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Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities at the pusher-fuel inter-
face in inertial confinement fusion (ICF) targets may significantly degrade thermonuclear
burn. Present-day supercomputers may be used to understand the fundamental instability
mechanisms and to model the effect of the ensuing mixing on the performance of the ICF
target. Direct three-dimensional numerical simulation is used to investigate turbulent mix-
ing due to RT and RM instability in simple situations. A two-dimensional turbulence model
is used to assess the effect of small-scale turbulent mixing in the axisymmetric implosion
of an idealized ICF target.

1. Introduction

A typical inertial confinement fusion (ICF) target consists of a dense shell (pusher) filled
with DT gas. The shell is imploded by irradiation with laser beams or by other means.
Rayleigh-Taylor (RT) instability may occur whenever the pressure gradient opposes the den-
sity gradient (i.e., Vp- Vp < 0). This situation arises at the ablation front at the outside of
the pusher during the shell acceleration phase. The effect of mass ablation plays an impor-
tant role in reducing instability growth in this case; see for example, Gardner etal. (1991).
Direct numerical simulation is an ideal way of investigating these effects. However, this
is not the subject of the present paper. RT instability also occurs at the pusher-fuel inter-
face toward the end of the implosion phase when the shell is decelerated by the less dense
gas. Richtmyer-Meshkov (RM) instability will occur when shocks pass through the pusher-
fuel interface. The instabilities occurring in this phase are discussed in the present paper.
Implosion asymmetry due to nonuniform irradiation of the target will seed long-wavelength
RT and RM instabilities. The surface roughness of the shell will initiate small-scale insta-
bility growth over the whole of the pusher-fuel surface, and the resulting turbulent mix-
ing will degrade the performance of the ICF target by reducing the heating of the gas during
the implosion phase and by inhibiting the thermonuclear reaction after ignition. The dif-
ficulty in modeling the effect of these instabilities on target performance is one of the major
uncertainties in calculating target behavior. The aim of this paper is to show that present-
day supercomputers may be used both to understand the fundamental mixing processes and
to model the effects of these instabilities on the performance of the ICF target.

Three types of calculation are described in this paper. Section 2 gives a summary of the
TURMOIL3D computer program that is used for three-dimensional direct simulation of
RT and RM mixing in simple situations. Two examples are studied in detail in Sections 3
and 4. It is impractical to use direct three-dimensional numerical simulation to calculate
turbulent mixing in real problems where many complex physical processes need to be mod-
eled. A two-dimensional turbulence model therefore is used to assess the combined effect

© 1994 Cambridge University Press 0263-0346/94 $5.00 + .00

https://doi.org/10.1017/S0263034600008557 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034600008557


726 D.L. Youngs

of long-wavelength asymmetry plus small-scale turbulent mixing. The turbulence model is
described in Section 5. Application of the model to an idealized ICF implosion is discussed
in Section 7. The turbulence model uses a number of coefficients that are obtained from
experimental data on turbulent mixing. It is now feasible to supplement the experimental
data with results from direct three-dimensional simulation. In Section 6 it is shown how
direct three-dimensional simulation may be used to help validate the two-dimensional tur-
bulence model.

2. The TURMOIL3D computer program

TURMOIL3D is a simple three-dimensional computer program written for direct simu-
lation of turbulent mixing of two fluids due to RT and RM instabilities. The equations
solved are the Euler equations plus an equation for the mass fraction, mu of fluid 1:

d
— (prrii) + div(pmiu) = 0.
at

Perfect gas equations of state are used for each fluid. The mixture is assumed to be in
pressure and temperature equilibrium. If yi,y2,cvUcv2 are the adiabatic constants and the
specific heats for the two fluids, then the pressure is given by

p = (y - l)pe where y =
m2cv2

The Eulerian finite volume numerical method is an extension to three dimensions of the
explicit compressible technique of Youngs (1982). A staggered Cartesian grid is used, with
mass fraction (m,), density (p), and internal energy (e) defined at cell centers while the
velocity components (u,v,w) are defined at cell corners. As in many compressible fluid
codes, such as the FLIC method of Gentry et al. (1966), the calculation for each time step
is divided into two parts, a Lagrangian phase and an advection (or rezoning) phase. In
the Lagrangian phase the changes in velocity and internal energy due to pressure terms are
calculated, that is, the equations solved are

du de
p — = - V p , p— = -pd\\u.

01 at

A second-order-accurate time-integration technique is used, and the sum of the kinetic + in-
ternal energies is conserved exactly. All three spatial directions are computed simultaneously.

In the advection phase, fluxes across cell sides are calculated. X, Y, and Z advection are
calculated in separate steps; the order of calculation is XYZ, ZYX for alternate time steps.
Operator splitting facilitates the use of the second-order-accurate, monotonic advection
method of van Leer (1977), which is used for all fluid variables p, mx, e, u, v, and w. The
aim of the van Leer method is to minimize numerical diffusion while preventing spurious
overshoots and undershoots. Many desirable properties follow. For example, the mass frac-
tion Wj remains in the interval [0,1]. For the mixing of two effectively incompressible flu-
ids the mixture density p remains in the interval [p\,Pi\, thereby avoiding any spurious
buoyancy generated turbulence.

The advection phase conserves the masses of each fluid, the internal energy, and the
momentum. Kinetic energy tends to be dissipated. The formula due to DeBar (1974) is used
to calculate the energy dissipated in each cell. This is added on to the internal energy. Use
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Numerical simulation of mixing by Rayleigh-Taylor 727

of the second-order-accurate van Leer method for momentum advection gives significantly
less dissipation than a first-order (upwind) method.

