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Abstract

In this paper, first, we study the existence of the positive solutions of the nonlinear elliptic equations in
unbounded domains. The existence is affected by the properties of the geometry and the topology of the
domain. We assert that if there exists a (PS).-sequence with ¢ belonging to a suitable interval depending
by the equation, then a ground state solution and a positive higher energy solution exist, too. Next, we
study the upper half strip with a hole. In this case, the ground state solution does not exist, however there
exists at least a positive higher energy solution.
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1. Introduction

In this paper we study the following problem:

—Au+u=f(x,u) inQ,
(L.1) u>0 in 2,
ue€ HOI(Q),

where ©  R" is an unbounded domain with smooth boundary 32, f : @ x R — R
is of class C' and satisfies the following conditions:

(f1) f(x,y) = o(y) near y = 0 uniformly in x € Q. B
(f2) There exists a; > 0 such that |f,(x, y)| < a;(1 + |y|?™") for all x € Q and
yeR, wherel <p <(N+2)/(N—-2)if N>2andl <p <o0if N =1,2.
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(f3) There exists # > 2 such that 0 < 6 F(x,y) < f (x,y)y forall x € Q and
y € R\{0}, where F(x,y) = [j f (x, 7)dr.

(f4) f(x,ty)y/t is a strictly increasing function of ¢+ > O for all x € Q2 and
y € R\{0}.
Since we will only look for positive solutions of (1.1), it is convenient to define
f(x,u)=0foru <Oandx € Q.

Associated with the problem (1.1) is the energy functional I defined by

(W) = %[(IVu|2+u2)dx —/ F(x,u)dx.
Q Q

And I € C'(H} (), R).

It is well known that the solutions of (1.1) are the critical points of the energy
functional /. Moreover, standard arguments from elliptic regularity theory show that
critical points of / on HOl (R2) are classical solutions of (1.1). However, when Q is
an unbounded domain the existence of a solution becomes a difficult problem, due to
the embedding j : Hy(€2) — LP(S2) which is not compact. The lack of compactness
implies that I does not satisfy the Palais-Smale condition, and the standard variational
techniques cannot be applied to this problem, so new analyses are needed to solve
such problems.

Denote by

M(Q) = {u e Hy(@\(0) | /(|vu|2 +ud)dx = /f(x, u)udx},
Q Q
ay(2) = inf I(u).
ueM(Q)
Looking for solutions of (1.1) is equivalent to find critical points of I constrained to

lie upon the manifold M (£2). As a consequence of Ekeland’s variational principle,
there exists a sequence {u,} C M (£2) such that

T(w) = au(R), I'(w) — 0 in HUQ).

Although o, (£2) does not guarantee the existence of a critical point u € HO1 (£2) with
I (u) = ay(S2), we can analyze Palais-Smale sequences to justify whether there exist
positive solutions of (1.1) or not. New analysis is needed for solving such problems
which will be described as follows. Let

Q=QNBY0); where B©0)={xeR"||x|| <k},

Q = Q\B)(0).
Forv € H, (S441), it can be identified with an element of H, (§) by extending v to

be zero in ﬁk\ﬁk“.
In the following definitions, we abbreviate Palais-Smale by (PS).
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DEFINITION 1.1. (1) For ¢ € R, asequence {u,} C H} () is a (PS) -sequence if
I(uy) = cand I'(u) — 0in HY(R);
(2) c € Ris a (PS)-value if there exists a (PS).-sequence;
(3) I satisfies the (PS).-condition if every (PS).-sequence for / contains a conver-
gent subsequence.

This paper is organized as follows. In Section 2, ®(2) is the set of all the positive
(PS)-values. In particular, ©®(£2) contains all the positive critical values of I. Let
3(82) be the infimum of ©(§2), it will be shown that ©(2) is a nonempty set, §(2) is
a positive number, and the optimal lower bound for @ (2) is a (2) when (f1)—(f4)
are satisfied, that is, § (£2) = a(£2).

If u is a nontrivial solution of (1.1), then multiplying (1.1) by u and integrating by
parts shows u € M(S2). For any u € Ho1 (2)\{0} and ¢ > O, let h,(t) = I(tu). By
(f1)—(f3), we have A,(0) = 0, h,(t) > O for ¢ small, and A,(¢) < O for ¢ large. So
u = 0 is a local minimum but not a global minimum of 7. Therefore, max,»¢ h,(?)
exists and is achieved at ¢, > 0, we get

K, (t) =0 = t]ulllnq — ff(x, t,u)udx
Q

which implies z,u € M(£2). Moreover by (f4), ¢, is the unique value of ¢ > 0 such
that t,u € M(2). This implies M (2) is radially homeomorphic to the unit ball in
H} ().

