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Amino acid transporters (AATs) are essential membrane proteins that transfer amino acids across cells. -ey are necessary for
plant growth and development. -e lysine histidine transporter (LHT) gene family in maize (Zea mays) has not yet been
characterized. According to sequence composition and phylogenetic placement, this study found 15 LHT genes in the maize
genome. -e ZmLHT genes are scattered across the plasma membrane. -e study also analyzed the evolutionary relationships,
gene structures, conserved motifs, 3D protein structure, a transmembrane domain, and gene expression of the 15 LHT genes in
maize. Comprehensive analyses of ZmLHT gene expression profiles revealed distinct expression patterns in maize LHT genes in
various tissues. -is study’s extensive data will serve as a foundation for future ZmLHT gene family research. -is study might
make easier to understand how LHT genes work in maize and other crops.

1. Introduction

Maize (Zea mays) is a significant and widely produced crop
throughout the world. Maize is vital for food and nutritional
security as well as economic viability, particularly in re-
source-scarce smallholder communities [1]. Additionally, it
is one of the world’s most significant cereal crops and serves
as a model system for genetic research [2]. Maize relies
heavily on both inorganic (nitrate and ammonium) and
organic (amino acids, peptides, and proteins) nitrogen
sources in the soil/media [3, 4]. Nitrogen (N) is a critical
nutrient for plant growth since it is required in a range of
compounds in various forms and is primarily found in
plants as amino acids. Amino acids are necessary for the
formation of enzymes and proteins and the metabolism and
structure of plants [5]. Inorganic nitrogen (nitrate and
ammonium) can be converted in roots and leaves to amino
acids [6]. Proteolytic enzymes require amino acids (AAs) for
their production. Amino acids also create polyamines, nu-
cleotides, creatinine, and glucosamine [7]. Furthermore,
they are the precursors of nucleic acids, phytohormones, and

chlorophyll. -ey are also called the low-nitrogen transfer
modes [8]. -ey are also precursors of secondary metabo-
lites, which are essential for plant growth and development.
Abiotic and biotic stresses are also discussed concerning
amino acids [9]. Plants get nitrogen from amino acids and
uptake from soil by the roots and transport to leaves as well
as to other organs via the phloem. -e xylem carries amino
acids in roots. Membrane transporter proteins are necessary
for root cells to uptake amino acids [10].

AATs are membrane proteins that transport amino acids
across cell membranes in higher plants. Amino acid
transport and absorption from soil are also regulated by
these enzymes [11]. -e AATgene family has been identified
in many plant species. Examples of the AAT gene family’s
breadth include Arabidopsis (63), rice (85), soybean (189),
and potato (72) [12–15]. AATs are classified as AAAP
(amino acid/auxin permease) or APC (amino acid-poly-
aminecholine) transporters. AAAP family includes amino
acid permease (AAP), c-aminobutyric acid (GABA) trans-
porter (GAT), lysine/histidine transporter (LHT), like-auxin
influx carriers (LAX), proline transporter (ProT), aromatic
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and neutral amino acid transporter (ANT), vesicular ami-
nergic-associated transporter (VAT), and amino acid
transporter-like proteins (ATL) (VAAT). APC family
members are further divided into four subfamilies: amino
acid/choline transporters (ACT), cationic amino acid
transporter (CAT), tyrosine-specific transporter (TTP), and
polyamine H+ cotransporters (PHS). In addition, the AAT
superfamily now includes a new subfamily called Usually
Multiple Amino Acids Move in and Out Transporters
(UMAMIT) [16, 17]. -e presence and quantity of amino
acids in the rhizosphere determine the kind of transporter
engaged in root uptake.