In the Lagrangian phase the time step is controlled by the sound speed (c) that is, the time
step must satisfy At < min (Ax,Ay, Az)/c. For the advection phase the time step is con-
trolled by fluid velocities, and the required condition is At < min ( A X / | M | , Ay/\ v\, Az/\ w\).
Several of the simpler Lagrange steps may be performed per advection step. This signifi-
cantly speeds up low Mach number calculations and means that it is feasible to simulate
incompressible mixing problems by carrying out calculations at low Mach numbers.

The numerical method of Youngs (1982) used an interface tracking method for multi-
fluid flows. For turbulent mixing of miscible fluids a high degree of molecular mixing is
known to occur from experimental results. The numerical method needs to include a mech-
anism for the dissipation of both concentration and velocity fluctuations due to small-scale
eddies. Hence interface tracking is inappropriate. In large eddy simulations, such as those
of Moin and Kim (1982), a nondissipative numerical technique is used in conjunction with
a subgrid eddy viscosity to represent the effect of the unresolved scales. In TURMOIL3D
the monotonicity constraints in the van Leer advection scheme provide the required dissi-
pation at high wavenumbers. Hence, an additional subgrid model is unnecessary. Use of
a subgrid model may give a better representation of the high-wavenumber ends of the energy
and concentration fluctuation spectra (the k~s/i Kolmogorov law). However, the mono-
tonic advection scheme has a number of advantages as already noted.

The calculations described in this paper were carried out on the CRAY-YMP at Alder-
maston. The explicit numerical technique ideally is suited to parallel computing and makes
full use of the multitasking capability of the CRAY computers.

3. Three-dimensional simulation of Rayleigh-Taylor mixing

The simplest situation in which RT instability occurs consists of fluid with density px

resting initially above fluid with density p2 < P\ m a gravitational field g. If the plane inter-
face is perturbed, "bubbles" of the less dense fluid 2 rise and "spikes" of the denser fluid
1 fall.

There have been many two-dimensional calculations of this phenomenon. Early results
were published by Harlow and Welch (1966) and Daly (1967). More recent calculations are
described by Youngs (1984), Tryggvason (1988), Kerr (1988), and Mulder et al. (1992). A
number of articles have been published by Glimm and his co-workers (Chern et al. 1986;
Glimm et al. 1990); these papers used an interface tracking method and focused on the
increase in the length scale associated with the mixing zone, due to interactions between
the bubbles of the light fluid. Few simulations of RT instability in three dimensions have
been published. The growth of the instability from a single-wavelength initial perturbation
has been considered by Dahlburg and Gardner (1990), Tryggvason and Unverdi (1990), and
Town and Bell (1991). Three-dimensional calculations of turbulent mixing by RT instabil-
ity have been performed by Youngs (1991).

In this section, three-dimensional simulation is used to investigate in detail the case when
the instability evolves from small random perturbations and when viscosity is negligible.
Loss of memory of the initial conditions tends to occur as the dominant length scale asso-
ciated with the turbulent mixing zone increases with time. Dimensional reasoning then sug-
gests [see Belen'kii and Fradkin (1965), Anuchina et al. (1978), and Youngs (1984)] that
the mixing zone should be described by a similarity solution with a length scale propor-
tional to gt2. The width of the mixing zone is then given by
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728 D.L. Youngs

The experiments of Read (1984) and Youngs (1989), in which no deliberately imposed
initial perturbations were present, appeared to confirm equation (1). The depth to which
the mixing zone penetrated the denser fluid 1 (bubble penetration) was found to be given by

h1=a
 P-^?± gt2 = aAgt\ (2)

Pi +02

where a was approximately 0.06 at all density ratios. If h2 denotes the depth to which the
mixing zone penetrates fluid 2 (spike penetration), then /i2//Ji was shown to be a slowly
increasing function of the density ratio p\/p2. Similar values of a were reported by
Kucherenko et al. (1991). Andrews and Spalding (1990) gave a = 0.04 for a slim two-
dimensional tank. Most other experimental estimates of a are higher. The two-dimensional
multimode simulations of Youngs (1984,1989) gave a -0.04 to 0.05. The three-dimensional
simulations described by Youngs (1991) indicated a = 0.035 to 0.04, that is, the computed
values of a are less than the observed values. In this section, a three-dimensional calculation
with improved mesh resolution is described. The aim is to see if this discrepancy persists.

The three-dimensional calculations described here use 270 x 160 x 160 meshes. The com-
putational region is: —0.65 < x < 0.9, 0 < y,z < 0.8. Periodic boundary conditions were
used in the y- and ^-directions. At the .^-boundaries the normal velocity was set to zero.
A uniform mesh (250 zones) was used in the interval —0.5 < x < 0.75. Extra coarse meshes
were added at x < -0.5 and x > 0.75 to reduce the effect of the boundaries on the growth
of the mixing zone. For comparison, results also are shown for two-dimensional calcula-
tions with twice the resolution, that is, 540 X 320 zones. The initial distribution of fluid 1
was given by

•{:
* < to

where the random interface perturbation fo was a combination of Fourier modes:

, z) = Re 2 ao exp (ikyy + ik2z),
k

where

4JTl1^ (3)

The wavenumber range (kmm,kmax) corresponded to wavelengths X = 4Ax to 8Ax. The
random amplitudes a0 were chosen from a unit Gaussian distribution and then scaled so
that the standard deviation of the perturbation was (f | ) 1 / 2 = 0.02Xmin = 0.0004. At the
interface the fluid densities were p, = 3 and p2 = 1. Before the perturbation was applied,
an adiabatic variation was used throughout each fluid, that is, dp/dx = pg,p = a constant x
py. This gave neutral stability within each fluid and so minimized the effect of compress-
ibility. The initial interface pressure was chosen to be high enough to make compressibil-
ity effects negligible. When the interface was perturbed, the pressure distribution was
modified (while leaving the density distribution unaltered) to satisfy the Poisson equation

V( - Vp | = 0; — = pg at the x-boundaries.
\P I dx

This ensured d/dt (div u) = 0 at the perturbed interface. The modification to the pressure
distribution is small for the present problem. However, it is more important for the prob-
lem considered in Section 6, where a large additional perturbation is added.
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Two three-dimensional and four two-dimensional calculations were carried out, with dif-
ferent choices for the random amplitudes a0. For the purpose of analyzing the results it
has proved useful to use volume fractions rather than mass fractions. The volume fraction
of fluid / (/•) is calculated from the mass fractions:

fi = + m2/p2).