In Section 3, we assert that if o (2) < aM(ﬁk) for some large k € N, then there
exists a ground state solution # of (1.1) with I(u) = oy (2). And if there exists a
(PS).-sequence with ay (2) < ¢ < aM(EZk) for some large k € N, then there exist at
least two positive solutions of (1.1), that is, a ground state solution u and a positive
higher energy solution.

In Section 4, we describe the (PS)-conditions and give a necessary and sufficient
conditions in 2 for which [ satisfies the (PS),,, ) -condition.

In the final section, the domain is the upper half strip with a hole. For simplicity,
we consider the case where f does not depend on x, so the problem is as follows:

—Au+u=f(u inA,
(1.2) u>0 in A,
u € H}(A),

where A is the upper half strip with a hole. Denote by

AT ={En eR" xR [§] <r},
Al ={(,n)eA"|n>a), whereacR.
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For the strip domain A", Chen [2] modified the results of Lions [6] and asserted
that there exists a ground state solution of (1.2) if A = A”". Chen-Chen-Wang
[3] established its asymptotic behaviour and showed that the solution is spherically
symmetric in & and axially symmetric in 7.

For the upper half strip domain Aj (an Esteban-Lions domain), Esteban-Lions [5]
asserted that there does not exist any solution of (1.2) if A is an Esteban-Lions domain.
The Esteban-Lions domain is defined as follows:

DEFINITION 1.2.  C R is an Esteban-Lions domain if there exists x € R¥,
x|l = 1suchthatn(x)- x > 0,and n(x) - x # 0 on 3€2, where n(x) denotes the unit
outward normal to 32 at the point x.

An interesting question is whether there exists a positive higher energy solution of
(1.2) if A is an Esteban-Lions domain with a hole. The question seems to be quite
challenging and hard to give a complete answer. We had known that Pohozaev [7]
proved that the Dirichlet problem —Au + u¥*+2/¥=2 = 0 in a ball does not have any
nontrivial solution, but Coron [4] proved that there exists a positive solution if we take
some small ball out. When f (1) = u”, Benci-Cerami [1] asserted that problem (1.2),
if A is an exterior domain, admits a positive higher energy solution. We use a new
method, different from Benci-Cerami [1], to prove that if there exists a (PS).-sequence
withc > Oand ¢ ¢ @ (A,,) forsome m € N, then there exists at least a positive higher
energy solution of (1.2) if A is the upper half strip with a hole.

2. The (PS)-value

We will introduce some preliminaries to analyze the behaviour of Palais-Smale
sequence and study the set ©(£2) of all the positive (PS)-values.

LEMMA 2.1. If {u} is a (PS).-sequence, then there exists a constant ¢ > 0 such
that |ul| gy < ¢ for each k, and ¢ > 0. If ¢ > 0, then there exist a subsequence,
still denoted by {u,}, a constant ¢’ > 0O, such that |\u;|| g1 = .

PROOF. By (f3) and if k is large, then

1
c+ o) + lluelhnay) = Iw) — 5(1/(uk)' ug)

_(1_1 2 F : d
=33 Iluk||w(m"/;2 (x»"k)‘gf("’”*)“k x

1 1 2
e (E - 5) ”uk”HI(Q)'
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Thus [Jui|l g1y < c for each k. Then for large k, we have (I’(u,), uy) = o(1) and

1 1 1
e+ o(1) = 1 () = o (I'(ue), we) 2 (5 - 9) A

soc>0.

Suppose that ¢ > 0. If limy_, o ||uklim@ = O, then for large k, I(ux) = o(1).
Hence contradiction with the assumption that ¢ > 0. Thus there exist a subsequence,
still denoted by {u,}, a constant ¢ > 0, such that ||| g1 = €. O

LEMMA 2.2. For any u € M (), there exists a constant K > 0 such that I (u) >
(6 —2)/(20))2K)-2/e-D 5 0,

PROOF. By (f1) and (f2), for any & > 0 there exists a constant C, > 0 such that
2.1 If G, ] < eful + CelulP.

