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ON THE CENTRALIZER ALGEBRA OF
THE UNITARY REFLECTION GROUP G(m,p,n)

KENICHIRO TANABE

Abstract. The imprimitive unitary reflection group G{πι,p,n) acts on the
vector space V =Cn naturally. The symmetric group Sk acts on <g>hV by
permuting the tensor product factors. We show that the algebra of all matrices
on ®fc V commuting with G(m, p, n) is generated by Sk and three other elements.
This is a generalization of Jones's results for the symmetric group case [J].

§1. Introduction

In 1937, Brauer considered the centralizer algebra of the orthogonal
group O(n)

End O ( n )(® f c C n ) :={/eEndc(® f c C n ) | fg = gf for any g € O(n)},

in relation to the decomposition of ®kCn into irreducible representations of
O(n). He defined the Brauer algebra B^ and showed that Endo^((S>kCn)
is always a quotient of B^. B^ has simple generators as a C-algebra [B].

Recently, Jones considered the centralizer algebra of the symmetric
group Sn in relation to a certain model of statistical mechanics, where we
identify Sn with the set of all permutation matrices. He showed that this
algebra is generated by a quotient of a subalgebra of B^ and the action of
the symmetric group by permuting the tensor product factors. This algebra
has also simple generators [J].

We are interested in the generalization of Jones's results. Therefore we
study the centlarizer algebra of G(πι,p,n) in Shephard-Todd [ST], because
Sn is equivalent to G(l, 1, n). We will show that this algebra is generated by
the action of the symmetric group by permuting the tensor product factors
and three other elements, where in the case of Sn, these generators are those
found by Jones.
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114 K.TANABE

§2. Preliminaries

2.1. A basis of EndG{m^n)(®kV)

We denote the set of all nonnegative integers by N and the set of all

complex numbers by C. For c i , . . . , cn EC, we denote by diag(ci,..., cn)

the n x n-diagonal matrix whose (i,i)-th element is Q (1 < % < n).

Throughout this paper let ra,p, and n be positive integers, where p is

a divisor of ra, d := ra/p, and let ξ be a primitive m-th root of unity. We

define the imprimitive unitary reflection group G(ra,p, n) as follows:

DEFINITION 2.1. (cf. [C], [ST]) G(ra,p,n) is the subgroup of GL(n,C)

generated by the set of all permutation matrices Sn and Diag(ra,p, n), where

i i , , n N,
d i ί f 1 ^ ) H M n Ξ θ (modp).

Since 5nΠ Diag(ra,£>, n) = 1 and Diag(ra,p, n) is a normal subgroup

of G(ra,p,n), G(ra,p, n) is a semidirect product of S n and Diag(ra,p,n).

G(ra,p, n) is a unitary reflection group of order mnn\/p.

For convenience we denote the vector space C n by V and the set

{1, 2, . . . , n} by A. Let υα be the vector in V whose α-th entry is 1 and

whose other entries are all 0 (1 < a < n). G{m,p,n) acts on V natu-

rally. Thus for each fc, ®kV is a G(ra,p,n)-module. For X E Έτιά{βkV)

we denote by X^\'.'bak the matrix coefficients of X with respect to the basis

{vai ® * * ® vak I α i , . . . , ak E A}.

The purpose of this paper is to find the generators of End(3(mjp}n) (®fc V).

Let 7Γ be the representation of the symmetric group S^ on (g>kV obtained

by permuting the tensor product factors, i.e.,

π(a)(uι (g) ® Uk) := ^α-i(i) ® ® ^ - I ^ ) , i t i , . . . , ^ - G V and α E Sfc.

τr(Sk) is clearly included in E n d ^ ^ p ^ ^ Θ ^ V ) . We also have

End G ( m ) 1 , n ) (® f c V) c End G ( m i P , n ) (® f c y) C End S n (®V).

We will determine a basis of EndQ^m^p^((S)kV). For a positive integer

N we denote by ΠJV the set of all partitions of {1,2,..., N} into subsets

and introduce the following partial order on ΠΛΓ. For B = {£?i,..., Bs}

and C = {Ci,. . ., Ct} E Πiv, C < B if and only if for any i (1 < i < s)

there exists j (1 < j < t) such that ^ C Cj.
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UNITARY REFLECTION GROUP 115

As there is a one to one correspondence between the set of all equiv-
alence relations on {1,2,..., N} and those on Π v̂, we denote by ~ B the
equivalence relation corresponding to B E HN and define the partial order
on the set of all equivalence relations induced from that on Π^.