Figure 1 shows iso-surfaces for/| = 0.99 from one of the three-dimensional calculations.
This shows the evolution of the bubbles of light fluid. The increase with time of the char-
acteristic bubble size is clearly shown. The rate of growth of the mixing zone is measured
in two different ways. Bubble and spike penetrations, ht and h2, are defined as the dis-
tances from the initial interface position (x = 0) to the points where / , - 0.99 and / , =
0.01, respectively. The bar denotes the average over a plane layer, that is:

• /
4>(x,t) = <j>(x,y,z,t)dydz dydz.

J I J

The integral width, used by Andrews and Spalding (1990), is taken to be

W=jfrf2dx,

which is less susceptible to statistical fluctuations. If/i varies linearly with x for 1 to 0,
then hx = h2 = "iW, that is, the width of the mixing zone is of the order of 6W.

Figure 2 shows plots of W versus Agt2 and figure 3 shows plots of hi versus Agt2. For
the two-dimensional calculations the plots of W versus Agt2 show reasonably good linear
correlation. However, for the three-dimensional case the initial slope is about twice the value
at the end of the calculation. The slope of the curve begins to decrease when the mixing
zone exceeds a width of about 50 meshes. It is suggested that the initially high slope is due
to the inability to resolve an inertial range during the early stages of the calculation. The
reduced slope at the end of the calculation is attributed to the dissipative effect of three-
dimensional turbulence on density and velocity fluctuations. The estimated values for the
growth rate coefficients are a ~ 0.03 in three dimensions and a ~ 0.04 in two dimensions.

As in Youngs (1991), the molecular mixing fraction at a given value of x is defined as

0(x)=fJ2/(frf2),

FIGURE 1. Iso-surfaces of fx = 0.99 for the three-dimensional Rayleigh-Taylor calculation in the
region x < 0. Gravity acts vertically downward.
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FIGURE 2. Variation of the integral mixing zone width ( W) with time for the Rayleigh-Taylor cal-
culations: (a) three dimensions, (b) two dimensions.

and the molecular mixing fraction for the mixing zone as a whole is taken to be

The overbars denote plane averages, as has been previously explained. If there are no con-
centration fluctuations at a given value of x, that is, fr =fr, then 6{x) and 0 are both
equal to unity (complete molecular mixing).

If the mixing zone is described by a similarity solution with gt2 as the only length scale,
then G should have a constant value (for a given density ratio). Moreover, the x, y, and
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FIGURE 3. Variation of the bubble penetration (h{) with time for the Rayleigh-Taylor calculations:
(a) three dimensions, (b) two dimensions.

z contributions to the kinetic energy (integrated over the mixing zone), Kx = jjpu2dV,
etc., and the kinetic energy dissipation D should be constant fractions of the total poten-
tial energy loss P = D + Kx + Ky + Kz. Figure 4 shows plots of 9, Kx/P, \ (Ky + Kz)/P,
and D/P versus £ = Lx/W for the three-dimensional calculations. £ is a measure of the mesh
resolution. The values obtained as £ -> 0 give an indication of the results for the well-resolved
similarity solution. The change in the values between £ = 0.1 and £ = 0.05 is not large, indi-
cating that approximate self-similarity is obtained. The limiting values as £ -> 0 are, approx-
imately,

9 = 0.83

Kx/P = 0.28

K,/P = Kz/P = 0.10

D/P = 0.52.

There is significantly less dissipation in the two-dimensional simulations. At the end of the
calculations the molecular mixing fraction is 0 ~ 0.54, and the kinetic energy dissipation
is very low, D/P ~ 0.06.

Figure 5 shows plots of the layer-averaged quantities f\ and 6 versus x/W at / = 2 and
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FIGURE 4. Three-dimensional Rayleigh-Taylor calculations: integrated properties of the turbulent
mixing zone versus mesh resolution.

/ = 3.5. The two sets of curves are very similar, again indicating that approximate self-
similarity is obtained.

The probability distribution functions (pdf's) for the variable / , for the plane layers
x = — 2W, 0 and 2Ware shown in figure 6 for times t = 2.0 and 3.5. Again there is little
change between the two times. In the middle of the layer the two fluids are well mixed, that
is, there is a low probability of finding/, = 0 or/, = 1. The pdf at x = —2 Windicates the
presence of pure fluid 1 + bubbles of light fluid 2 well mixed with the heavier fluid. Equiv-
alent results apply on the other side of the mixing zone.

All of the results indicate that an approximate self-similar mixing zone is established by
the end of the calculation. The final length scale is about eight times larger than the initial
length scale; in these circumstances, loss of memory of the initial conditions is expected.
However, the calculated value of a is about 0.03, which is significantly less than most of
the observed values. A possible explanation is that mixing in the experiments has been
enhanced by initial perturbations that are larger than those used in the simulations described
here, that is, complete loss of memory of the initial conditions has not occurred.