We take ¢ = 1/2, and by the Sobolev inequality,

= ('@, w) = Nulpq — f £ 06, wuedx
Q

1
> gy — f (Euu Cl/zlul”“) dx
Q

1 1
Eliu”Hl(Q) K||u||',’,+x(lm = ”u“H‘(Q) (2 KllulIH,(m>

thus ull g > (2K)CD/®=D and then by (f3),
I{u) = HullHl(m / F(x,uydx > HuIIHl(m /S;f(x,u)udx

1 6—-2
= (2 ) luli?p g = 7(21{)—2/@-0‘ O
Notice that §(£2), the infimum of all positive (PS)-values, is a positive number.
This can be proved as follows. By Stuart [8], ay (£2) is a positive (PS),,, q)-value, so
O(S2) is not empty and §(§2) < oy (£2).
For an arbitrary sequence {u;} bounded in L?>(R"), we introduce the concentration
functions of |u;|?,

zeRN

O(t) = SUPf luet?
BN (@)

defined for ¢t > Q.
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LEMMA 2.3. Let {ux} be bounded in H'(R") and assume that for some t, > 0,
®,(%) = 0. Then u;, — 0 strongly in LY(RN) forall2 < q < 2* =2N/(N = 2). If
in addition uy satisfies (I'(uy), uy) — 0, then u, — 0 strongly in H'(R").

PROOF. We divide the proof into two steps.
Step 1. Decompose R” into unit cubes Fy = {P!}%, of length 1 with vertex at lattice
points. Continuing to bisect the cubes to obtain cubes F,, = {P[}%, of length 1/2"
for each P". Let my satisfy VNQ /2™) < 1. For each i, let B[ be a ball with center
at the same as that of P and of radius % in R¥. Then P/ c B/, RY = |J2, P™,
and {P™}2, are nonoverlapping. Write P, = P™. If we take ¢ and r such that
2 < g < r < 2*, we can write, using the Holder inequality and Sobolev imbedding,

[e 0] oo
2(r— -2 —2)/(r-2
/ |uk|"=2/ |uk|"=2f g |29 =D |y |r@= D/ =D
R¥ i=1 VP i=1 v

o0 (r-q)/(r=2) (g~2)/(r=2)
< Z(f mP) (/ qu')
=t Wh P

00 (q-2)/(r=2)
< (Dutp) Y ( f lukl’)
P

i=1
e r(g—2)/2(r=2)
< o(Py(tp)) /D Z </ (IVue* + ui)) .
i=1 P

Since lim,,,(r(qg —2)/2(r —2)) = q/2 > 1, we may choose r such that s =
(rig—=2)/2(r=2)) = 1.

o0 r(q-2)/2(r-2) 00 s
Z(/ (iVuk|2+tuk|2)) =Z(/(|Vuk12+ luk|2>)
i=1 A i=1 P,

<§ :/(|Vuk|2+!uk|2)>

i=1 VP

_ (/ (|Vuk|2+|uk|2>)
[KN

2.
= luellyrey < €

IA

Therefore, u; — 0 strongly in L9(R") forall 2 < ¢ < 2* =2N /(N - 2).
Step 2. If, in addition, u, satisfies (/'(u;), uy) — O, then for large £, ||uk||§,|mN) =
Jan f x, udue dx + o(1). By (2.1), if k is large,

el s/ I &, )l fual dx + o(1)
RN

< ellwllingm, + Collucll i gr, + o(1),
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or by Step 1,
(1 = )lwelan < CollualZh iy + 0(1) = o(D).

Hence u; — O strongly in H'(R"). O

LEMMA 2.4. Let {u,} be a (PS).-sequence with ¢ > Q. Then there exists a sequence
{#} in R, such that {t,u,} C M(), {#} is bounded, and for large k, ay(Q2) <
I(que) < c+o(1).

PROOF. Let {u;} be a (PS).-sequence with ¢ > 0, thus for large k, u; £ O, and
u, # 0 strongly in H'(RY), where u; is identified with an element of H'(R")

by extending u; to be zero on RN\, then by Lemma 2.3, there exist a sequence
{z} € R" and &, > O such that u, £ 0in B}),(z:), and

f lue(x) > dx > 1.
B, (z)

Hence there exist &, > 0, &3 > 0, such that
D] = |{x € Blj,(z) | w(x) = &2}] = &3,
where | D;| denotes the Lebesgue measure of the set D,.

For u; # 0, by (f4), there exists a unique positive number ¢ such that z,u, € M (),
then

2 S, ) ug
”uk”Hl(Q) =f ———dx.
Q 171

Either #, < 1 or # > 1 in which case by (f3), F(x, ty)/#’ is a nondecreasing function
of t > Oforallx € Q and y € R\{0}, then

t/?”uk”i[l(g) = ‘/s;f(ih hu )t dx > 9/9’”& tu)dx > H/QIEF(X, u) dx.

