ @pt61Russ 001 = 0G0 @020 ) )
=1

N()

_E(exp{i@l > RTn(U,,)D

=1 n=N(-1)+1

t1—t—1 [ee]
< HsupE (exp{/o /0 (explO Ryt ()} = DG juy(dx)A ) du}) 2.2)

lteE

where E;(-) := E(- | J(0) =i).
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Proof. Take 0(u) = }":1 01 1¢,_, 11(u). Then Theorem 2.1(ii) yields (2.1). By the Markov
property of J, it is easy to obtain (2.2).

Remark 2.1. Macci and Stabile [13] gave a representation of E(exp{6# Sz (¢)}). Our proof for
the general result, (2.1), is based on Itd’s formula.

3. Large deviations

In this section we establish a functional LDP for the process Sz (f). In order to obtain the
LDP of S®(t), Macci and Stabile [13] introduced the following two assumptions.

(H1) Let R: [0, 00) — [0, o0) be a measurable function. Then, for all & > 0, there exists 7,
such that, for all t > 1., we have |R;(x) — Ié(x)| <e(x+1)forall x > 0.
(H2) Forallr > 0,
o0

supf e*G;(dx) < oo.

ieE JO
We will prove that {Sg (a?)/ct|se0,1], @ > 0} satisfies a functional LDP in D([0, 1]) under
assumptions (H1) and (H2).

Let O = (qij)i, je ke be the intensity matrix of the Markov chain {J(¢), ¢ > 0}. For any vector

v = (vj)iek, set Q(v) = (qij + 8;jvi)i,jee and let A(v) be the logarithm of the simple and
positive eigenvalue of the exponential matrix e2(). By applying the Feymnan—Kac formula
we obtain (cf. [3] and [5, Corollary 4.2.27]), for any j € E,

t
lim llogEj (exp{/ VJ () du}) = A(v). 3.1
0

t—o00 t

Since, forany j € E,

t o0
inf E; <exp{/ )\,](u)/ (exp{OR,(x)} — 1)G ju)(dx) du})
icE 0 0

< Ej(exp{6 Sz ()})
t o0
<supE; <exp{/ )\,J(u)/ (exp{OR, (x)} — )G ju)(dx) du})
icE 0 0
under assumptions (H1) and (H2), (3.1) implies that (see [13] for detail), for any j € E and
any 6 € R,

[lim %logEj(eXP{GSR(t)}) = A((ki / oo(e“é(” - 1)G,-(dx)> > (3.2)
- 0 icE

A*(x) = sup{@x - A<<)»,~ /w(eeé(Z) — 1)G,~(dz)> )}
6eR 0 ieE

Lemma 3.1. Let assumptions (HI) and (H2) hold. Then, foranym > 1 and 0 =ty <t <
< - <ty <1, {(Se(at1)/a, Sr(atr)/a, ..., Sr(aty) /o), o > 0} satisfies the LDP
speed o and rate function I ,(1 defined by

Define

----- Im

m
ld Xl — X[—1
1 @) =Y (- m)A*(—),

""" t—1_
= 1 —t-1

where xo = 0.
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Proof. For any (61, 65, ...,0,) € R", by (2.2) we have

m 1
> —n-y) lim
=1

a—oo aty —1j—1)

) alt—t-1) 00
x log llgg E; (exp{/o ?»J(u)/o (exp{0 Ru+ay_ ()} — DG ) (dx) dM})

m N (aty)

1
< aangoalogE(exp{Zez Z RT,,(Un)}>

I=1 n=N(atj—1)+1

< 1
<D (—n-y) lim
I=1

a—oo oty — tj—1)

altj—t—1) 0

x logsup E; (exp{/ )»J(u)/ (exp{6 Rutay_, (X)} — I)Gj(u)(dX)du}).
ieE 0 0

Therefore, (3.2) implies that

m N(aty)