4. Three-dimensional simulation of Richtmyer-Meshkov mixing

Richtmyer-Meshkov instability occurs when one or more shock waves pass through a
perturbed interface or a turbulent mixing zone. The small amplitude theory for a single
shock was investigated by Richtmyer (1960); shock tube instability experiments were
described by Andronov et al. (1976). A simple situation will be considered here: the pas-
sage of a single shock wave, at normal incidence, through the planar interface between two
fluids with initial densities p,0 (x < 0) and p° (* > 0). The results shown here will describe
the turbulent mixing that occurs after shock passage. It will be assumed that the initial
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FIGURE 5. Three-dimensional Rayleigh-Taylor calculation. Profiles of layer-averaged fluid 1 volume
fraction ( / , ) and molecular mixing fraction (0).

(a) r = 2.0, w = 0.065

(b) f = 3.5, w = 0.134

1.0

1.0 0.0 1.0 0.0

FIGURE 6. Three-dimensional Rayleigh-Taylor calculation. Probability density functions for/, in
plane layers, x = a constant.
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response of the perturbed interface is described by the small amplitude linear theory. For
an initial perturbation,

= a0 cos ky,

the velocity perturbation induced by shock passage is given by u = —V0, where

f - ( £ o c o s k y e + k x x < 0
0 =\

l 0 / * * x> 0

, ,TP\ - Pi
<j>o = aou • — ,

P\ + Pi

and U is the change in interface velocity due to the shock.
Richtmyer (1960) argued that, if there was significant compression, it was better to use

the values of a0, p,, and p2 after shock transit. Note that velocity fluctuations are gener-
ated for both of the cases px > Pi and px < p2.

For the problem considered here, the postshock configuration is used for the initial con-
ditions. The values used for the postshock densities are p, = 3 and p2 = 1; the pressure is
P = 1; 7 = f for both fluids. The corresponding preshock values are p° - 1.375, p° = 0.25,
and/?0 = 0.0. The change in fluid velocity due to shock passage is C/= 1.74. In the simu-
lation the mean velocity is set to zero, that is, the numerical mesh moves with the shocked
fluid. The interface perturbation, imagined to be present after shock transit, is given by
equation (3) with kmm = 0.

In order to calculate the postshock conditions, the initial perturbation actually used is
the velocity perturbation induced by the shock. This is derived from a vector potential:

u = curl A,

where

Ax = 0.0

ik
,4, = Re Yi -£ 4>ovw\ikyy + iktz - k\x\\

k

f + ikzz - k\x\\

and

0o = amplitude of the scalar potential

= a0-— U. (4)
Pi + Pi

The vector potential is calculated at the cell centers. Differentiation then is used to cal-
culate the velocity at the cell corners. For a uniform mesh this gives a divergence-free ini-
tial velocity field.

The random initial amplitudes a0 are chosen from a Gaussian distribution. This gives
a flat spectrum in the region k < kmax, that is, the standard deviation of the amplitude
spectrum is given by

dkydkz = C\ kdk,

where C is a constant.
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For a single mode with amplitude a0, a2 = jai and the initial kinetic energy per unit
interfacial area obtained by integration of the velocity distribution given by equation (4) is

2 \Pl+P2,

Hence, for the random initial amplitude the initial kinetic energy is

K0=
l- (Pi

\ (P. + P2)(
2 \P\ +
1 ,

Pl+Pl

As for the Rayleigh-Taylor calculations described in the previous section, W is used to
denote the integral width of the mixing zone, $f\f2dx. The x-component of the initial
velocity at the interface u0 has a Gaussian distribution. It may therefore be shown that

« /i=o

where

= 4= I
V2 Jo

[1 — erf (s)] ds — 0.564

and

(5)
Pi - P 2

V2 p, + p2

Most of the initial kinetic energy corresponds to wavenumbers near kmax, that is, the ini-
tial length scale is of the order of Xmin. The initial growth of the perturbation is described
by the linear theory. However, when the width of the mixing zone is of the order Xmin, a
turbulent layer will develop. The late-time behavior of this turbulent layer was investigated
by Barenblatt (1983) and Neuvazhayev (1991). By considering self-similar solutions to tur-
bulent diffusion equations, it was shown that at late time the mixing zone width should
vary as tp, where p is less than unity. A simple argument may be used to demonstrate this
behavior. Suppose that the velocity field is characterized by a length scale L and a magni-
tude V. L increases as the mixing zone grows; the initial value is determined by Xmin. The
turbulence kinetic energy is dissipated by the cascade to high wavenumbers (the Kolmogorov
process) at the rate V2/L per unit mass. This suggests the following model equations:

kinetic energy dissipation,

^r(LV2) =-aV3;
dt

increase in mixing zone width,

dW „

length scale,

L = bW+c\
n,h,.
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a, b, c are model constants. The initial values are W= 0, V = Vo. The solution for Wis

where

and

P =
3 + ab

If there were no kinetic energy dissipation (i.e., a = 0), p would be f. For nonzero dis-
sipation, p <\.

Two-dimensional numerical simulations of RM instability have been described by Mikae-
lian (1991), Cloutman and Wehner (1992), and Pham and Meiron (1993). For multiple-scale
random perturbations, Pham and Meiron (1993) give some evidence of t" behavior at late
time. As for RT instability, little has been published on three-dimensional simulation; Clout-
man and Wehner (1992) showed results for single-mode calculations.

Results are presented here for two- and three-dimensional calculations. The three-
dimensional calculation used 270 x 160 x 160 zones, the same number as for the Rayleigh-
Taylor mixing layer. The interface position was, however, changed as h2/hx was greater
in this case; in the x-direction the computational region was 0.55 < x < 1.0. The minimum
wavelength for the initial perturbation was Xmin = 16 Ay, that is, the initial scale was well
resolved. The two-dimensional calculation used 540 x 320 zones and also had Xmin =
16 Ay. In order to be as consistent as possible with the three-dimensional calculation, a
ky dky spectrum was used for the random initial amplitudes, giving

f*ma* fk
— C I k Hk — C I

Jo Jo
kdk,

as in the three-dimensional case. For both the two- and three-dimensional cases, the ran-
dom initial amplitudes were scaled in order to satisfy equation (5) exactly. Both calcula-
tions then had the some value or Vo.