Consequently by Lemma 2.1,

2 -
tf_z < 9__1 ”uk”HI(Q) < -1 C2
= [oFx,w)dx T ka F(x, u)dx
. =
<o & E ,
ka F(x, &) dx e3(min,.p; F(x, &))
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thus {#} must be bounded.
I (fowg) — 1 (uy)

1 5 1
= L g — / F e, tt) dx — =gl + / Fx, uy) dx
2 A 2 A

= l(z,f— 1)/f(x,uk)ukdx —/ F(x,tkuk)dx+/ F(x, u)dx + o(1)
2 Q Q Q
= g(t) + o(1),

where g(1) = (1*—1)/2) [, f x, wwe dx— [, F(x, tu) dx+ [, F(x, u) dx. Since

g = t/f(x, uupdx — ff(x, tug)ug dx
Q Q .

=t(/f(x’uk)uk dx_/f(X,tuk)uk dx),
Q 1 Q t

it follows from (f4) that g'(¢) > 0if r € (0,1) and g'(¢) < 0if t € (1, 00). Thus
g(1) = max,e(0.00) (), g(1) = 0, and for large &,

I'(teu) — I'(w) = g(1) +o(1) < g(1) + o(1) = o(1).

Hence if k is large, oy (2) < I{teuy) < c+ o(1). O

Next, we prove that an optimal lower bound for ®(2) is a4 (S2) when (f1)—(f4) are
satisfied.

THEOREM 2.5. If (f1)—(f4) hold, then §(S2) = a (S2).

PROOF. It suffices to show 8(£2) > a,,(£2), since the reversed inequality is always
true. Let {,} be a (PS).-sequence with ¢ > 0, and by Lemma 2.4, there exists #, €
(0, 00), such that fu, € M(S2), {#} is bounded, and for large k, oy (2) < I (i) <
¢+ o(1). Since c is arbitrary positive (PS)-value, it follows that ay (Q2) < 6(2). O

3. Existence of solutions

In this section, we show that if oy (R2) < ay (ﬁk) for some large k € N, then there
exists a ground state solution u of (1.1) with I(u) = ay(£2), and if there exists a
(PS).-sequence with ay (2) < ¢ < ay (5,() for some large k € N, then there exist at
least two positive solutions of (1.1), that is, a ground state solution « and a positive
higher energy solution.

First, we state some properties of Palais-Smale sequences.
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LEMMA 3.1. Let {u;} be a (PS)-sequence for I satisfying u, — u weakly in Hj (2).
Then

(1) uis a weak solution of (1.1).

(2) Ifu #0, then u is a positive solution of (1.1).

(3) If{uc} is a (PS)q, ) -sequence for I satisfying u, — u weakly in Ho1 () and u
# 0, then u, — u strongly in H} (Q).

PROOF. (1) Take a subsequence {u;} such that u, — u weakly in Hj (), a.e. in €,
and strongly in L] () for 1 < g < 2*. Given ¢ € CX(Q), we get

/Vuk-de—)/Vu-Vq.‘), /uk¢—>/u¢,
Q Q Q Q

and by (f2), |f (x, ue) — f (x, ] 1@l < ar((ue| + |uil? + lul + |ulP)|¢], then by the
generalization of the Lebesgue dominated convergence theorem, we have

/f(x, u )¢ —> /f(x.u)¢-
Q Q

Hence (I'(w), ¢) = limy_ o (I'(us), ) = 0. Since C°(£2) is dense in HOl (2), we
have I'(u) = 0. Therefore u is a weak solution of (1.1).

(2) If u is a nonzero solution of (1.1), then u € M (). By elliptic regularity, any
critical point of [ is a classical solution of (1.1). Let u~(x) = max(—u(x), 0). Since

0={'"(w),u") = / Vu-Vu~ +/ uu- — ff(X, wu = "‘”u_”i{l(g)v
Q Q Q

hence u > 0. By the maximum principle, u > 0 in Q.
(3) By Part (2), u € M(2) and applying Fatou’s lemma yields

1
(@) < I(uw) = zuuui,l(m—/QF(x,u)dx
=lff(x,u)udx—fF(x,u)dx
2 Q Q

1
< liminf/ (—f (x, uu, — Fix, uk)) dx = lim I (uy) = ap(2),
k—00 Q 2 k—00

or

3.1 I(u) = ay(2).

Set pr = u, — u to get py — 0 weakly in H{ (), a.e. in 2, and strongly in L ()
where 1 < g < 2*, then for large k, we have

(3.2) ”pk“%ﬂ(n) = ”uk”ill(ﬂ) - “u”iil(g) + o(1).
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Since u € H}(R), by (f1) and (f2), for any £ > 0, there exists r > 0 such that for
Q, = Q\BY(0),

(3.3) / lul* < &, f lulP*! < e, / |F(x,u)| <e.

