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Explicit iterative computation of diffusive vapour field in the
3-D snow matrix: preliminary results for low flux metamorphism
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ABSTRACT. The metamorphism of seasonal snow is classically considered as limited by vapour diffusion
in the pore phase. To account for the lack of knowledge of the ice–vapour reaction coefficient near 0◦C,
the assumption of a reaction-limited metamorphism was first tested in three-dimensional simulations
at low and very low temperature gradients; however, the validity of such results is difficult to verify
experimentally. By a reasoned use of traditional iterative schemes, vapour diffusion is now simulated in
three dimensions on tomographic snow data, mapping the gradient of vapour pressure near the grains.
Repeating this process may provide a way to simulate the isothermal metamorphism without grain
packing at a reasonable expense of computation time. Preliminary results are compared with existing
computations made within the reaction-limited hypothesis.

1. INTRODUCTION
The metamorphism of dry seasonal snow on the ground is
classically described by water-vapour transfer between grains
(Colbeck, 1983a). Depending on the degree of thermo-
dynamic disequilibrium, the microstructure will evolve to-
wards either faceted (Yosida and others, 1955) or rounded
grain shapes (Colbeck, 1983a). Among other things, the for-
mation of facets requires a sustained supersaturation with re-
gard to vapour. In a snow cover, this usually happens where
a temperature gradient (TG) exists. The formation of rounded
grains, which occurs close to equilibrium (no TG, with a tem-
perature T close to 0◦C), is often called isothermal metamor-
phism of temperate snow. This is the subject of the present
study.
The observed vapour transfer between metamorphosing

snow grains results from some coupling of reaction and dif-
fusion processes. As inmany problems of kinetics, themacro-
scopic morphology will show the action of the slowest pro-
cess: it is said that the problem is limited by this process. The
main question is whether isothermal snow metamorphism is
either reaction or diffusion-limited.
The diffusion-limited hypothesis is clearly the most popu-

lar in the snow science community (see, e.g. Colbeck, 1997;
Legagneux and Dominé, 2005). In ceramic science, most
materials of practical interest have a very low saturating
vapour pressure psat at the temperature they are processed.
Conversely, the few vapour-grown industrial materials such
as SiC are processed under high temperature, low total pres-
sure and high supersaturation, (see, e.g. Chen and others,
2001). An overview of the SiC bulk growth technique is avail-
able at http://www.ifm.liu.se/matephys/new page/research/
sic/Chapter3.html#3.1.
Literature on the regime of very low supersaturation for

materials at a high partial vapour pressure pvap (typically, for
a snow sample at −2◦C, pvap ∼ psat ∼ 517.3 Pa) is scarce.
The reaction coefficient α ∈ [0, 1] is formally defined as the
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ratio between the number of reacting (adsorbing) and inci-
dent molecules on a surface; it is the standard way of address-
ing the question of reaction vs diffusion (Mutaftschiev, 2001).
A low value of α implies the growth process is reaction-
limited. A high value is related to a diffusion-limited growth,
except for vacuum conditions where the mean free path of
water vapour compares to the crystal size. Existing measure-
ments of α on ice were often carried out at low temperature
(T<−100◦C) and vacuum conditions, forcing a reaction-
limited growth, which in turn tells us how to relate the growth
rate to α. Regardless, results range within more than two
orders of magnitude (Brown and others, 1996).
As an exception, a recent work (Libbrecht, 2003) presents

data near 0◦C with low values of α for low supersaturations
σ ≡ pvap/psat − 1. Although such conditions of very low
growth rates may lead to higher errors in the determination
of α for experimental reasons, this finding would advocate
a reaction-limited metamorphism, contrasting with the com-
mon assumption (Colbeck, 1997).
For this reason, three-dimensional (3-D) simulations of

snow metamorphism were carried out assuming reaction-
limited conditions for isothermal (Flin and others, 2003) and
TG (Flin and others, 2007) metamorphism. The requirement
of dealing with extremely low vapour fluxes makes the de-
sign of a conclusive experiment very difficult, for example
measuring the equilibrium shape of isolated crystals (Eagle-
sham and others, 1993). Here, the results of a simple model
of diffusion-limited isothermal metamorphism are presented,
then applied to the same 3-D data as the formerly devel-
oped reaction-limited model (Flin and others, 2003), in order
to prepare further intercomparisons between the two
approaches.