1
Ayt @1, ) : algrg();logE(exp{ZG; > RTn(Un)})

=1 n=N(at;—1)+1

m

Z(lz —t1—1)A<<)»i/O (exp{O/R(x)} — 1)Gi(dx)) )
ieE

=1

By the Girtner—Ellis theorem (cf. [4, p. 43]),

1 1 1
(—Sﬁ(“tl)a —(Sg(an) — Sg(atr)), ..., —(Sg(aty) — SR(‘”m—l)))
o o o

satisfies the LDP with speed « and rate function A7, , (-) defined by

.....

m

Af (X1, ... Xp) = sup {Zem — Aot 01, - ..,em>}
©O1,...0meR™ L2
” X,
=> - tl_l)A*< L )
= =11

Now, since
1 1 1
—Sg(at), =Sz(an), ..., —Sg(aty,)
o o o
1 1 1
= &SR(atl)a ;(SR(OUZ) — Sg(ar)), ..., &(Sﬂ(atm) — Sg(atm-1)) |7,
where the matrix T = (#1x)1</, k<m satisfies tjy = 1 forl < k and 1z = 0 for [ > k, we obtain

the conclusion of the lemma from the contract principle.
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Theorem 3.1. Let assumptions (HI) and (H2) hold. Then {P((Sx(at)/a)ie0,1] € -), o > 0}
satisfies the LDP on D([0, 1) with speed « and rate function I¢? defined by

1
I(ld)(f) _ / A*(f(t)) dt if f(0) =0and f is absolutely continuous,
- 0

+00 otherwise.

Proof. Firstly, using the standard argument (cf. [4, p. 180]), we obtain
Yy g g

19D £y = sup sup > - tl_l)A*<f(tl) - f(l1—1)>_

m=1 O=t9<ti<py<-<ty<l 1 I — 1

Therefore, by Lemma 1.2 and Lemma 3.1, we only need to prove the exponential tightness,
i.e. for any ¢ € [0, 1] and any n > O,

1 1
lim lim — logP<— sup |Sg(at) — Sgr(as)| > n) = —00. 3.3)
8J0 =00 o O p<g<i+§

By Theorem 2.1, forany 8 € R, (Zf})_1 Z,ﬁﬂ, s > 0, is a martingale under probability P(- | J),
where

t o0
Zﬁ = exp{ﬂSJq(t) —/0 /0 (exp{BR,(x)} — DGy (dx) Ay du}.

Then, by the maximum inequality for a martingale, we have, for any 8 > 0,

1 1
—10gP(— sup |Se(at) — Sr(as)| = 77)

o O r<g<t+$

= 1 logP<l sup (Sz(ar) — Szr(as)) > 77)

o O t<s<t+8

1

< - logE<P< Sup (Zl) ™' Zi ) 2 P17 0CP) ‘ J))
o 0<s<$§
1 B _

< alogE(e apn+edC B g ((z8) 125(z+8) 1))

=—pBn+3C(B),

where

C(B) :=supA; /m(eﬁx — 1)G;(dx).
ieE 0

Now letting & — oo firstly, 6 | 0 secondly, and § — oo finally, we obtain (3.3).

4. Moderate deviations

In this section we establish a functional moderate deviation principle for the process Sz (¢).
Throughout this section, {a(t), ¢ > 0} denotes a positive function satisfying
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We introduce the following assumptions.
(H3) There exist two nonnegative measurable functions R (x) and m(u) such that, forallu > 0
and x > 0, |R,(x) — R(x)| <m(u)(x + 1) and

1 t
lim m(u) =0, lim —f m(u)du = 0.
0

U—00 =00 q(t)

(H4) There exists § > 0 such that
o0
sup/ e G (dx) < oo.
ieE JO

For example, if R;(x) = c(1 —1/(14+1)Y)x?, where ¢, T € (0, 1]and y > 0, then (H3) holds
for ﬁ(x) =cx%,m(u) = 1/(1 +u)?, and a(r) = t#, where max{l — y, %} <B<l.