By the generalization of the Lebesgue dominated convergence theorem, we have

/F(x,uk)af F(x,u) and /F(x,pk)->0.
Q, Q, Q,

Then
(3.4) f [F(x,pe) — Fx,u) + F(x,u)| <e.
Q, :

Now by the Holder inequality and the fact that ||p;|l 1) and |4l 51 () are bounded,
we have

(3.5) /~ [F(x, po) — F(x, up)l
&,
=/~ If x,tpx + (1 —u)llul forsome 0 <t <1
Q,

< C/~ (Upel + lul + 1pil® + i l?) ul
a,

<c (||Pk||Hl(Q)||ul|L2(§,) + luell v llull 2@,y
+ lipellf o 1l on @,y + il g lull Lo &i,))

< CE.

Therefore by (3.3), (3.4), and (3.5), for large k,

(3.6) / F(x,pk)zf F(x,uk)—/ F(x, u) + o(1).
Q Q Q
By (3.1), (3.2), and (3.6), for large &,
I(pe) = 1(u) — I (u) + o(1) = ap () — apr(S2) + 0(1) = o(1),
and it follows that
3.7) 2l =2f F(x, po)dx.
Q

For ¢ € CX(Q), by (f2), If (x, ux — w)@| < ay(lux — u| + |ux — ul?)|$l, then by
the generalization of the Lebesgue dominated convergence theorem again, we have
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Jof &, u — w)¢ — 0. Since C(RQ) is dense in HJ (), f (x,uy —u) — 0in
H~Y(Q). Similarly, f (x, u;) — f (x, u) = 0in H™'(2). So for large k, we have

I'(p) = —Api+pe — f (x,pi) = ~A(ue — u) + (e — u) — f (x, w — u)
= (At uw —f&x, ) — (—Au+u—f(x,u)
—(fxum—~w)—fx,w)+f(x,u)
= I'(w) — I'(w) + o(1) = o(1),

and it follows that
3.8) il = / f (. ppedx.
Q

From (f3), (3.7), and (3.8), for large k, we have ||pilln1 ) = o(1), that is, uy — u
strongly in Hj (S2). O

We shall see what will happen when u is zero. Let
Q. =QNBY©O), Q=Q\B}).

LEMMA 3.2. Let {u;} be a (PS).-sequence with ¢ > 0. Then

(1) If (fD)(f3) hold, suppose that uy — 0 weakly in Hy(S2), then there exists a
subsequence {u} such that for Qy, if k is large,

/ |ugl? = o(1) foreach 1 <q < 2%,
9774

(2) In addition to (f1)—(f3), that (f4) satisfied, suppose there exists a subsequence,
still denoted by {u,}, such that for Qy, if k is large,

[ (ue|? = o(1) foreach 1 < g < 2*.
Qo

Then we have ¢ > oy (S~2k)f0r all large k.
(3) If ({1)—(f4) hold, suppose that u, — 0 weakly in HO1 ($2), then ¢ > ay(2,) for
all large k.

PROOF. (1) Since u;, — 0 weakly in H,(2), a.e. in €, and strongly in L] (),
where 1 < g < 2*. Thus for each m € N, lim;_, fnm |ug|? = 0. We can take a
subsequence {uy, } such that fﬂm fup, |7 < 1/m. Therefore, there exists a subsequence,
still denoted by {u;}, such that for 2, if k is large, fﬂu |ugl? = o(1) for each
1<q<?2%
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(2) Let {u;} be a (PS).-sequence, so for large k,
1
I(u) = Elluklli,nm) —/ F(x,u)dx = c+o(l),
Q
lwel3 gy = f f &, wudx + o(1).
Q

Let ¢ € C™([0, 00)) such that

0 for r€(0,1];

1, =
0=t= a2 [1 for t € [2, 00).

Let & (x) = &(|x|/ k). Since {¢?u;} is bounded in Hj (), for large k,
(3.9)  o(l) = (I'(we), L2us) '

= /(§k2|vuk|2 + 25,V - Vuy + Slul)dx — /f (e, u)slu dx.
Q Q

Note that |V (x)| < c¢/k, if k is large, fnﬂ [ug]? = o(1) foreach 1 < g < 2%, so for
large k,

(3.10) '/;{kukVCk -V = o(1),
and by (f2), [, f (x, w)uedx = o(1). Then we have
(3.11) /Qf(x, w)Cupdx = /Qf(x, uupdx + o(1) = luglly g, + o(1),
again by (f2),
(3.12) /Qf(x,;‘kuk)é'kukdx = Lf(x, w )k dx + o(1) = [lugli3p g, + o(1),
and
(3.13) /ﬂ F(x, geuy) dx
= /Q(F(x,;kuk) — F(x, u))dx +/QF(x, uy) dx
= | £, (= Du + tGu) Ceur — u) dx + /g F(x, ) dx

Qu

=/ F(x,u)dx + o(1), where 0 <t < 1.
Q
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For large k, substituting (3.10), (3.11) into (3.9) yields

(3.19) /ﬂCf(quklz +u) = llwll gy + o(D).