Candidates could be from the LHTfamily, described as a
lysine and histidine selective transporter which includes
high affinity neutral and acidic amino acid transporters [18].
Studies on LHTmembers revealed their ability to transport a
broad spectrum of amino acids. LHT genes have been found
in roots, leaves, and flowers. -ey can mediate amino acid
uptake from the soil and transport and partition inside
plants [19]. According to functional tests of 53 putative
Arabidopsis AATs, LHT1 has a higher affinity for amino
acids than AAP subfamily transporters. In Arabidopsis, a
single LHT1 mutation stops plant growth and affects amino
acid intake and distribution. To better understand the N
cycle in plants, we may overexpress LHT1 in nitrogen-scarce
plants [20, 21]. AtLHT6 is required for the uptake of acidic
amino acids, glutamine, alanine, and maybe phenylalanine
by root cells [18]. Ten Arabidopsis LHTgenes are involved in
AA import into tapetum cells, trichomes, and have a role in
organic N transfer for pollen production [22].

-ere are six Arabidopsis LHT transporters found in
male and female floral tissue: AtLHT1, 2, 4, 5, and 6.-ey are
also needed for proper sexual plant reproduction. Also,
AtLHT4 and AtLHT7 may be involved in anther and pollen
development [23]. A qRT-PCR investigation identified
OsLHT1 expression in rice root, stem, flag leaf, sheath, and
immature panicle. OsLHT1 is restricted to the plasma
membrane in rice protoplasts, consistent with its amino acid
transporter activity. -e loss of OsLHT1 function signifi-
cantly reduced rice growth and fertility [19].

LHTs’ strong affinity and substrate selectivity for neutral
and acidic amino acids were likely due to their gene function
in plant progenitors. Studies on Arabidopsis LHT localiza-
tion and expression suggest that LHTs are important in seed
plant sexual reproduction [23]. Phylogenetic research guides
the evolutionary genesis of amino acid transporters in maize
[5, 24]. Phylogeny and conserved domains identified genes
with similar biological roles and close evolutionary links
[25–28]. Its functional structure is determined by the
number of introns in a gene, and the transmembrane helices
decide on its tertiary structure in a protein [25, 29].

-e goal of this study was to do a genome-wide iden-
tification and phylogenetic analysis of ZmLHT genes and
investigate the evolution of this gene family. In addition, the
characteristics of exon-intron structures, patterns of con-
served motifs, 3D protein structures, transmembrane do-
mains, and expression patterns were also investigated. -e
information gathered will aid research into the biological
functions of the LHT gene family in maize.

2. Materials and Methods

2.1. Identification of the ZmLHT Gene Family Members in
Maize. -e LHTproteins were found in maize using an HMM
(hidden Markov model) profile of AtLHT protein conserved
domains based on the PFAM, CDD, and SMART databases.
Briefly, a local database based on protein sequences was gen-
erated using the TBtools software after downloading the maize
genome (B73 RefGen v4) sequence from the maize database
(http://www.maizesequence.org/index.html).-e knownfifteen
Arabidopsis LHT protein sequences were downloaded from
TAIR (http://www.arabidopsis.org) and utilized as queries in a
local BLASTP search against themaize protein database with an
e-value of 1e-5 and a criterion of up to 50% identity. Fur-
thermore, all Arabidopsis LHT protein sequences were aligned
for multiple sequence alignment using ClustalX 2.1 (https://
clustalx.software.informer.com/2.1/), and the results were used
to search the maize database using the online HMMER search
engine. Manual editing was used to compare and parse the
results of the HMMER search tools and BLASTP. -e PFAM
database (http://pfam.xfam.org/), the NCBI conserved domain
database (CDD) (https://www.ncbi.nlm.nih.gov/cdd/), and the
SMART database (http://smart.embl-heidelberg.de/) were used
to eliminate redundant sequences by testing for the presence of
ZmLHT (PF01490) conserved. To confirm the conserved do-
mains in the remaining sequences, Inter-Pro-Scan (http://www.
ebi.ac.uk/interpro/scan.html) was utilized. -ese designations
were given to maize genes that were close to Arabidopsis genes.
-e physical and chemical properties of the ZmLHT proteins
were examined using the ProtParam service (http://web.expasy.
org/protparam/). To estimate the subcellular localization of
ZmLHTproteins, the ProtComp server (http://linux1.softberry.
com/) was utilized [11, 30, 31].

2.2. Phylogenetic Tree Construction. -e ZmLHT protein
sequences generated from the maize genome were aligned
using ClustalX (version 2.1). -e phylogenetic tree of
ZmLHT proteins was then generated using the MEGAX
software by comparing AtLHTproteins using the maximum
likelihood (ML) technique and 1000 bootstrap replicates
[11, 30].