2. MODELLING
2.1. Models for isothermal metamorphism
In low-flux metamorphism at high temperatures (close to
0◦C) and high psat, the following can be assumed, regardless
of the limiting process:
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1. The mass transfer in the pore phase only occurs bymolec-
ular diffusion. There is no convection in snow, even for
moderate thermal gradients (Brun and Touvier, 1987;
Kaempfer and others, 2005).

2. Heat conduction across the grain phase is the fastest pro-
cess (Sekerka, 2004). The latent heat is quickly removed
through the highly conductive ice (Colbeck, 1983b) and
the temperature T is considered constant and uniform in
the snow matrix.

3. Grain metamorphism is the slowest process. For a given
state of the microstructure, steady-state solutions are ex-
pected for both vapour diffusion (referred to as diffusion)
and sublimation/condensation (referred to as reaction)
processes.

4. The grain’s interface stays microscopically rough every-
where, i.e. it behaves like a surface of type K (Mutaftschiev,
2001) saturated with kinks. Thus we do not expect faceted
shapes in high-temperature isothermal metamorphism of
snow.

As mentioned in the introduction, two different mechanisms
can be assumed to be controlling the isothermal metamor-
phism: a reaction mechanism at the ice–pore interface and a
diffusion mechanism through the pore space. After recalling
the main features of the reaction-limited hypothesis, we will
focus on the diffusion-limited assumption.

Reaction-limited process
In case of a reaction-limited process, the vapour field is as-
sumed to be constant (steady state) and uniform (fast dif-
fusion) at a value pamb(T ) such that no macroscopic vapour
flux is observed at the scale of the sample in respect to
assumption (1). This happens when vapour is in equilibrium
with any infinite surface whose mean curvature κ (n being
the unit local normal, κ ≡ (div n)/2) equals the integral
mean curvature 〈κ〉 of snow in the sample. The ice surface is
considered out of equilibrium with respect to the surround-
ing uniform pressure field, and its growth is governed by
the Langmuir–Knudsen equation that gives the mass vapour
flux jvap:

jvap = α
(
pamb(T )− psat(κ,T )

)√ M
2πRT

, (1)

where R and M are the ideal gas constant and molar mass
of vapour, respectively. psat(κ,T ) is given by Kelvin’s law:

ln
psat(κ,T )
p∞sat (T )

=
2VspeMγκ

RT
, (2)

where p∞sat (T ), γ and Vspe are the saturating vapour pressure
over a macroscopically flat, microscopically rough surface of
ice, the ice–vapour surface tension and the specific volume
of ice, respectively. If the curvature field is available on a
sample, local growth rates can be computed in a straightfor-
ward manner. This made early simulations of metamorphism
possible (Flin and others, 2003).

Diffusion-limited process
In the present paper, the metamorphism is assumed to be
limited by a vapour diffusion process. In the pore space, pvap
should obey the stationary equation of diffusion:

Δpvap(r) = 0 , (3)

where r is the position vector. The grain surface S is consid-
ered to be in equilibrium with the vapour, at a uniform and

constant temperature T . This provides a Dirichlet boundary
condition to the vapour field, i.e.

∀r ∈ S, pvap(r) = psat(κ,T ) = psat(κ). (4)

After solving Equation (3) by using the boundary conditions
of Equation (4), the mass flux of vapour jvap is given by Fick’s
law:

jvap = −ρvapD ∇c. (5)

Here,D is the diffusion coefficient of water vapour in m2 s−1,
c is the concentration in number (molmol−1) and ρ is den-
sity. Since both air and vapour are ideal gases, Fick’s law can
be written:

jvap = −ρvap

ρair

D
RT

∇pvap. (6)

The growth rate R is then directly related to the gradient of
vapour pressure along the surface unit normal vector n:

R =
jvap.n
ρice

. (7)

In both situations, the mean curvature κ(r) of the grain’s sur-
face governs the local flux of water vapour either directly
in case of a reaction-limited process (Equation (1)) or as
a boundary condition (Equation (4)) for a diffusion-limited
process.