Then by (3.13) and (3.14), for large %,

(3.15) I(Gu) = % /Q[IVé'klzuf + &2Vl + u) + 264, V8 - V]
- /Q F(x, Siwe) dx

1
= Ellukllipm) - /ﬂ F(x, u)dx + o(1)
= I(u) + o(1) = c+ o(1).

By (3.14), (3.12), for large k,

(3.16) (' Geur), G = ”Ckuk”i(l(n) - ff(X, S Sruy dx
Q
= ”uk"i[l(g) e “uk"i]l(g) + o(1) = o(1).

Let vy = §uy € Ho1 (ﬁk). For v, #£ 0, by (3.15), (3.16) and Lemma 2.4, there exists
4, € (0,00) such that v, € M(ﬁk), {#} is bounded, and for large k, aM(EZk) <
I(tv) < I(v) + 0o(1) = ¢ + o(1). So we have aM(ﬁk) < cfor all large k.

(3) It follows immediately from Step (1) and Step (2). d

Now we will prove the existence of a ground state solution and a positive higher
energy solution of (1.1).

THEOREM 3.3. Suppose (f1)—(f4) hold, there exists a ground state solution u of
(D) with (1) = ay () if ey () < ay(S2) for some large k € N.

PROOF. As aconsequence of Ekeland’s variational principle, there exists a sequence
{u} € M (2) which weakly converges to i, such that {u,} is a (PS)e,«)-sequence. If
apm () < ay (ﬁk) for some large k € N, by Lemma 3.2, replacing ¢ by oy (2), u # 0,
and then by Lemma 3.1, u > 0, uy — u strongly in HO1 (Q),and I (u) = ay(2). O

THEOREM 3.4. If (f1)—(f4) hold, suppose there exists a (PS).-sequence with
apy () < ¢ < ay () for some large k € N, then there exists a positive higher
energy solution v of (1.1) with ¢ = 1(v) > ay(2).

PROOF. Let {v,} C H,(S2) be a (PS).-sequence with ay(R2) < ¢ < oy (S2) for
some large k € N. Take a subsequence {v,} such that v, — v weakly in H}(Q), a.e.
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in Q, and strongly in L] _(S2) where 1 < g < 2*. By Lemma 3.2, v # 0, then by
Lemma 3.1, v is a positive solution of (1.1) with ¢ > I(v) > ay(£2).
Suppose I (v) = ay (2). From Theorem 3.3, I (u) = ap(2). Setting w, = v, — v

and following the same line of proof as in Lemma 3.1 (3), for large &, we have

Iw) = I(we) — I(v) +o(1) = c — an(82) + o(1),
I'(we) = I'(v) — I'(v) + 0o(1) = o(1),

5o {wi) is @ (PS)c—ayo)-Sequence. Since 0 < ¢ — ay(§2) < aM(S~2k) for some large
k € N, by Lemma 3.2 (3), it follows that w; — w $ 0, a contradiction. O

4. The (PS )-conditions

Let A, be a smooth domain in R” and A, be a closed subset of A,, then the relation
between ay (A2) and oy (A;) 1s given by the following theorem.

THEOREM 4.1. Let Ay C A, If the functional I satisfies the (PS)4,, s, -condition,
then ap (A,) < apy(A)).

PROOF. A C Aj so ay(Az) < ay(A;). Suppose ay(A;) = ay(Ar). As a
consequence of Ekeland’s variational principle, there exists a sequence {u,} C M (A})
such that I () — ap (A1), I'(u) — 0in H7'(A,). Since I satisfies the (PS),, a,)-
condition, there exist a subsequence {i;}, and u € HO'(AI), satisfying w, — u
strongly in Hy (A4). Since ap(Ay) > 0, u # 0, then by Lemma 3.1, ¥ > 0 with
I(w) = ay(Ay), I'(w) = 0. And I(u) = ap(A,) = inf,epma, I (w). It is known
that every minimizer of ay (A,) is a critical point of I, therefore u solves (1.1) if
Q = A;. By Lemma 3.1, u > 0in A,. This contradicts u € HOI(A]). Therefore,
au(Az) < ap(A)). O

Then we can verify that the (PS),,,(n)-condition is satisfied.