The simple model considered earlier in this section suggests plotting H7Xmjn versus Vot/
Xmin. This is shown in figure 7. The comparison of the two- and three-dimensional results
shows some interesting features. Initially, dW/dt is the same for the two calculations, as
expected. In the early nonlinear phase, mixing is more rapid in three dimension than in two.
However, at late time, when the turbulence is fully developed, the growth rate is less in the
three-dimensional simulation. The latter is to be expected since the three-dimensional tur-
bulence is more dissipative than the two-dimensional turbulence. Properties of the turbu-
lent mixing layer at late time (K0//Xmin = 50) are given in table 1. The values of
final/initial kinetic energy, K/Ko, clearly show that dissipation of kinetic energy is much
greater in three dimensions. The factor 10 difference in kinetic energy between the two-
and three-dimensional calculations suggests a factor VTO in the growth rate W. The dif-
ference in the growth rates (figure 7) is not as marked as this and implies that the propor-
tionality between W and -4K/W is different in two and three dimensions.

Equation (6) has been fitted to the three-dimensional data shown in figure 7. The fit
is reasonably good but not perfect. Hence, to obtain the best estimate of p {W~ tp at late
time), the data for Vot/\min > 15 were approximated by the equation W = B(t — to)

p. This
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FIGURE 7. Richtmyer-Meshkov calculations. Variation of integral mixing zone width ( W) with time:
• three dimensions; x two dimensions. The curve drawn is the best fit to the three-dimensional data,
using equation (6).

corresponded with the data accurately and gavep = 0.30. However, the calculation needs
to be run to a much later stage to be certain of the final power law behavior. This is not
feasible at present. It should be emphasized that the results shown in figure 7 apply to the
case p\/p2 = 3 and for the form of the initial perturbation used here. Richtmyer-Meshkov
mixing due to a single shock does depend on the initial conditions, and different forms for
the initial perturbations are likely to give different values for p.

Figure 8 shows contour plots for the Richtmyer-Meshkov calculations. At the same val-
ues of K0//Xmin there is more evidence of fine scale mixing in the three-dimensional cal-
culation than in the two-dimensional calculation. In addition, there are some unusual

TABLE 1. Properties of the Richtmyer-Meshkov
mixing layer at Vot/\mm = 50

Two
Dimensions

Three
Dimensions

Molecular mixing fraction 8 0.62
K/Ko 0.46
KJK 0.54

0.74
0.044
0.57
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FIGURE 8. Richtmyer-Meshkov calculations. Volume fraction contours for plane sections, z = a con-
stant. Contour levels/! = 0.05, 0.3, 0.7, 0.95. (a) Three dimensions, (b) two dimensions.

features in the two-dimensional calculation. The initial velocity field has regions or posi-
tive and negative vorticity, and in some parts of the problem this leads to the formation
of vortex pairs that propagate away from the mixing zone without being strongly dissipated.
The small amounts of fluids carried away from the main part of the mixing zone do not
significantly effect the integral mixing zone width W.

There is clearly scope for further application of three-dimensional direct numerical sim-
ulation to RM mixing for both the single-shock and the multiple-shock cases (not consid-
ered here).

5. The two-dimensional turbulence model

Direct three-dimensional numerical simulation is possible in simple situations such as the
cases considered in Sections 3 and 4. However, for more complex real applications, direct
three-dimensional simulation is impractical and will probably remain so for many years,
in spite of the advances in computer hardware. For such problems it is necessary to use
a turbulence model to predict the "average" behavior of the turbulent mixing zone.
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For one-dimensional problems in which the mean fluid velocity is normal to the inter-
faces, RT and RM instabilities are the important processes. One-dimensional turbulence
models for such situations have been considered by several authors. Turbulent diffusion
models of various levels of complexity have been described by Belen'kii and Fradkin (1965),
Neuvazhayev (1975), Andronov et al. (1976), Crowley (1992), and Polionov (1991). An alter-
native approach based on the equations of multiphase flow was considered by Youngs
(1984,1989). The equations of multiphase flow describe the effect of a pressure gradient
on fluids of different densities. It is argued here that this represents the RT and RM pro-
cesses better than a pure diffusion model. However, diffusion models have one advantage:
They are significantly easier to implement in a computer code. Use of the equations of a
two-phase flow to model mixing by RT instability has also been considered by Andrews
(1992), Spalding (1987), and Besnard and Harlow (1988). Besnard et al. (1989) described
an extended diffusion model that incorporates aspects of the two-phase flow equations.

In some applications, such as the axisymmetric implosion of an ICF target, the mean
flow is two dimensional. For such problems a two-dimensional turbulence model is required.
This section describes the extension to two dimensions of the model described by Youngs
(1989). Turbulent diffusion terms are included in the model. This enables mixing by Kelvin-
Helmholtz (KH) instability to be represented in addition to RT and RM mixing.

The two-dimensional version of the multifluid turbulence model has been implemented
in a two-dimensional Eulerian hydrocode that uses the method described by Youngs (1982).
The equations solved are given in the remainder of this section.

The notation used is as follows:

fr = fraction by volume of fluid r;
pr = density of fluid r;
p = TirfrPr> mean fluid density;

mr = frPr/p, fraction by mass of fluid r;
er = internal energy of fluid r;
pr = pressure of fluid r\
uri = /th component of the velocity of fluid r (mass weighted);
«,- = Lmrurj, mass weighted mean velocity;
«, = volume weighted mean velocity;
k = turbulence kinetic energy per unit mass;
L = length scale (average size of bubbles on drops);
g, = gravitational force per unit mass.