2.3.GeneStructures andConservedMotifsAnalysis. -eweb-
based GSDS server (http://gsds.cbi.pku.edu.cn/) was used to
investigate the gene structure of ZmLHT proteins, and the
conserved domains of the ZmLHT proteins were charac-
terized using the Pfam (http://pfam.xfam.org/) and TBtools
software. -e MEME suite (version5.0.5) (http://meme-
suite.org/tools/meme) was used to determine the number
of conserved motifs based on optimum E-values [30].

2.4. Prediction of 5ree-Dimensional Modeling. -e Phyre2
website (http://www.sbg.bio.ic.ac.uk/phyre2) was used to create
the three-dimensional structure of representative ZmLHT
proteins in order to investigate structural modifications and
their effects on the functions of maize ZmLHTfamily members
[11].
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2.5. Transmembrane Domain Prediction. -e crystal struc-
tures of transmembrane topology were constructed using the
online tool HMMTOP (http://www.sacs.ucsf.edu/cgi-bin/
hmmtop.py), and the transmembrane helices of the
ZmLHT proteins were calculated manually [32].

2.6. Gene Expression Analysis. For the expression-based
classification of ZmLHTs, gene expression data from a variety
of organs at various stages of development, including the leaf,
internodes, root, reproductive tissues (tassel, silk, and cob),
seed, embryo, and endosperm were analyzed. -eir gene
expression data retrieved from MaizeMine (http://
maizemine. rnet. missouri. edu: 8080/maizemine/begin.do),
a publicly accessible transcriptome resource [33]. -e heat
map was created using log2 transformed FPKM (fragments
per kilobase per million) values to show expressions. -e
FPKM values were determined using Edge R, an R program.
-e TBtools software generated the heat maps for the FPKM
values dataset [34].

3. Results

3.1. Identification and Characterization of the Members of
LHT Gene Families in Maize. A total of 15 LHT proteins
were identified in the maize genome by sequence validation
and designated ZmLHT1-ZmLHT15 (Table 1). -e bio-
chemical and physiological characteristics of all translated
proteins are summarized in Table 1. -e amino acids length
in maize LHTproteins ranged from 160 (ZmLHT15) to 904
(ZmLHT1). -e molecular weights of the ZmLHT proteins
ranged from 18.27 (ZmLHT15) to 100.65 (ZmLHT1) kD.
-e pI values of all ZmLHT proteins exceeded 7, indicating
that they were all basic proteins. GRAVY scores of all
proteins were positive, indicating that they were hydro-
phobic. All ZmLHT proteins are expected to be localized to
the plasma membrane on a subcellular level.

3.2. Phylogenetic Analysis of the Members of LHT Gene
Families in Maize. Based on the results of phylogenetic
analysis, 15 LHT proteins were classified into three sub-
categories (Figure 1). -e three subcategories are A, B, and
C. Group A included 11 ZmLHTs (1–10 and 15). Only
ZmLHT12 was classified as a member of group B, whereas
the remaining three ZmLHTs (11,13, and 14) were classified
as members of group C. Maize LHT proteins belonging to
subclasses A, B, and C may share functional similarities with
AtLHT1,2,5,10; AtLHT3,6,8,9; and AtLHT4,7 proteins; re-
spectively. -e HMM model’s encoded genes did not agree
with the phylogenetic analyses. -is could be because the
algorithms utilized in the two models are different. Both,
however, account for the functional characteristics of the
LHT proteins, which are connected with distinct clades of
Arabidopsis genes.

3.3. Gene Structures and Conserved Motif Analysis of LHT
Gene Families in Maize. -e emergence of multigene fam-
ilies has had a significant impact on the diversity of gene

architecture. Exon-intron structures vary among ZmLHTs,
as illustrated in Figure 2. Under different cluster groups, the
number of introns in the ZmLHT gene family varies from
two (ZmLHT2,14, and 15) to ten (ZmLHT1) (Figure 2). -e
number of introns in ZmLHT group A ranges from two
(ZmLHT2,14) to ten (ZmLHT1). As a member of group B,
the ZmLHT12 has six introns. -e number of introns in
ZmLHT group C varies from two (ZmLHT2) to four
(ZmLHT11,13). -e intron-exon organization and phylo-
genetic tree demonstrated that members of the same group
had similar gene structures.