THEOREM 4.2. If (f1)—(f4) hold, then I satisfies the (PS),,,)-condition if and only
if ap (R2) < limye_, 00 00pr (S2).

PROOFE. (1) Suppose o (2) < limg_ 0 aM(EZk), then ay (2) < aM(ﬁk) for some
large k € N. Let {u,} be a (PS),,,«)-sequence satisfying u, — u weakly in HO‘(Q).
By Lemma 3.2, u # 0, then by Lemma 3.1, u;, — u strongly in Hy (S2). We conclude
that 7 satisfies the (PS),,,(q)-condition.

(2) We argue indirectly. Suppose ay(2) = limy, aM(ﬁk), then ay () =
aM(ﬁk) for all k € N. We claim that I does not satisfy the (PS),,,q)-condition in £2.
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In fact, suppose on the contrary, I satisfies the (PS),,, )-condition in . Then we
claim that /|, satisfies the (PS)q,,)-condition in s~zk for all £ € N. In fact, let
(s} C HM () C HN(Q) satisfy I (uy) = ap (), I'(u,) — 0in H~1(Q,). Since I
satisfies the (PS),, (@)-condition in §2, there exist a subsequence {u,}, and u € HO1 ()
satisfying u, — u strongly in H, (), that is, u, — u strongly in H, (). Therefore
1|y @, satisfies the (PS),,,,)-condition. By Theorem 4.1, ay(Q2) < on(fik). This
is a contradiction. O

5. Upper half strip with a hole

In this section, the domain is the upper half strip with a hole. For simplicity, we
consider the case where f does not depend on x, so the problem is as follows:

—~Au+u=f(u) inA,

(5.1) u>0 in A,
u € Hy(A),

where A = Aj\D,D C B;’f ((0, no)) C Ay}, and nyq is sufficiently large, p is sufficiently

small, and they are suitably chosen. Let

0.(no) = {6, m) e RN x R | [§] < 7, [n— nol <5},
0:(n0) = ANQs (1), Am=AN Qu(no),  Apm = A\Qp(n0).
THEOREM 5.1. (1) ap(A) = apy(A").

(2) The functional I does not satisfy the (PS)a,(a)-condition, and the only possible
solutions of (5.1) are higher energy solutions.

PROOF. (1) Let w € Hol (A7) be the positive solution of (5.1) if A = A" with
I(w) = ay(A7). Take {(0, n,)} C A, r, = oo such that 0, (n,) C A. Consider the
cut-off function ¢ € C°([0, 00)) such that

1 for t €{0, 1];
0 for t € (2, 00).

0<y =<1, ¢(t)=[
Let w,(&, n) = ¥ 2In — n,|/ra)w(&, n — n,). Then w, € Hy (A). Since for large k,

”wn(g’ 7)) - w(f, n-— n'l)”i]l(AV)
= |W’(2|'7 - n,,l/r,,)w(E, n— nn) - w('f, n-— nn)llifl(,qr)

< f (Vw0 — )P+ wE - 1)) + o)
A'NQ,12(na)

= o(1),
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and by (f2), for large k,
/ [F(wn(§, M) — F(w(§, n — na))l
Ar

= [A If Gwa (&, m)+ A =Dw&, n—nu)) lwa (€, n) —w(&, n—na)l

'nQ»./z(nn)
SC/ (- )P + w0 — n)PY)
ATNQ,, 2(na)

=o0(l), forsome 0 <1t <1,

f U WaE, ) wn(E, 1) — F (WCE 7 = na)w(E, 71— 00l
A’
< / I a(E, m)WalEs 1) — f (walEs MYWE, 7= 0]
A'

+f I (wnEs MYWE, 1 — 12) — f WE, 1 — n)w(E, 7 — )]
N

= o(1),
then we have
1
(5.2) Iwn) = 3wl f F(w,)
A
= I(w) + o(1) = ay(A") + o(1),
(53) (Il(wn)s wn) = ”wn“zl(/\) - /f(wn)wn
Q

= ||wl|§,,(A,) -/ fw)w + o(l) = o(1).
A’

For w, € H}(A), w, # 0, by (5.2), (5.3), and Lemma 2.4, there exists z, € (0, 00)
such that r,w, € M(A), {t,} is bounded, and ay(A) < I[(t,w,) < I(w,) + o(1) =
ay(A") + o(1) for large n. Hence we obtain ay (A) = ay(A7).