The model equations are then as follows (summation over repeated spatial indices /, j , or
k is assumed):

mass transport

I" (Prfr) + 4~ PrfrUrj) = 0; (7)
at aXj

momentum transport:

3 3 dp dRij „
— (PrJrUri) + — (PrfrUrjUri) = —fr mr — 1" 2j (Msi + Mrsi) + PrJrgh (°)
at aXj ox, axj s

internal energy transport

T" (Prfrer) + T - (PrfrUrj) = ~hrPr T^ + T~ (prfrD - ^ + e; (9)
dt dxj dxj dxj \ aXj)
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turbulence kinetic energy:

dt dXj

length scale:

dL dL _

A number of terms in equations (8) to (11) need further explanation. Drsi denotes the
drag force on fluid r due to fluid s. This is obtained by extension of the one-dimensional
formula described by Youngs (1989):

Drsi = - c , ^Ml W(uri - usi - wri + wsi),
I—i

where

Prs = {frPr+fsPs)/(fr + fs),

W = | ur — us + wr — ws I,

Wri = - T — T- (frPr),
frPr dXj

D = turbulent diffusion coefficient,

Ci = drag coefficient.

wri is the value of uri — M, expected if mixing is entirely due to turbulent diffusion. For
the high drag limit {cx -* 00), un. - usi = wri - wsi. It then follows that uri = u, + wri and
equation (7) reduces to the diffusion equation

! ; (Prfr) + •£- (PrfrUj) = J~\D^- (frPr)\ •
dt dxj dxj ( dx )

The added mass effect for fluid r due to fluid s is

where

Dt ~ dt "rJ dxj

is the acceleration of fluid r. The coefficient ca is chosen to be 0.5, the value for a solid
sphere of fluid r surrounded by fluid s.

The components of the Reynolds stress are given by the formula used in the (k,e) tur-
bulence model:

Ru = \pkbij - 2n,[eu

where

2{dxj+ dXi
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is the strain rate tensor based on the mass weighted mean velocity and /x, is the turbulent
viscosity.

Use of mass fraction (mr) weighting in the Reynolds stress terms in equation (8) was
explained by Youngs (1989). This is chosen so that the Reynolds stress terms do not induce
velocity separation. The velocity separation induced by turbulent diffusion effects is fully
accounted for by the inclusion of wrj in the drag term.

The total work done in compressing the fluid is —p div u where u is the volume-weighted
velocity (not the mass-weighted mean velocity). This gives the correct behavior for the
incompressible limit (i.e., work done = zero) where div u = 0 but div u ^ 0. The fluid r veloc-
ity, «„, used in the model equations denotes the mass-weighted velocity of fluid r; the fluid
r momentum per unit volume is then prfruri [as implied by equation (8)].

uri will differ from the volume-weighted value uri, unless pr is constant. It is assumed
that the difference between uri and uri is due entirely to diffusion effects and is given by

D d D df, D dfr
Prfr dXi fr dXj fr dX/

The volume-weighted mean velocity is then given by

frUri = Ylfr(Uri - Wri).

In the internal energy equation for fluid r, equation (9), the work done in compressing
fluid r is —hrpr div u. hr depends on the relative compressibility of fluid r and is given by

Energy conservation then requires that the mean pressure is given by p = Lhrpr. The com-
ponents of the mixture are not forced to be in pressure equilibrium, that is, pr =t p s .
Instead, an advection equation is solved for the volume fractions:

Pressure differences are then allowed to relax toward zero. The components of the mix-
ture in a computational mesh that are at high pressure expand and do work on the com-
ponents at low pressure.

Equation (10) for turbulence kinetic energy is essentially the same as that used in the (k, e)
model, see for example, Launder and Spalding (1972). The dissipation term is

€ = 0.09 pkW2/i,,

where t, is the turbulence length scale. The source term in equation (10) is obtained by
considering the loss of kinetic energy implied by equations (7), (8), and (9). The result
obtained is

Sk = S ("« - uri){Mrsi + Drsi) - Rijiij.
r>s

The advection velocity uLi and the source term SL in the length scale equation (11) are
extensions to higher dimensions of the formulas used by Youngs (1989) and Andrews (1992):
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UU = M, + Tifrfsifr -/,)(«*• - «n-)/S/r/,
r>s I

SL = ZfrfsJs("sj ~ Urj)nrsJ
r>s

where

S —
Pr + Ps

nrsi is a unit vector in the direction of mixing from fluid r to fluid s. This is assumed to
be in the direction of

frT1 -fs-r1-dx, dxi

For the two-fluid case, SL is proportional to the component of velocity separation nor-
mal to the interface. For a planar one-dimensional problem this corresponds to the rate
of change of the mixing width 8 and hence gives L ~ 5. The multifluid formula is simply
a plausible extension of the two-fluid formula.

The term eLL describes the response of the length scale to the strain rate:

_ 1/3S, duA
u~ 2\dxj + ax,)'

If there are no velocity gradients, eL = 0. For isotropic compression, with eu = ebu, eL -
e seems the obvious choice, that is, the length scale is compressed at the same rate as the
fluid. However, the effect of anisotropic strain is uncertain. Andrews (1992) proposed that
fluid stretching should reduce the length scale. The form used here is

eL = \ekk -c3|/i/e,y«y|,

where

n, — a unit vector in the direction of mixing (normal to the interface), and c3 is a model
constant.

The turbulent viscosity and turbulent diffusion coefficients are chosen by considering
turbulent shear flow experiments. The values used here are

Finally, the turbulence length scale is taken to be

I, = c2L.