Let us consider orbits for the action of Sn on A . It is easy to see
that each orbit for this Sn action is given by an element of Π̂ /c whose size
is at most n. That is, if ~ denotes the equivalence relation defined by
such a partition, then the corresponding orbit of A2k consists of 2fc-tuples
(αi,. . . , αfc, α/e+i,..., α̂ /c) for which a\ — dj if and only if i ~ j .

For X E End(®/cF) and σ E Sn,

σ~λXσ (υ

= Σ
vak)

Hence we have the basis of Έndsn(®kV)

~ is an equivalence relation on {1,..., 2k}

whose number of classes is lesser than or equal to n.

where for the equivalence relation ~,

ί l, if [μι = an if and only if i ~ j),

0, otherwise,

setting dk+i := b{ (1 < i < k). Note that T^ is zero if the number of classes
for ~ is more than n.

For B = {Bu...,Ba} E Π2fc, let N(Bτ) := # (Bτ Π {1,. . . , k}) and

M(Bi) := # (Bi Π {k + 1,..., 2fc}), (1 < i < s). We define the following
three sets:

U2k(m)

= {B1,...,Bs}eU 2k

s > 1 and
N(Bi) = M{Bi) (mod m)

(1 < i < s).
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116 K. TANABE

= {B1,...,Bn}eπ2k

N{Bi) = M(Bi) (mod <i),
N(Bi) φ M(Bi) (mod m),

(1 < i < n ) ,
and

- M{βi)
= N(Bj) - M(Bj) (mod m),

Π2fc(m,p,rc) := {B = {Bι,...,B3} G Π2fc(ra) | 1 < s < n} U A2 f e(ra,p,n).

Note that Π2fc(ra, l ,n) = {JB = {i?i,... ,BS} G Π2fe(m) | 1 < s < n}, and

LEMMA 2.1. { Γ^^ | B e Π2fc(m,p, n) } is a basis of EndG(mjpjn)((S)fcV).

Proof. T^B is a non-zero element in EndG^p^(<S) V) since any B G

Π2fc(ra,p, n) and { Tr^B I B G Π2fc(m,p, n) } are linearly independent. Then

for X GEnd G ( m 5 P ? n ) (Θ / c F), we have X = Σ#eπ 2 f c

 α B τ ~ £ («β ^ c ) since

EndG ( m > p 5 n )((g)/ cy) cEnd5 n(® / cV r). Let B G Π2fc such that aB φ 0, and let

(αi , . . . ,α 2 f c ) G A2fc such that ( Γ ^ B ) ^ . 1 . , ' ^ ^ = 1. We define B{ := {j G

{1,. . . , 2fc} I α̂  = i} (1 < i < n). Then we have B = {l?i,..., B n } (some

5^ may be empty).

We define the following elements of Diag(m,p, n):

i

5 i : = d i a g ( l , . . . , l , e , l , • • • , ! ) , l < i < K

hij := diag(l, . . . , 1, ξ, 1, . . . , 1,Γ \ 1, • , 1), l<i<j<k.

It is easily seen that </, (1 < i < n) and hij (1 < i < j' < n) generate

Diag(m,p, n). We have

9i X9i (v
ai

1 < i < n,
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(υai ® -®υak)

ξ#{l\ «i=i } - # { I I bι=i } - # { I I aι=j } + # { I I bt=j }

x ^ai'--ak

vh 09 * ' * 09 ^6 f c , -1- _^ ι-> 3 si ""

As g~ιXgι = X (1 < i < n), and h~jXhij = X (1 < i, j < n), we also

have

= M ( ^ ) (mod d), (1 < z < n), and

) - M(Bi) = N(Bj) - M(Bj) (mod m), (1 < i, j < n).