2.2. Continuous problem
The present process of vapour diffusion occurs in the physi-
cal continuous space. It is considered regardless of any dig-
itization process, the first of which is tomographic image
acquisition. This is basically a Dirichlet problem for Laplace’s
equation whose boundary conditions are constant but not
uniform, unlike most common problems of electrostatics
(Durand, 1966b). Besides, it should be noted that the above
boundary condition (Equation (4)) only concerns the phys-
ically relevant boundaries of the system (the grain’s inter-
faces), but not the practical spatial boundaries of the data
file (the ‘edges’ of the cube). This point is addressed later.
We consider a problem where all boundary values are

fixed (inner Dirichlet problem). Physically, this may be
thought of as coating the sample edges with a continuous
layer of bulk ice. The existence and uniqueness of a harmonic
solution (which solves Laplace’s equation) to the Dirichlet
problem (prescribed value of the parameter at the bound-
aries) is a classical result. However, the standard proof as-
sumes a uniform value of the parameter over any connected
surface (in electrostatics, the potential). This result was long
ago extended (De la Vallée Poussin, 1932) to non-uniform
values at the boundaries of a finite system, provided the fol-
lowing conditions are fulfilled.

1. The domain is of finite size.

2. The pore space D is connected (there may be more than
one connected grain cluster in the domain).

3. pvap is continuous at the surface S of any connected grain
cluster.

4. Any point denoted by its position vector r ∈ S fulfils the
so-called Poincaré condition: there exists a neighbour-
hood N (r) and a right cone C whose apex is r and such
that C ∩ N (r) ∩ D = ∅. Practically, this means that even
dihedral angles (not accounted for in the present study)
are allowed; only inward cusps are not.
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It is thenmathematically meaningful to solve the inner Dirich-
let problem with boundary conditions that are non-uniform
but continuous.

2.3. Numerical methods
Most standard methods for solving Laplace’s equation rely
on digitizing the Laplacian operator on a regular grid, then
solving the linear system resulting from various efficient im-
plicit or semi-implicit schemes. Unfortunately, the present-
day size of 3-D image data files, which often amounts to
more than 10003 volume elements (voxels), prevents the di-
rect use of techniques involving matrix inversion or Gauss
pivoting (Press and others, 1992). Besides, the algorithmic
complications of adaptive non-structured meshes, which al-
low a substantial reduction in size of the linear system to be
solved (Frey and George, 2000), seem to be little adapted to
the complex topology of 3-D data from sintered materials.
For these reasons we used traditional explicit iterative (non-
matrix) schemes based on theGauss–Seidel method (Durand,
1966a; Patankar, 1980; Press and others, 1992). The present
work uses the early Jacobi method, where the result at the
nth iteration uses only neighbouring values from the (n−1)th
iteration as a way to understand the assumptions made at the
data file boundaries (see section 2.4).
The Laplacian operator Δp was digitized on all first neigh-

bours of a voxel, following a method described by Durand
(1966b). The 26 first neighbours of a given voxel can be
sorted by their centre-to-centre distance d to the central
voxel (denoted by index 0) comprising: 6 side voxels of d =
1, 12 edge voxels of d =

√
2 and 8 corner voxels of d =

√
3.

By considering Equation (3), the third-order Taylor expansion
of p yields

6 p0 =
6∑
1

pside. (8)

This is the common digitization used to account for Δ =
∂xx + ∂yy + ∂zz = 0. The fifth-order expansion includes all
first neighbours and leads to

128p0 = 14
6∑
1

pside + 3
12∑
1

pedge +
8∑
1

pcorner. (9)

Digitization Equation (9) was used everywhere in the pore
space D except when it was not defined, that is on voxels
close to the surface and whose neighbourhood contains at
least one voxel in the ice phase. In the latter case, digitization
Equation (8) was used. This approximation is mathematically
consistent since both digitizations are Taylor expansions of
the pressure field. To quantify the effect of the change of
digitization scheme close to the ice–pore interface, Laplacian
maps have been computed and provide reasonable errors.