Three model constants, cu c2, and c3, remain to be determined. Determination of the
coefficient c3 requires comparison with two-dimensional mixing experiments. A precise
value is yet to be determined; however, the results quoted by Andrews (1992) suggest that
c3 = 1 is plausible, and this is the value used here.

The value of c2 that determines the relative importance of the turbulent diffusion terms
is found by considering a simple incompressible Kelvin-Helmholtz mixing problem with
zero gravity for which pressure-driven mixing is negligible. The initial conditions are
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.PI y>v

y<0

y>0

= w = 0.

It is assumed that this time-evolving mixing layer is equivalent to the spatially evolving
plane mixing layer for which many experimental results are available; see, for example,
Brown and Roshko (1974) and Batt (1977). For the time-evolving case the width of the mix-
ing layer is given by

The results of Brown and Roshko (1974) at P1/P2 = 1 and 7 are fitted by using

Pi - P 2
c2 = 0.105 + 0.06

Pi +P2

The drag coefficient, cu has then been adjusted to give a = 0.05 for Rayleigh-Taylor
mixing at all density ratios. The choice of the value of a is somewhat uncertain, as the exper-
imental estimates are higher than those obtained from the three-dimensional simulation.
For the purpose of illustrating the use of the turbulence model an intermediate value has
been chosen. The required drag coefficient is

Pl +P2

There is one major omission in the model described here. Dissipation of density fluctu-
ations, which was shown to be significant in Sections 3 and 4, has not been taken into
account. It is planned to represent this in future versions of the turbulence model by includ-
ing mass transfer between the fluids.

6. Comparison of two-dimensional turbulence model with
direct three-dimensional simulation

It is impractical to apply three-dimensional simulation to real applications. However, it
is feasible to simulate more complex problems than the simple one-dimensional mixing lay-
ers considered in Sections 3 and 4. It is possible to investigate the validity of the two-
dimensional turbulence model by comparison with three-dimensional direct simulation for
simple mixing problems that are on average two dimensional. An example is shown in this
section.

The problem considered is a modification of the RT mixing layer considered in Sec-
tion 3. The only change is the initial perturbation, which is now given by

The random perturbation £R is the same as defined in Section 3. A fixed perturbation
$>, which depends ony only, is added. As fo is a stationary random function of y and z,
averaging of a fluid property 4>(x,y,z,t) over different choices for the initial conditions
yields an ensemble average <<£> that depends only on x, y, and t. The aim of the two-
dimensional turbulence model is to predict the ensemble-averaged fluid variables.
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The two-dimensional turbulence model cannot be expected to be applicable in all situa-
tions. If fr(y) = 0, that is, the problem is one dimensional on average, the turbulence
model is chosen to fit the quadratic growth law, equation (2). Hence it is assumed that loss
of memory of the initial conditions occurs (approximately, at least). Roughly speaking, this
means that the random perturbation £R(y,z) should not include large-amplitude long-
wavelength modes that would give enhanced mixing. For the two-dimensional situation,
that is, £F(y) & 0, the two-dimensional turbulence model will only be valid if a similar
condition holds. It is not claimed here that this condition will necessarily hold in all ICF
applications. Whether it does or not is a matter of current debate. If loss of memory of
the initial conditions does occur, then the line average

(t>(x,y,z,t)dz/(Zmax - Zmin)

should be approximately equal to the ensemble average <<£>. A single three-dimensional
calculation will therefore be performed and line averages will be compared with the two-
dimensional turbulence model calculation.

The three-dimensional RT calculation with 270 x 160 X 160 meshes described in Section
3 has been repeated with an extra perturbation, fr(x), a groove with a cylindrical cross
section. The width of the groove is 0.16 and its depth is 0.03. The equivalent two-
dimensional turbulence model calculation uses 135 x 80 meshes. The direct simulation has
also been run as a two-dimensional problem (270 x 160 x 1 meshes).

The three-dimensional simulation, figure 9, shows that the cylindrical groove evolves into
a large bubble which penetrates much further into the heavier fluid than the turbulent mix-
ing zone. As time proceeds, the bubble entrains more and more of the heavier fluid; the
contour plots show that the maximum value of/2 within the bubble decreases with time.
Figure 10 compares a section z = a constant with results from the two-dimensional simu-
lation. The growth of the bubble is similar in two and three dimensions. However, there
is more fine-scale structure in the three-dimensional simulation.

Results from the turbulence model calculation are shown in figure 11. On the whole, the
results are very similar to the direct three-dimensional simulation. However, there are some
differences; at late time, the bubble has entrained more of the heavier fluid in the direct

FIGURE 9. Cylindrical groove problem. Three-dimensional simulation. Contours of line averaged vol-
ume fraction/, = 0.05, 0.3, 0.7, 0.95.
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FIGURE 10. Cylindrical groove problem. Comparison of two- and three-dimensional simulations, (a)
Three-dimensional volume fraction contours for a plane section z = a constant, (b) Two-dimensional
volume fraction contours. Contour levels:/! = 0.05, 0.3, 0.7, 0.95.

simulation than in the turbulence model calculation. The comparison clearly demonstrates
how direct numerical simulation can be used to help to validate two-dimensional turbu-
lence models.