Since {J(¢), t > 0} is a uniformly ergodic Markov process with finite state space E, the
following result is known (cf. [10] and [15]).

Lemma 4.1. Let P(t) = (pij(t))i,jeE = ¢'? be the semigroup of the Markov chain J.

(1) There exists ¢ > 0 such that, for any function f on E,

<e “sup|f(@)l.
ieE

sup
ieE

Y Pk fR) =D 7 f())

keE JjeE

(ii) For any j € E and any function f on E,

1 f ?
lim - E; (/O (fF(J ) — En(f(J(u))))du>

t—o00 t

=2 /0 D (f (i) - me(k)) > pirtu) £ (k) du.

ieE keE keE
(iii) For anyi € E and any function f on E,

. o
lim 3
a—00 a~ (o)

= ;/OOO Zm(f(i) - ij(k)) Zpik(u)f(k) du.

ieE keE keE

Cl(Ol) at
log E; (eXp{T/O (f(Jw) — En(f(J(u))))du})

Remark 4.1. Set R; = [;° R(x)G;(dx). Then, by Lemma 4.1,

t—>oo t

1 L . 2
of := lim —En<(/ (R —En(RJ(u>kJ(L¢)))du> )
0
exists and

o0
01222/0 Zﬂj()&jRj_Z”i)\iRi>Zij(t))¥kdet-

jeE ieE keE
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Lemma 4.2. Let assumptions (H3) and (H4) hold. Set Sz (-) = Sz (-) — Ex(Sz(-)). Then, for
any je E,0 eR, andt > 0,

o a(a)

lim
a—00 (12((1)

, < _ 1o
logE;| exp,6 Se(at)t | = 59 o°t,

o

2

where o0~ = 012 + 022 and

of = Z(mki /OOO ﬁz(x)Gi(dx)).

ieE

Proof. By Theorem 2.1, forany 6 e R, ¢ > 0, and @ > O,

at e}
Er(Sz(at)) = Ex (fo k/(u)/o Ru(x)GJ(u)(dx)d”)

and, forall j € E,

a(a) -
Ej<exp{9753(at)}>
ot o0
=E; (exp{/ (kJ(u)/ <6XP{9@R:4(X)} - l)GJ(m(dX)
0 0 o
—EH(Q@)\J(L,)/ RM(X)GJ(M)(dX))> du})
o 0

inf E;(§n¢) <E; (exp{éa(a) Sﬁ(at)}) < supE;(n?),
ieE o ieE

Therefore,

where

at a(a) o]
§= CXP{/ 9—(/\J(u)/ Ry (x)G juy(dx)
0 o 0
~Eq (w) /0 Ru<x)Gf<u>(dx>>>du},
o ® 1/ a(e) 2
n= exp{/ )»J(u)/ §<9 Ru(x)> G ju(dx) du},
0 0 a

B at oo X 1 a(a) /
;_exp{/o M(”)/o ;(EG » Ru(x)> )Gj(u)(dx)du}.

By Holder’s inequality,

supE; o) < (supEse") " (sup i) (supien)

ieE = ieE ieE

where 1/p+1/q+1/r =1, p > 1,4 > 1,and r > 1. From assumption (H3), we have
Ry(x) < R(x) + m@u)(x + 1), =Ry (x) < —R(x) + m(u)(x +1),and 0 < R, (x), R(x) < x.
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Therefore,

o log(supE: (67)) v

ieE

pba(a) /"” A .
< 1 E; A R —E;(A R d
< 2@ Og?élg z(exp{ ” A Ay Ryw 7 Ay Ryw))) du
210|A 9
0] m(u) du
a(a)

and

p (a) log(SUPE (n? ))

ieE

q (a(@)\* / /“ 5
= log sup E; > w | R*0)G e (dx)d
v e (o0 3(757) [ [ R @G0

92A o 92A at
+ — m(u)du + —/ m?(u) du
o 0 20 0

= ——1 E( {1<9a(“))2/al<x /OOIQZ( )Gy (dx) — 2>d})
_qaz(a) nggg i| exp ) o A J(u) A X)G ju)(dx oy | du

