Recent Insights into the Physics of the Sun and Heliosphere:
Highlights from SOHO and Other Space Missions

TAU Symposium, Vol. 203, 2001

P. Brekke, B. Fleck, and J. B. Gurman eds.

Towards a Generalization of a Mixing-length Model for
Nonradially Pulsating Stars: Convection in a Shear

G. Houdek
Institute of Astronomy, University of Cambridge, CB3 0HA, England

D. O. Gough

Institute of Astronomy and Department of Applied Mathematics and
Theoretical Physics, University of Cambridge, CB3 9EW, England

Abstract. We discuss a generalization of a mixing-length formalism
for convection in the presence of a mean flow, and present the convective
fluxes for convective cells with the geometry of rolls and of hexagons.

1. Introduction

In the astrophysical community basically two physical pictures of the local
mixing-length formulation have emerged. In the first picture a turbulent ele-
ment is considered as a convective cell, which evolves out of some chaotic state
and loses its kinetic energy, working against turbulent drag. In this picture the
acceleration terms are neglected and the nonlinear advection terms are approx-
imated appropriately (e.g. Unno 1967). In the second picture a fluid parcel or
an eddy accelerates from rest followed by an instantaneous breakup after the
element has turned over approximately once. Within this picture the evolution
of the fluid properties carried by the turbulent parcels can be approximated by
linear growth rates, and the nonlinearities are assumed to be taken into account
by the instantaneous breakup of the eddy (e.g., Gough 1978). In nonpulsating
stars the two pictures are complementary and lead to the same results; but in
a time-dependent treatment, additional information is required to specify how
the initial state of a convective element depends on conditions at the time of
its creation. Hence, these two models yield different formulae for the turbulent
fluxes when applied to pulsating stars. In this contribution we adopt the sec-
ond picture, and generalize Gough’s (1978) formulation for convection in the
presence of a shear S. The shearing motion of the mean flow stretches the con-
vective elements and generates off-diagonal terms in the Reynolds stress tensor
and lateral components in the convective heat flux. The linearized fluctuation
equations are perturbed to first order in S to obtain the eigenfunctions of the
turbulent velocity field in the presence of a mean flow. The turbulent fluxes are
then calculated in the manner of Gough (1978) and are presented for convective
cells with geometries of rolls and of hexagons.

2. The equations of motion

The equations describing the dynamics in a statistically stationary, one-dimen-
sional flow of an inviscid Boussinesq fluid can be written in Cartesian coordinates
[z = (z,9,2) = (21, %2, 23)] as (e.g., Spiegel & Veronis 1960):

50 =0, (1)
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Oyl + 4050 = —p 10, p' + gaT' bis, (2)
ST +1;0;T' — Pw = —(pcy) 0, F; , (3)

where 4 denotes the total velocity field, which can be decomposed into the
mean flow U = (U;,U3,0) and into the turbulent velocity fluctuations u =
(u,v,w) = (u1,uz,u3) (@ = 0; overbars denote horizontal averages); T" and p’
are the Eulerian temperature and pressure fluctuations respectively. The su-
peradiabatic temperature gradient 3 = —dT/dz — g/c,, where ¢, is the specific
heat at constant pressure, and g is the acceleration due to gravity (assumed
constant); & is the coefficient of thermal expansion, p is the density, F; denotes
the radiative heat flux and d;; is the Kronecker delta. We assume a simple form
for the mean flow with constant shear § = dU/dz. We follow the standard
treatment of these linearized equations, by taking the curl and double curl of
Eq. (2) and seeking normal modes proportional to f(z,y)exp[g(t — to)] with f
describing the horizontal structure of the flow and where g is the linear growth
rate with which the convective eddy, created at the time t;, grows with time .
There results an eigenvalue problem for the growth rate ¢ consisting of equa-
tions for the components of vertical velocity W(z), temperature perturbation
©(2) and vertical vorticity Q(z):

[q + iz(aS;) + bS,)](D? — a?) W + a%a0 =0 (4)
[q +iz(aS1 + bS2) — k(D2 —a?)]©@ = BW =0 (5)
[q+ i2(aS1 + bS2)| +i(aSz — bS1)W =0 (6)

with f(z,y) = exp(iaz + iby), D = d/dz, & = |S|cos¢, S2 = |S|sing, in
which ¢ is the angle between the direction of the shear S and the z-coordinate
(i.e. direction of the wavenumber a). Radiative transfer is here treated in the
diffusion approximation with x denoting the thermal diffusivity.