If ΛΓ(β)i Ξ M(B)ι (mod m), then Λ ^ ^ ) = M(Bi) (mod m) (1 < i <

n). Thus B G Π2fc(m). If JV(B)i ^ M ( β ) i (mod m), then N(Bi) φ

M(Bi) (mod m) (1 < i < n). We have #Bi = N(Bi) + M{Bι) ψ 0, and

therefore B{ φ φ (1 < i < n). Thus we obtain B G

For each equivalence relation ~, we define L^ by

LEMMA 2.2. (cf. [J]) For B e ΐί2k(m), L^B £EndG{m^n){®kV), and

Proo/. Let JB G Π2fc(m) and C = {Ci,. . . , C t} G Π2 f c. If C < B, it

is easy to check the condition N(C)i = M(C)ι (mod m) (1 < i < t), so

C G U2fc('^) Hence

); C<B

Then by the Mobius inversion ([S], p. 116), the T^B can be expressed by

a linear combination of { L^c I C G Π2/c(^') }• Thus they also span
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2.2. "Planar " form
Consider a rectangle with k marked points on the bottom and k sym-

metrically placed marked points on the top, as shown in the figure (where

Close to and on either side of each of the marked points on both the top

and bottom identify a single point (marked with an x in the figure). Now

join the points marked with "x's " to each other within the rectangle, using

any system of non-intersecting curves. The regions inside the rectangle can

then be shaded black and white (with the regions touching the left and

right sides of the rectangle shaded white). Any such diagram defines a

partition of the original 2k marked points. We will call such a partition (or

its equivalence relation) "planar." We denote by P Π ^ the set of all planar

partitions in Π2& and define P Π ^ r a ) by PΠ2/~(ra) :— Π2fc(ra)ΓϊPΠ2fc. For

B = {£?i,..., Bs} G Π2fc, αi , a2 G S&, we define

{oL^ii) I i G Bu and 1 < i < k }

U{k + a^U - k) I j G Bu and k + 1 < j < 2k }, 1 < u < s.

and a2Ba\ := {a2B\ai^... ,α2-B5cei}. Namely, OL\ permutes the bottom

k points of 5 , a2 permutes the top k points of £?, and we obtain α^ifoi

from B a s a result of these permutations. Note that if B G H.2k{m) (resp.

,p,n)), then OL2BOL\ G U2k{m) (resp. Λ2/c(m,^,n)) for any α 1 ? a2 G

, and

The following lemma is almost obvious.

LEMMA 2.3. ([J], Lemma 2.) Let C = {CU...,C3} G Π 2 / c ; t :=

I N{Ci) φ 0} ; and u := #{ i | iV(Ci) φ 0 and M ( Q ) ^ 0}. Then
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UNITARY REFLECTION GROUP 119

there exist a± and ot2 G
indices), satisfies

U I k +

ί-l

3=1

such that =: {JE?I, . . . , Bs} (renumbering

+ 1,...,* +

) + 1, • , fc +

w + 1 < i < t,

i) f ' ift+l<i<s.

Note that α^Cαi is planar in this case.

Perhaps the following partition helps in understanding the above lemma:

Let 5 be an nonzero element of C. We define the C-algebra K(2k, δ)
with a basis PΠ2fc- Multiplication is defined by a 2-step procedure:

Step 1. Stack the two rectangles on top of each other, lining up the x's.

Step 2. Remove the middle edges and middle x's. You then have a new
diagram, possibly containing some closed loops. If there are r closed
loops, the product is then the resulting diagram, with the closed loops
removed, times the scalar δr.

We illustrate multiplication in K(8,δ) below.
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120 K. TANABE

B =

SΊ

so

KU

•θ-

r~Λ

BC = δ2

It is clear that the above defined multiplication is associative and that
the identity element of K(2k, δ) is { {i, i + k} \ 1 < i < k } G PΠ2/c. We
now define special elements J5χ,..., E<ik-\ of K(2k, δ).

I

(1 < i < fc),
2

(1 < i < A: — 1).

It is clear that the Ei, together with 1, generate K(2k,δ). Note that for
o i , . . . ,α/c G A,

Vj ® Va%

3=1

< i < fe-1).