7. Application of the two-dimensional turbulence model to
an idealized ICF implosion

An ICF implosion test problem taken from Town and Bell (1991) is used to illustrate the
use of the two-dimensional turbulence model. The unperturbed initial spherical geometry
that represents a DT/glass ICF capsule at the end of the shell acceleration phase is shown
in table 2. Realistic equations of state are used. A simple model is used for the thermal flux,
F = —kVT, where k allows for both electron conduction and photon diffusion. Thermal

f = 1.0 t= 1.5

-x/-—
——\s——

IT

t = 2.0

FIGURE 11. Cylindrical groove problem. Two-dimensional turbulence model calculation. Volume frac-
tion contours/, = 0.05, 0.3, 0.7, 0.95.
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TABLE 2. Initial geometry used for the implosion calculations

Material DT Gas Glass Shell Ablated Glass

Density (g/cc)
Outer radius (jun)
Pressure (Mb)
Inward velocity (cm/^is)

0.5
130
20
0

5
190
20
15

0.5
300

20
15

smoothing reduces the density ratio at the gas/shell interface from p\/p2- 10 to p,/p2 ~ 2.
This tends to reduce the growth of short-wavelength perturbations.

A two-dimensional axisymmetric implosion is obtained by perturbing the gas/glass inter-
face at the beginning of the calculation. The perturbed radius is r = r0 + a0P4 (cos0),
where r0 = 130 /*m and a0 = 5 /xm.

The turbulence model calculations use an (r,8) spherical polar mesh with 8 in the range
0 to 90°. The mesh in the radial direction moves with the mean 0-averaged fluid velocity,
that is, a semi-Lagrangian calculation is performed. The number of meshes is 160 in the
radial direction and 60 in the angular direction (for the asymmetric implosion). Separate
temperatures are used for each fluid, and thermal flux terms are included in the internal
energy equations. It is therefore necessary to model the thermal flux between fluids. The
energy exchange rate per unit volume between fluid r and fluid s is given by:

where k is an appropriate mean value of k and c4 is a model constant.
In the calculations shown here, c4 has been set equal to 20, an appropriate value for a

spherical particle of \L in a background fluid. It should be possible to obtain a more
soundly based value for the model constant from analysis of direct three-dimensional sim-
ulations with thermal fluxes included. However, calculation of thermal fluxes is not pres-
ently available in TURMOIL3D.

Results are shown here for three calculations. Figure 12 shows the evolution of the long-
wavelength RT instability from the P4 perturbation. In this case interface tracking is used,
as described by Youngs (1982), that is, the turbulence model is not activated. At t = 1.2
ns, which is 0.25 ns after peak gas compression, the gas bubble is highly asymmetric. Fig-
ure 13 shows volume fraction contours at 1.0 and 1.2 ns for the calculations, with and with-
out the P4 perturbation, using the turbulence model to represent the fine scale mixing at
the gas/pusher interface.

Without the P4 perturbation there is a turbulent mixing zone at the gas/glass interface
of thickness about 7 /tm at the end of the calculation (1.2 ns). When the P4 perturbation
is included, stretching of the interface leads to a thinner mixing zone, —4 /jm, over much
of the surface. There is enhanced mixing where the vortices form behind the spike of glass
at 45°.

For the calculation without the P4 perturbation the mass of glass within the turbulent
mixing zone at 1.2 ns is 1.2 ng. This compares with a gas mass of 2.3 /*g (for the region
0 < 6 < 90°). If thermal fluxes are omitted, that is, k = 0, the mass of glass in the mixing
zone increases to 2.5 fig. Hence, according to the turbulence model, the reduction in Atwood
number due to thermal transport has a significant effect. (The mass of glass in the mixing
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FIGURE 12. Idealized ICF implosion. Two-dimensional simulation with interface tracking.

zone is defined here as the mass of glass in all cells for which the gas mass fraction is greater
than 1%.)

8. Conclusions

This paper has given examples of the types of numerical simulations that may be per-
formed on present-day supercomputers to model turbulent mixing at fluid interfaces. Direct
three-dimensional simulation has been used to investigate simple RT and RM mixing prob-
lems in detail. The importance of performing three-dimensional rather than two-dimensional
calculations has been demonstrated. Dissipation of turbulence kinetic energy and density
fluctuations by the cascade to high wavenumbers (the Kolmogorov process) is enhanced
in three dimensions. For RT mixing the overall growth rate of the mixing zone is similar
for two- and three-dimensional simulations. However, there is significantly more mixing
at a molecular or atomic level in three dimensions. For the RM case, in which turbulence
is generated impulsively, the late time behavior is quite different in the two- and three-
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glass
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t = 1.2 ns
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t = 1.2 ns 100
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50 100 50 100

FIGURE 13. Idealized ICF implosion. Two-dimensional turbulence model calculations, (a) without
PA perturbation, (b) with P4 perturbation.

dimensional simulations. Kinetic energy dissipation in the three-dimensional case leads to
significantly slower mixing rates at late time.

It is impractical to apply direct three-dimensional simulation to real problems where many
complex physical processes need to be modeled. For this reason a turbulence model is used
to represent the average behavior of the turbulent mixing zone in ICF implosions. A two-
dimensional turbulence model based on the equations of multiphase flow with turbulent
diffusion terms added has been applied to an axisymmetric implosion. A fine computational
mesh is needed to resolve the growth of the turbulence accurately. Hence, application of
the two-dimensional turbulence model also requires significant computer resources.

Direct three-dimensional simulation can play a very useful role in validation of the two-
dimensional turbulence model. It has been shown here that it is possible to make a useful
comparison between direct three-dimensional simulation and the two-dimensional turbu-
lence model results for a simple mixing experiment that is two-dimensional on average.
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The overall conclusion is that a combination of direct three-dimensional simulation, the
application of turbulence models, and experimental validation is capable of providing a
detailed understanding of the interfacial mixing processes and an assessment of the effect
of turbulent mixing in ICF applications.

Some important aspects of hydrodynamic instabilities in ICF implosions have not been
addressed in this paper. Instability growth at the ablation front, where mass ablation has
a stabilizing effect, has not been considered here. In some situations there may be a den-
sity gradient rather than a sharp interface. This will also reduce instability growth. How-
ever, all these phenomena seem to be as amenable to computer modeling as the processes
considered here.
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