62A 6%A [ 1
+ — m(u)du + — / mz(u) du + —92022t,
2a 0 2

@ Jo

where A = sup;cg{Ai fooo (x + l)zGi(dx)}. Then, applying Lemma 4.1, we have

lim sup
oa—> 00

/P 1
log(supE (S”)) < - pb*ait
Ol) ieE 2

and

1
lim sup T )log(supE (n‘f)) i < —6%31.

a—o0 a icE

Since, for any r, 0 € R, there exists a constant M > 0 such that, forall¢ > M,

, at 16|xa(@)
0<¢ SeXP{IVI/O /\J<u>/0 Zl.< o )GJ(m(dx)du}

2|6 -
5exp{6|r|at<%) sugki/() e‘sxG,-(dx)},
e

where § > 0 satisfies assumption (H4), then, for any r, 8 € R,

lim sup ——— ) log(supE ¢ )) o 0.

a—oo a ( ieE

Therefore, for all p > 1,

lim sup
oa—>00

log(supE;(§n¢)) < pezor+ ezar
O‘) <l€E ) ! 2
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which implies the following upper bound:
a(@) - Loo 1 oo 1,5
lim su logsupE; | expi 0 ——S (at)}>§—90t+—90t=—90t
Hopz()g,e}g’(p{oz‘72 27 T T
Now let us show the lower bound. Again, by Holder’s inequality,
. . /p _r 1/r
it i) < (inf Eenoyt) " (swpki ) (supEie )
ieE icE icE icE

where 1/p+1/g+1/r =1,p > 1,4 > 1,and r > 1. From assumption (H3), we also have
R,(x)+mu)(x+1) > R(x) and so, forallu > 0, R2(x) > Rz(x) QCmu)+mu) )()c+1)2
Therefore,

perps )log(supE (n~ ”)) v

ieE
2 ot o0
p(, alx) ~ 2
log sup E; (exp{——<9 ) / <)\.j / R“(x)G o (dx) — o5 | du
Paz(a) icE 2 o 0 “ J “ 2
02A 02A [, 1, ,
+ — m(u)du + — m~(u)du — =005t
o 0 205 0 2

and

aZLm)log<ii§£E"@)>

at
a(a)
az(a) logllnfE (exp{/ 9—()»1(,4)1?1(“) —E; ()LJ(M)RJ(M))) du})

—29sup(AR) e )f m(u) du.

icE

Then by Lemma 4.1 we have

/p L 5 5
lim sup log(supE n~ p)) < —=0%0jt
a—soo a° 05) icE 2
and
1 2 2
lim inf 10g<1nf E; (E)) —07oft.
a—>0 ¢ ( ) 2

Therefore, for any g > 1,

1/ 1 1
lim inf log(lnf E; (Sng)q) ! > 502(012 + 022)t = Eezozt,

a—>ooa()

that is, for any ¢ > 1,

ga(a)
o

lim inf
oa—>00 qa

_ 1
5 log | me (exp{@ S;R(ar)}) > quz(o—f + o)t = %02621,

which implies the following lower bound:

lim inf
a—>00 a

log 1nfE (exp{O@S’R(at)}> > l9202t
) o 2
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In conclusion, forall j € E, 6 € R, and ¢ > 0, we have

- 1
lim ———1logE; (exp{@a(a) Syg(at)}) = -0%c’t1.
a—>00 ( ) 2

Lemma 4.3. Let assumptions (H3) and (H4) hold. Then, for any « > 0and 0 = 1) <11 <
th<--- <ty <1, (Sgr(at))/a(a), Sg(atrr)/ala), ..., Sg(aty)/a(a)) satisfies the LDP with
speed az(oz) /e and rate function I, d), defined by

.....