Motif analysis resulted in the identification of total 15
motifs, labeled as 1 to 15 (Figure 3). ZmLHT proteins have
anywhere from five (ZmLHT15) to 13 (ZmLHT1) motifs.
Except for ZmLHT14 and 15, all members of the ZmLHT
protein family had motif 1, 3, 4, 6, and 10 in common. All
proteins in group A had the motifs 1, 2, 3, 4, 6, 10, and 12;
nine motifs (motifs 1–6, 8,10, and 12) were found in all
proteins in group B; and six motifs (motifs 1, 3, 4, 6, 9, and
10) were identified in all proteins in group C. Furthermore,
the ZmLHT 2, 3, 5, 6, and 7 proteins all had the same number
(12) of motifs (1–12) (Figure 3).

3.4. 5ree-Dimensional Modeling of the LHT Gene Family in
Maize. After predicting the gene structures of ZmLHTs, we
analyzed secondary protein structures to predict the rear-
rangements of structures and the nature of polypeptide
bonds present in ZmLHTs proteins. As per three-dimen-
sional protein structure analysis, all ZmLHT proteins had
numerous alpha helices, transmembrane helix, and coil
topologies (Figure 4). In the ZmLHTs, the percentage of
alpha helix ranged from 63% (ZmLHT11) to 81%
(ZmLHT15). -e fraction of transmembrane helices in
ZmLHTs ranged from 50% (ZmLHT11) to 68% (ZmLHT12).
All proteins had a 100% confidence level (Table S1). On the
other hand, in Arabidopsis LHT (AtLHT) protein, the
percentages of alpha helix ranged from 64% to 72%.
Compared to AtLHT, the percentage of alpha helix in
ZmLHTs is higher up to 81% (ZmLHT15). However, the
overall percentages of alpha helix are identical between
AtLHT and ZmLHT proteins. Similarly, fraction of trans-
membrane helices in ZmLHTs and AtLHTs are identical to
each other (Table S2), which summarized that the protein
structure of ZmLHT and AtLHT are almost similar on the
basis of secondary structure of proteins.

3.5. Transmembrane Domains in LHT Gene Family in Maize.
-e ZmLHT proteins have multiple transmembrane (TM)
helices in their transmembrane domains. Except for
ZmLHT14 and 15, which had six and four transmembrane
helices but extended intracellular sequences at the N-ter-
minus and C-terminus, all LHT proteins had 8–12 trans-
membrane helices (Figure 5). Transmembrane segments
were found to span the full length of all LHT proteins. -e
transmembrane domains of the ZmLHT proteins range in
length from 160 (ZmLHT15) to 904 (ZmLHT1) (Table S3).
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Figure 1: Analysis of phylogenetic tree of LHT gene family in maize.

Table 1: -e characterization and identification of the ZmLHT family in maize.