LEMMA 2.4. ([J], Lemma 3.) The map

E7z, i / z Z5 e^ e n .
ψ{Ei) :=
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UNITARY REFLECTION GROUP 121

extends to an algebra homomorphism from K(2k,yjn) to Endsrι(
<S>lςV) so

that φ(B) is a non-zero multiple of L^B for B EPΠ2/C .

§3. G e n e r a t o r s of EndG{m^n)(®kV)

First, we consider the case p = 1. We denote by K(2k, δ)m the subspace

of K(2k,δ) spanned by PΠ2/c(
r^) As K(2k,δ)rn is closed under multiplica-

tion, jFί(2/c, δ)m is a subalgebra of K(2k, δ).

From Lemmas 2.2, 2.3, and 2.4, it follows that φ{K{2k^y/n)πι) and

τr(Sfc) generate ΈndG{m^n)(®kV).

LEMMA 3.1. Let

F™ := |{z,...,z + m - 1}, {k + z,. . ., k + m + i - 1}}

1 < i < fc — m.

K{2k,δ)m is generated by F™ (1 < i < k - m) and E2j (1 <

j < k — 1) as a C-algebra. In particular, E n d ^ / m l ^(® f cV) is generated

by (^(£"2), φ{Fγί), and τr(Sfc) as a C-algebra, where if m > k we define

φ(FF) := 0.

Proof The assertion is clear from the following calculations:

1 1 L_ _ _J

Γ ~Ί
II ZΓ

ZL
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Γ

D

We consider End<2(m;p?n) (®kV) for general p. Let Λ ^ r a , p, n) be the set

of all elements B := {J9χ,..., Bn} G Λ2/~(ra,p, n) which have the following

form:

+ 1,.. ., iVϊ+i} U {Mi + 1,.. ., Mi+i}, if 1 < i < u,

+ l,...,JV i +i}, if u + \ < i < t,

-t+u + 1, •.., Mi-t+u+i}, if t + 1 < i < n,

for some iz, ί GN (w < ί) and JVi, JV2,..., JV*, Mi, M 2 , . . . , M n _ ί + W GN such

that

0 = JVi < ΛΓ2 < <

= M1<N2<-'" <

= fe < fc + 1

= 2k.

We define

Z7n,p,n Σ

Note that for any B G Λ2/c(m,p,n), there exist αi and α 2 G £& such that

α2jBαi G Af

2k(m,p,n) from Lemma 2.3. We determine the condition that

A/

2k(m )p,n) is not empty, namely, that Hm^^n φ 0.

Note that for B = {JE?I, . . . , i?n} G Λ2^(m,_p, n), there is a tu (1 <

iϋ < p - 1) such that N(Bi) - M{Bι) = wd (mod m) (1 < i < n) by

the definition of Λ2/C(7n,p, n). For C CN and z GN, we define C + i :=

{x-H I x G C}.
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LEMMA 3.2. Let B = {j?i,... ,Bn} E A^^m^p, n), where the ordering
of indices satisfies (*), t := #{i | N(Bi) φ 0α}; and it := #{ί | N(Bi) φ
0 and M(Bi) Φ 0}. Let w e {1 , . . . ,p - 1} 5wcΛ ίΛot iV(Si) - M(Bi) =
tί rf (mod 771) (1 < z < n) .

(1) Let

C\ :=

(2) φ 0 and M(J5i) ^ 0 for some i (1 < i < n). Let

i-l

3=1

i-l

u
j = i i = i

' (βj n {l,..., k}) u ((£?,- n {fe + 1 , . . . , 2fe}) - l ) ,

Then C2 := {Cf,..., C*} € A ^ ^

(3) Assume

C
ift

And assume ή^Bi > wd for some i (1 < i < t) or #Bj > (p — w)c?
for some j (t + 1 < j < n). Then there is a C 3 = {Cf,..., C3} G
Λ'2fe(m,p,n) sωc/i ίΛaί iV(C?) Φ 0 and M(Cf) ̂  0.
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Proof. (1) and (2) are clear. We will show (3). We assume #Bi > wd
for some i G {1,...,£}. We may also assume φB\ > wd using the Sk
action and renumbering indices. Then there is a non-zero integer a such
that φB\ = wd + am. We define

C2 := {am + 1,..., am + wd},

Bi-u if 3 < ΐ < t,

Then C 3 := {Cf,... ,C3} G Λ'2fc(m,p,n), N(Cf) φ 0, and M{C\) φ 0. The
other cases can be shown similarly. Π

For positive integers i and j , let (z,j) be their greatest common mea-
sure. Let p =: ap(p,n), n =: an(p,n) ((ap,an) = 1), and km^n :=
(n — an)apd. If (p, n) > 2, we define the following partition:

B := < { 1 , . . . , <2p<i} + (z — l)(αpG?) 1 < z < (n — an)apd ?