2.4. Real boundary conditions
The aim of modelling metamorphism is to provide snapshots
of the snow microstructure that are physically relevant to a
snow layer at the macroscopic scale. The first requirement is
that the studied sample should be larger than the represen-
tative elementary volume (REV) with respect to the studied
parameter (Bear, 1988). This important point is addressed in
section 3.
To be representative of a macroscopic layer, numerical

simulations also need to use a physically relevant param-
eterization of the data file boundaries. For instance, such a

parameterization could be in the form of assuming the bor-
ders of the data file are surrounded by ice everywhere; this
would provide a very simple Dirichlet condition to the prob-
lem. However, such an assumption would result in unrealis-
tic curvature values close to the file borders. More realistic
edge conditions can be obtained by combining the Dirichlet
and Neumann conditions, for example. Periodization of the
data is a more standard approach for similar problems (Yao
and others, 1993), especially where a spectral resolution is
considered. However, the continuity of second derivatives
of the vapour field is broken at the edges even when using
mirror symmetries. This generates many unphysical sources
and sinks at the edges of the data file, so that some judicious
smoothing of the edges still occurs.
As a first step in this direction, we chose to simply dis-

card the outer voxels in the summation (i.e. we averaged
over inner voxels only), leading to a truncated expansion of
Δp close to the edge. When removing voxels from one side
of the neighbourhood (1 side + 4 edges + 4 corners) in a
given direction of the grid (say, the xi axis), the corresponding
derivatives ∂k/∂xki of all orders k ≥ 1 are introduced in the
Taylor expansion of pside, although they are not accounted
for in the digitization of Δp0. Applying the digitization in
this way (with ‘missing voxels’) implicitly assumes that these
derivatives are set to zero.
The first-order condition is ∂p/∂xi = 0; this is a flux con-

dition that replaces the full 3-D problem with a combination
of the Neumann and inner Dirichlet conditions. The second-
order condition, ∂2p/∂x2i = 0, allows mirror symmetries
at the edges (Durand, 1966b). This provides a method of
turning this composite problem into a sequence of nested
one-, two- and three-dimensional (1-D, 2-D and 3-D) inner
Dirichlet problems, ensuring the existence and uniqueness of
the solution. In using a third-order digitization such as Equa-
tion (8), the interface should be smooth (differentiable) when
crossing the edge of the data file. This can be thought of as
an implicit extension of the data at constant mean curvature.
An additional justification for this choice was the fact that κ
governs the thermodynamics of both reaction and diffusion
problems.

2.5. Algorithm
Following assumption (3) of section 2.1, grain interfaces
are considered motionless throughout the computation. The
vapour field is computed in the diffusion limit using the fol-
lowing procedure.

1. The field of unit normal vectors n at the surface S of snow
grains is adaptively computed (Flin and others, 2005).

2. The corresponding field of mean curvature is computed
using κ = (divn)/2 (Flin and others, 2004).

3. The boundary conditions are fixed on the surface S using
Equation (2).

4. Similarly, the vapour field is initialized in the pore space
D by Kelvin’s equation at pamb = p0sat〈κ〉, 〈κ〉 being the
value of the mean curvature averaged over the whole
sample.

5. The vapour field is then computed using the iterative
Jacobi method (Press and others, 1992). The pressure
p (i+1)vap (r) of the voxel v (r) at iteration (i + 1) is dependent
upon the pressures at iteration (i) of the first neighbours
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a

b

c

Fig. 1. (a) Qualitative map of the mean curvature κ of a system of
two neighbouring spheres of different radii; (b) growth rate R in
the reaction case (spheres do not ‘see’ one another); and (c) R in
the diffusion-limited case (vapour transfer is favoured between close
grains).

of v (r). The method in which p (i+1)vap (r) is estimated de-
pends on the position of the first neighbours of v (r).

case 1 If all the first neighbours are in the pore space D
or on the surface S, digitization Equation (9) is used.
We then have:

p (i+1)vap (r) =
7
64

6∑
1

p (i)side +
3
128

12∑
1

p (i)edge

+
1
128

8∑
1

p (i)corner. (10)

case 2 If at least one neighbour belongs to the ice, digit-
ization Equation (8) is used. Hence:

p (i+1)vap (r) =
1
6

6∑
1

p (i)side. (11)

Fig. 2. A 2-D slice of the computed vapour-pressure map in the
diffusion-limited case. The snow image presented here was obtained
after metamorphosing during 12 days under isothermal conditions.
Image edges are 300 voxels (∼3mm) wide.