Transcript ID Gene Name Amino acid (aa) Protein molecular weight (kDa) pI GRAVY Subcellular localization
Zm00001d035166_P001 ZmLHT1 904 100645.17 9.07 0.399 Plasma membrane
Zm00001d035157_P001 ZmLHT2 454 50423.55 9.14 0.494 Plasma membrane
Zm00001d049640_P002 ZmLHT3 455 50585.62 9.06 0.469 Plasma membrane
Zm00001d002176_P001 ZmLHT4 438 48418.33 9.16 0.580 Plasma membrane
Zm00001d035162_P001 ZmLHT5 472 51983.21 8.96 0.500 Plasma membrane
Zm00001d024204_P001 ZmLHT6 446 49653.49 9.09 0.473 Plasma membrane
Zm00001d037789_P001 ZmLHT7 446 49099.94 9.29 0.576 Plasma membrane
Zm00001d035161_P001 ZmLHT8 398 43768.95 9.04 0.616 Plasma membrane
Zm00001d035163_P001 ZmLHT9 401 44770.18 9.33 0.580 Plasma membrane
Zm00001d031922_P001 ZmLHT10 444 49486.96 8.59 0.380 Plasma membrane
Zm00001d002673_P001 ZmLHT11 527 56753.92 9.56 0.467 Plasma membrane
Zm00001d003403_P001 ZmLHT12 388 42052.52 9.40 0.561 Plasma membrane
Zm00001d026131_P001 ZmLHT13 517 55729.50 9.33 0.492 Plasma membrane
Zm00001d041004_P001 ZmLHT14 304 33255.19 9.20 0.667 Plasma membrane
Zm00001d021186_P001 ZmLHT15 160 18269.97 9.35 0.757 Plasma membrane
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3.6. Expression Analysis of Maize LHT Genes in Different
Tissues and Developmental Stages. -e expression patterns
of ZmLHTs were investigated using RNA-seq data re-
trieved from an online database from specific tissues at
distinct developmental stages. On the heat map, the
normalized log2 (FPKM) value was displayed (Figure 6).
Based on their expression patterns, the ZmLHTs were
divided into three groups. Except for embryo and en-
dosperm tissues, the single (ZmLHT2) gene in the first
cluster exhibited a relatively high expression level and
was stably expressed in almost all tissues at different
developmental stages. -e eight (ZmLHT4,7,8, and
11–15) genes in the second cluster were expressed in low
amounts in most tissues where expression level of
ZmLHT10 is near to zero. However, a few, such as
ZmLHT11 and 14, were slightly expressed in all tissues
except seed and leaves, respectively, while ZmLHT13 were

slightly expressed in primary root zones. -e other five
(ZmLHT1,3,5,6, and 9) genes in the third cluster showed a
wide range of spatiotemporal expression patterns, with
ZmLHT1 and 5 being highly expressed in the leaves, and
ZmLHT3 being highly expressed in the roots. Further-
more, ZmLHT1 was found to be slightly expressed in two
or more tissues, such as leaves, internodes, and roots;
ZmLHT2 was found to be moderately expressed in leaves,
internodes, roots, and reproductive tissues. On the other
hand, ZmLHT3 was found to be highly expressed in roots
compared to leaves.

4. Discussion

Amino acid transporters (AATs) transport and distribute
several types of amino acids in plants, and they are key
targets for crop development [35]. AATs have been found
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Figure 2: Analysis of exon-intron structure of LHT gene family in maize.
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in A. thaliana, O. sativa, and S. tuberosum, among other
plant species. However, LHTs in Z. mays have yet to be
discovered. In this study, 15 LHTs were identified in
Z. mays that contained AAAP super families based on
their resemblance to previously reported AATs in
Arabidopsis thaliana, O. sativa, and S. tuberosum plants
[36, 37]. Surprisingly, the number of members in the AAP
subfamily is the same in Arabidopsis, S. tuberosum, and
S. lycopersicum (8), but it is more than double in O. sativa
(19 members). -e increase of AAP subfamily members
in O. sativa could be the result of tandem and segmental
duplication events [36]. -e total number of members in
a same subfamily varies by species. For example, the LHT
subfamily has six members in O. sativa, ten in Arabi-
dopsis, 11 in S. tuberosum, 13 in S. lycopersicum [38], and
15 in Z. mays (Table 1). Different subfamilies showed an
abundant variety in subcellular localization, such as AAP,
LHT, AUX, GAT, and ProT were found on the plasma
membrane, whereas TTP, ACT, ATLb, and ANT were
located on the vacuole membrane. However, few mem-
bers of the same subfamily displayed diverse subcellular
localization, such as the ATLa subfamily genes positioned
on both the plasma membrane and vacuole; the CAT and
PHS subfamilies placed on the plasma, chloroplast, and
vacuole [34]. In this study, all 15 LHT genes were located
on the plasma membrane (Table 1).