3. A model for rolls and hexagons

We first consider the convective pattern of rolls, where the rolls are centred
vertically at z = 0 and their axes are aligned with the y-direction (i.e., 3y = 0,
or b= 0). Thus all quantities depend only on z and z. The planform function
for rolls is then f(z) = cosaz + ¢ sin az, and the fluctuation equations (4) and
(5), written as a single fourth-order equation, thus become

[q+iazS; — k(D? — a?)] (¢ + iazS1)(D? — a®)W + a’aW = 0. )

For small amplitudes of the shear S, Eq. (7) can be solved with linear pertur-
bation theory, expanding the eigenvalue ¢ and eigenfunction W in terms of S:
q=qo+81¢1 and W = Wy+81 Wi, and subject to the assumed, inviscid bound-
ary conditions: W = 0 and D°W =0 at z = :I:%Z, with ¢, the mixing-length,
describing the vertical extend of the convective eddy. To first order in S; the
calculations are straightforward, and the results for the turbulent fluxes, after
averaging over all angles ¢ and all possible ¢y in the manner of Gough (1978),
become
1_ _ 4 1 @ 4
Fc ( 4—'8,0,1)F0a FC_ Tg[k2¢+%82(k2+1)] 4pcpgaQO’ (8)
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and
(-1 0 —4ES\ __ __ 4 1
U = 0 0 0 2, = Zpg, (9
iUy (—%ES 0 . w w Tg[k2<1>+-é-$2(k2+1)]4pq0 9)

with 7, being a constant of order unity, ¥ = a® + (7/£)%, ® = k?/a? and
E =1+ B+ (n/t)C. The coefficients B, C and I are obtained from solving the
first-order perturbation equation, and they depend on «, g, @ and £; we note that
g1 = 0 and the zero-order solution, qg, is quoted by Gough (1978). Both the
heat flux F; and the momentum flux %@@; (j = 1,2) have horizontal components
which are parallel to the shear S. The fluxes in Eq. (8) and (9) are displayed
in coordinates (z',', 2') with respect to the shear 8 = (S,0,0).

Perhaps a more realistic geometry for convection cells is the hexagon. The plan-
form f for hexagons has been discussed first by Christopherson (1940) for § = 0:
flz,y) = 2 cos la(\/§y + ) + cos -l—a(\/gy — ) + cos az] . (10)
NG 2 2
The structure of the planform for a hexagon is a superposition of three roll
sets with wavevectors having the same modulus a and directed at angles of
27 /3 to one another. Thus, in addition to the periodicity in both the z— and
y—directions, hexagonal patterns are invariant with respect to rotation by this
angle. These properties allow us to calculate the fluxes in the presence of a shear
for hexagons in a similar way to that for rolls, by superimposing the solutions
of the eigenfunctions w of the three roll sets. For hexagons, the turbulent fluxes
in coordinates with respect to the shear S = (§,0,0) become

F(::("%ES,Oal)FC, (11)
1@-1) 0 -38S\
Uy = ( 10 3(®@-1 o0 ) w?. (12)
—358 0 1

Only the normal components of the Reynolds stresses are found to be different
between the results for rolls, Eq. (9), and hexagons, Eq. (12). The off-diagonal
terms of the stress tensors and the lateral components of the convective heat
fluxes, Eqs. (8) and (11), are presented to leading order in S. The magnitude of
w? and F, are modified only when terms of higher order in S are retained. We
therefore plan to expand Eq. (7) to second order in S; and discuss the resulting
turbulent fluxes in a forthcoming paper (Gough & Houdek 2000).
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