In both cases, when at least one neighbouring voxel of
v (r) does not belong to the image file, it is not taken into
account in the p (i+1)vap (r) estimation. In other words, the
digitization is restricted to the available data by comput-
ing the weighted mean of p (i+1)vap (r) on the inner voxels
only (see section 2.4).

6. Procedure (5) is iterated until the field of pvap(r) con-
verges.

The gradient ∇p(r) is then evaluated on the closest non-
adjacent layer to S using Prewitt’s digitization of the gradient
operator (Prewitt, 1970). The resulting growth rate R is then
computed using Equations (6) and (7). If time-lapse evolution
of snow microstructure was required, the next step of the
simulation would consist of modifying the grain surface S
according to the field of surface fluxes. The computation of
p(r) andR(r ∈ S+εn) from the newly obtained surface would
result, if repeated, in a morphological iterative process that
would provide the microstructure evolution of snow with
time.

3. PRELIMINARY RESULTS AND OUTLOOK
Vapour field and growth rate computationswere first checked
qualitatively on two spheres of different radii. The test showed
matter accretion (positive flux) on the large sphere, close to
the small one, unlike the result with a reaction model (Fig. 1).
This is the sort of difference we can look for between further
simulations of metamorphism using both the reaction and
diffusion processes. For both models, pamb was initialized as
the saturation pressure, corresponding to

〈κ〉 =
∫
∞ κ dS∫
∞ dS

.

The computations were then applied to tomographic 3-D
data (Brzoska and others, 1999) acquired from the European
Synchrotron Radiation Facility (ESRF, Grenoble, France). The
snow images presented in this paper refer to a snow sample
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Fig. 3. Vapour-pressure REV estimations for different samples.

obtained at −2◦C after a metamorphosing time of 12 days
(Flin and others, 2004). Figure 2 depicts a 2-D slice of the
computed vapour field.
In order to check the representativeness of the computed

vapour field, the mean values of vapour pressure were com-
puted in cubic neighbourhoods growing from the centre of
the 3-D image. The vapour pressure averages vs the size of
the computing volumes are plotted in Figure 3. The same
process has been applied to two other samples: a recent
snow sample obtained after 2 days of isothermal metamor-
phism (Flin and others, 2004) and a slightly faceted sample
taken after 3weeks of TG metamorphism (TG = 3Km−1,
average temperature ∼–3◦C) (Flin and others, 2007). From
Figure 3, it appears that the REV for vapour pressure signifi-
cantly depends on the snow microstructure. The REV for the
12day old sample (A) can be approximated as the volume
of a cube of 2.5–3.0mm in dimension. However, the REV
for the recent snow sample (B) (TG sample (C)) seems much
larger (smaller).
Figure 4 shows the growth rate results of both reaction

and diffusion-limitedmodels for the same 12day old sample.
(The result for the reaction model is scaled by the effective
reaction coefficient α that has not yet been precisely assessed
from the experimental data.) One can see a sharper transition
between positive and negative growth rates in the diffusion
process, which is consistent with results on spheres. Local
transport is favoured, then enhances the contrast of the cross-
over between regions of positive and negative R. It will be
interesting to check regions where two (convex) grains of
different average curvature are close to each other, where
the above situation of two spheres is expected.
The most interesting comparisons remain to be made be-

tween numerically metamorphosed results of both models
from the same input snow data. One can reasonably ex-
pect visible changes in curvature histograms between these
two simulations, and therefore a comparison with the ex-
perimental histogram may answer the difficult question of
whether the diffusion or the reaction mechanism is dom-
inant for the given experimental conditions. The only re-
quirement is that models should be run on data files that
are representative of samples larger than the REV of vapour
transfer. Further developments will have to deal with the in-
trinsic slowness of iterative schemes. It will first be necessary
to replace the Jacobi method with a more efficient scheme.
For example, over-relaxation methods (Patankar, 1980) could

a

b

Fig. 4. (a) Map of the growth rateR in the reaction case scaled by the
effective reaction coefficient α; and (b) map of R in the diffusion-
limited case. Image edges are 300 voxels (∼3mm) wide. Growth
rates are expressed in 10−10 m s−1.

be used to implement the model on nested cubic grids,
adopting the low-resolution result as a guess for the final
high-resolution run.
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