Previous research recommended that motifs 1–4
function as a transmembrane region containing trans-
membrane transporter activity. -e existence of the same
type of conserved motif recommends that members of the
same family may perform similar activities [39]. In this
study, we found a total of 13 unique motifs and all

ZmLHTs have at least 1–4 motifs except ZmLHTs11, 13,
14, and 15. Motif analysis revealed that the identified
ZmLHTs exhibit transmembrane transporter activity. -e
multiple alpha helices structures during three-dimen-
sional protein modeling guide the functional efficiency
and evolutionary origin of a protein. -e stable trans-
membrane helices indicate the functional integrity of
proteins [33]. -e analyzed three-dimensional structure
of ZmLHT proteins with multiple alpha and trans-
membrane helices indicate the functional integrity and
transport efficiency of the LHT proteins.

Transmembrane domain guides to evaluate the in-
ternal membrane protein structure and the full topology
of protein. It also helps to predict genome analysis such as
structural variation and gene expression [36]. -e
ZmLHTs hydrophobic transmembrane domain was
predicted, and the family members had 4–21 trans-
membrane helices. -e transmembrane structure can be
classified into three categories based on the position of
the N/C terminal: the N/C terminals of ZmLHT2–8 and
14 were all predicted as cytoplasmic and containing
6–10 TMs; the N/C terminals of ZmLHT15 were predicted
as extracellular and containing 4 TMs; and the N/C
terminals of the other ZmLHT proteins were predicted
both as extracellular and cytoplasmic containing
9–21 TMs, including ZmLHT1 and 9–13. Our analysis
results highlighted that all ZmLHTs are located in the
plasma membrane that represents all LHTs might re-
sponsible for the transportation of amino acid from cell
wall to inside the cell [23]. -e study of ZmLHT gene
expression patterns may yield important information for
determining their likely function [40, 41]. -e current
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Figure 6: Clustering of maize LHTs based on gene expression. Heat map showing hierarchical clustering of genes based on gene expression
in different tissues and at distinct developmental stages mentioned at the top. Clustering was based on log2 transformed FPKM values.
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study found that a number of genes were expressed in
specific tissues and developmental stages based on RNA-
Seq data analysis of ZmLHT genes. As shown in Figure 6,
the expression profiles of ZmLHT genes that were found
to be highly expressed may be linked to certain organs
such as leaves, roots, internodes, and reproductive cells.
According to prior research, AtLHT1 is essential for
amino acid intake and mesophyll production in roots,
whereas AtLHT2 is primarily involved in amino acid
movement and allocation in floral organs [42, 43]. An-
other study discovered that AtLHT1 and AtLHT6 are
highly expressed in roots and play a role in amino acid
intake from the soil [44]. CsLHT1, CsLHT2, and CsLHT6
are likely involved in the root uptake of amino acids from
the soil in the tea plant [45]. SiLHT2, 5, and 10 play
critical roles in the transport and distribution of amino
acids in the leaf; SiLHT11 uptakes amino acids in the root;
and SiLHT9 participates in the long-distance trans-
portation of amino acids from the root to the leaf in
foxtail millet [34]. -e current study’s spatiotemporal
expression analysis revealed that some of the discovered
genes are selectively expressed in leaves, internodes,
roots, and reproductive organs. ZmLHT2 is abundant in
leaves, internodes, and roots. Furthermore, ZmLHT1, 3,
5, 6, and 9 are substantially expressed in leaves but only
modestly so in internodes. In summary, the expression
patterns suggest that ZmLHTsmay play an important role
in amino acid intake in various tissues and developmental
stages of maize.

-e current study’s elucidation of the ZmLHT genes
would pave the way for more research in AATs to better
understand their importance and roles in plant physiology as
well as in yield.

5. Conclusion

To summarize, this was the first comprehensive and
systematic study of the LHT gene family in maize. -e
maize genome contains a total of 15 ZmLHT genes.
Following that, in-silico analysis and expression analysis
were used to deduce the probable functions of these genes
in maize growth, development, and functional ad-
vancement. -e findings indicate that the ZmLHT genes
are involved in multiple aspects of nitrogen metabolism
and might have an effect on maize growth and devel-
opment. -ese findings pave the way for additional re-
search into the molecular mechanisms behind the uptake,
assimilation, and transport of nitrogen and amino acids
in maize.
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