It is easy to see that B G ΛL (m, p, n), and thus Λί,τ, (ra, p, n) is not
empty.

LEMMA 3.3. Λ2̂ .(τ72,p, n) is not empty if and only if (p,n) φ 1 and

Proof We assume (p, n) ^ 1 and A; > λ?m,p,n Note that if A;

2k(m,p, n)
is not empty, then ALk, 1>)(m,p, n) too is not empty by Lemma 3.2 (1). So
k'2k(m,p, n) is not empty since Λ^ (ra,p, n) is not empty. Conversely,
we assume h.r

2k{m,p,n) is not empty. Let fc be the minimum integer in
this set. From Lemma 3.2 (2) and (3), we may assume that there is a
B = {£?i,... ,Bn} G A.r

2k{m,p, n) such that
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for some t GN and w (1 < w < p — 1). We have

t

= twd,

k= V #Bi = (n - t)(p - w)d.
n

Hence niί; = (n — ί)p. We have the condition that if (p, n) — 1, then p is
a divisor of u>. But this is a contradiction since 1 < w < p — 1. We have
u> = βap for some positive integer β from the relations anw — (n — t)αp

and (ap,an) = 1. We also have /c = km^n when /? = 1. Assume β > 1. If
w < p — w, then n — t < t from fc = twc? = (n — t)(p — ̂ )d, so fc = £iϋ<i =
(n/2)βapd > napd > km^p^n. This is a contradiction since fc is minimal.
Similarly, we have k > km^p^n when w > p — w. Π

THEOREM 3.1. Hm^p^n φ 0 if and only if (n,p) 7̂  1 and k > A;m;P;n.
EndG(m5P?n)((g)/cy) is generated by ψ{E2), ψiF^), Hm^n, and π(Sk) as a
C -algebra.

Proof. The first assertion is clear from Lemma 3.3. Let Γ be the subal-
gebra of EndG(m^n)(<g)kV) generated by φ{E2), ^(^Γ), Hm^n, and π(Sk).
From Lemma 3.1 we have EndG ( m ? 1 ? n )(0 / cy) C Γ. Let B = {Bλ,..., jBn} G
K'2k{m^p^ n), where the ordering of indices satisfies (*), t := #{i | N{Bι) -φ
0}, 8 := #{i I M(Bi) φ 0}, and w := #{i | iV(βi) ^ 0 and M(βi) φ 0}.
Note that t, 5 < n.

We define the following elements of Π&:

C := {J5iΠ{l,...,fe} I 1 < i < n},

JD := {Bi Π {fc + 1,..., 2fc} I 1 < i < n}.

We then denote C — {CΊ,..., Q} and D = {D\,..., Ds} and define

C := {d U (Ci + fe),..., Cs U (C5 + fe)} E Π2fc(m),

ΰ := {A U (£>! + fe),..., Dt U (A + k)} E U2k(m).

Clearly T^^T^BT^ — T^B> By the definitions of C and D,

C[ or D/ for some / > u, otherwise.
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Comparing the number of classes of B, C and D, we have n = u + (s —
u) + (t — u). Thus u ~ s + t — n. Hence if (C, D) G Π^ x Π/c are given,
we can reconstruct the original B G Af

2k(m,p,n) from (C, D). So for i?7 G
Af2k(m,p,n) (Bf φ 5), we have

C 7̂  {B[ Π {1,..., k) I 1 < i < n},

or

D φ {B[ Π {/c + 1,..., 2k} I 1 < i < n}.

This implies that T^^T^B'T^ — 0. From the above results we have
T^Hm^nT^ = T^B- Hence T^B G Γ for any B G Λ'2A,(ra,p,n), and
r"=EndG (m~n)(® fcV). D
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