(md) (x1 — x1-1)?
I X1yeons X ,
..... ( 1 m) 20_2 IZI l _ tl 1

where xo = 0.

Proof. According to (2.2), for any (01,62, ...,6,) € R" and any o > O satisfying
maxi<i<m |01la(e) /o <8,

m

) atj—t—1) 00 a(e)

inf E; (exp{/ <?»J(u)/ (eXP{QI—Ruwn](x)} - 1)G1(u)(dX)
1 iek 0 0 o

a(a) o0
<91 )»J(u)/o Ru+at11(x)G](L1)(dx)>>du}>

<E; (exp{zez%(iﬂ(am - Sa(an_m})
=1

m

a(ti—ti—1) o
< [[supE: (exp{/ —t1 (Mm)/ (exp{@w’e“*a”‘(x)} - 1>Gj(u)(dX)
|=1 i€E 0 ’ )
(9161(0!))»](“)‘/(; R”+0tlll(x)Gj(u)(dX))> du})

Therefore, by Lemma 4.2 we have

2 m

Jim_ “S‘) logE,-(exp{Zez“;—“)@R(an)—ng(an_l))}) Z(n—n D67

=1

and so, by the Gértner—Ellis theorem,

S (at) Salan) — Sz (at) Sﬁ(atm)_gﬁ(atml)>
a@) ' OROR a@) a(@)

.....

(md)
7 Xlyoeos X 2 :
,,,,, tn (X1 m) 202 (tz —tl 1)’

which implies the conclusion of the lemma from the contract principle.
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Theorem 4.1. Let assumptions (H3) and (H4) hold. Then
S (at
{p<_ﬁ(“) e-), a>o}
a(a) 1ef0,1]

t€l0,1]

a(a)
satisfy the LDP on D([0, 1) with speed a®(a) /o and rate function 1" defined by

and

ot . .
I(md)(f) _ F,/(; (f@)=dt if f(0) =0and f is absolutely continuous,

+00 otherwise.

Proof. Firstly, it follows from assumption (H3) that

hm Suple[o,l] |E(S(7{(at)) — ot ZiEE ﬂ[)\iﬁ” _
a—>00 a(o)

therefore, we prove only the first statement. Using the standard argument (cf. [4, p. 180]), it is
easy to obtain

1 (f@) — fti—1))?
Z .

1D (f) = sup sup P

.2
m>1 0=to<t| <tr<--<ty<I 20

Therefore, by Lemma 1.2 and Lemma 4.3, we only need to prove the exponential tightness, i.e.
for any ¢ € [0, 1] and any 1 > O,

lim lim logP sup  |Se(at) — Sa(as)| > n ) = —oo. 41
8LOa—>ooa2(o[) o8 <a(a)t<v<]?+8| i #( )|—77) @.1)

By Theorem 2.1, forany 8 € R, (Zf)’1 Zﬂs, s > 0, is amartingale under probability P(- | J).
Then by the maximum inequality for a martingale we have, for any g > 0,

1
az"(‘a) logP( sup (Splar) — Sg(as) = n)

a(a) 1<s<t+3§

2
< e )logE( (sup (Za /)1 7B zexp{“(‘;‘[ﬂ—aacw, ﬂ)} ’ J))

0<s<$

a2
a~(a)Bn
< 2(0{) logE<exp{ " + aéC(«, ﬂ)}E((Z Pl lza(t+5) | J))
o
=—Bn+ Za )SC(a B).
where

00 2
Clo p) = supk,-/ (ea(a)ﬂx/a_l_a(ot)ﬁx)Gi(dx): o(“ <;x)>'
0 o o

ieE
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Now letting @« — oo firstly, § | 0 secondly, and 8 — oo finally, we obtain

o 1 - _
lim lim ——logP{ —— su Sq(at) — Sg(as)) > = —o00.
o o () g <a(a) ZSSs]ira( r(at) — Sg(as)) = n)

Similarly, we can obtain

. . o 1 . _ _
%1&} alingo 2@ logP<a(a) IS;I;LS(S:R(M) — Sp(as)) < —77> = —00.
The proof of (4.1) is completed.

By infoup,_,_, 1f()1zr 1P (f) = r?/20? for any r > 0, we have the following corollary,
which gives a moderate deviation estimate of the aggregate claims process.

Corollary 4.1. Let assumptions (H3) and (H4) hold. Then, for any r > 0,
2

-
> ra(d)) =357

lim — logP< sup
a—o0 a=(at) 1€[0,1]

Sq(at) — at Znikiﬁi
ieE

5. An estimate for the ruin probability

The ruin time and the ruin probability are defined by
T, =inf{r > 0; X3 () <0} and ¥(x) =P(rx < 00).
Macci and Stabile [13] proved, by the large deviation approach (cf. [8]), that if
oo oo
1+ n)an/ R(X)Gi(dx) — (n—x) Y midipi > Zm/ R(x)G;(dx)
icE 0 icE icE 0

holds then there exists wg > 0 such that

1
lim —log¢y(x) = —wgx.
X—>00 X
In this section we give an estimate for the ruin probability (Lundberg’s estimate) using the
exponential martingale method.
Theorem 5.1. Let assumptions (HI) and (H2) hold. Set
oo
R = sup{r > 0; inf(rpﬁ(t) —tsup)»,'/ (e — l)Gi(dx)) > 0}.
120 ice Jo

Then
Y(x) <e R’

Proof. Without loss of generality, we assume that 0 < R < oco. By Theorem 2.1, for any
B €R,

t o0
7P = exp{,BSR(t) —/ f (PR _ )Gy (dx)A ) du}
0 JO
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is a martingale under probability P(- | J). Therefore, by Doob’s stopping tlme theorem, we
have, forany 8 > Oand any ¢ € [0, 00), E(Z’,9 Ar) = 1, which implies thatE(Z,A 1z, <o0)) = 1.
Therefore,

Y (x) =P(Sa(1x) = x + pa(tx), Tx < 00)

Ty OO
< e—RxE(Zi exp{—Rpﬂ(rx) +f f (exp{RR,(x)} — 1)
’ o Jo
X Gy (dx)A g @) du} l{rx<oo}>

o0
e Rx E(Zf; exp{—(RpR(rx) — 1, §ug Ai /(; (e — 1)Gl-(dx)>} l{fx<oo}>
4SS

=< e—Rx E(Zg l{tx <oo})
=e R,

Remark 5.1. Assume that px < Ry(x) < x for some constant 0 < ¢ < 1. Then

o0
rpg(t) —tsuph; / €™ — 1)Gi(dx)
ieE 0

> rt((K —n+ A +n)0) Y mikipti — supA; / RCAE l)Gi(dx)).
0

icE ieE

Since sup; g A fooo r=le™ — 1)G;(dx) — sup;cg Aipi as r — 0, we have R > 0 if (v —
N+ (L+me)) icp Tirilki > SUP;cp Aildi.

Here we present a numerical example in which we calculate R in Theorem 5.1. We consider
the proportional policy (see [9, p. 509] and [13]), i.e. R;(x) = b;x for some b; € [0, 1], and
assume that lim,_, o by = bso € [0, 1].

Example 5.1. Let J be a Markov chain with the two state space E = {1, 2} with intensity

matrix
qu q2) _ (1 1
91 g2 1 —-1)°

LetA; = land Ay = 2, and let G| and G, be the exponential distributions with parameters 1
and 2, respectively. Then the corresponding stationary distribution is (71, m2) = (%, %). Let
k = 4 and n = 5 be the relative safety loading for the insurer and the reinsurer, respectively.
Finally, we assume that b; > % Then, forany 0 < r < 1,

r(1—2r)t

1—r

rpg(t) —t sup i / € —1)G;(dx) >
i=1,2

Therefore, R > %, and corresponding ruin probability ¥ (x) < e /2,
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