(2) By Part 1 and Theorem 4.1, I does not satisfy the (PS),,,a,-condition. If u is
a ground state solution of (5.1), by putting ¥ = 0 in A"\ A, we see that u could be
regarded as an element of Hj(A"); then by the strong maximum principle, u would
be a positive solution in A”, a contradiction. Therefore the only possible solutions of
(5.1) are positive higher energy solutions. O

Using the same argument as in the proof of Theorem 5.1, we obtain

PROPOSITION 5.2. (1) Let £ be a closed subset of A”. If for any s > 0 there
exists (0, n) € ¥ such that Q;(n) C L, then ay(X) = any(A"). As a more concrete
example, ¥ can be a upper half strip Aj, a upper half strip with a hole A or the union
of A with a bounded set.
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(2) limy 00 0p (@4 (M) = ap(AG) = am(A”) = ay(Ay), for every a € R.

From Theorem 5.1 and Proposition 5.2, we know that there doesn’t exist any (PS),-
sequence with ay(A) < ¢ < ay (A,) for any k € N, so we cannot use Theorem 3.4
to get the existence of any higher energy solution of (5.1). Hence we take a new
approach to obtain a higher energy solution of (5.1).

THEOREM 5.3. If (f1)(f4) hold, suppose there exists a (PS).-sequence with ¢ > 0
and ¢ ¢ ©(A,,) for some m € N, then there exists a positive higher energy solution

of (5.1).

PROOF. Let {u;} be a (PS).-sequence with ¢ > O and ¢ ¢ ©(A,,) for some m € N.
Take a subsequence {u;} such that u, — u weakly in Hy (A), a.e. in A, and strongly
in L] (A), where 1 < g < 2*. Moreover, I'(x) = 0 and I () < c¢. We claim that

u # 0. Suppose u = 0, as in the proof of Lemma 3.2, there exists a subsequence {u;}
such that for Q,(no), if & is large,

(5.4) / lugl? = o(1) foreach 1<gq <2
Ok (no)

Let £ : RY — [0, 1] be a C*™-function which satisfies

0 for x € BY(0, no);

X) =
() {1 for x ¢ BY (0, no).
Let wy = Euy, wy € HO1 ([\,,,). Then we want to show that {w;} is a (PS).-sequence in
HJ (An).

It suffices to show that

(5.5 :}LTO [ (wi) — ()] =0,
and
(5.6) lim  sup [(I'(wy), ) — (I'(wp), $)| = 0.

k=00 1611, 4.0y <1

By a direct computation,

6D W, ) ~ U, D)
[ () — Dugd
A

=

-+

/_ () — Vi - w»’
Am

+

[ u, VE - Vd)’ + / (f () —f(fuk))‘f’}
An Am
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172 12
< / wk) + / Viul?
AnBY,,(0.n0) Am BN, (0.n0)
172
2
+ | V&Il f 7
AnNBY, 0,10
12 12
2 2p
+ 2a, / 7 + / ||
AnBY,,(0,n0) An(BY,©.n0)

Since A, N B,’,‘"H(O, no) C Ay if k is large, (5.6) follows from (5.7) and (5.4),
provided that

(5.8) / |[Vue> - 0 as k> oo.
An N BY,1(0.n0)

Now we prove (5.8). Let & : R¥ — [0, 1] be a C°-function which satisfies
0<é&<1,|V&| <1, and

1 for x € BY (0, no);
0 for x ¢ B (0, no).

E(x) = [
Since {&u,} is bounded in Hy (A), if k is large,
(59 o(l) = (I'(us), &uar)
= / £V |? +/ u V& - Vu, + / Skui - / f e, w)buy.
Ay Ay Ay Ax

By (5.4), we conclude that the last three integrals of (5.9) tend to zero as k — 00 and
consequently

f |Vuk|25/ |Vuk|2§/ E|Vug|* - 0as k — oo.
AmnB:H(O.')o) Akt Ax

Observe that
I(we) — () = %/ [€ = DUV + 1) + IVE Pl + 26 VE - Vig]
- /A(F(wk) — Fu)).
Thus (5.5) follows from several estimates which are similar to the above. Hence

c € ©(A,), this is contrary to the hypothesis, so there exists a positive higher energy
solution u. O
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Next, we will use a mini-max structure to obtain a positive higher energy solution
of (5.1).

From Theorem 5.1 and Proposition 5.2, we have lim,_, o ay (Q,(n)) = ay(A),
then for any &4 > 0, there exists 7 = 7(&4) sufficiently large such that

apy(A) = au(A) < ay(Q;(n) < ay(A) + &4, forevery a € R.

So we can choose o = 97/2 and D C B/',"((O, no)) C Qisu(no) C A;,-,, and then
choose z_ € M(Q;(m))andz, € M(A;,-,) such that max(I (z_), I (z})) < ay(A)+é&s.
Set

I'={y € C([0,1], M(A)) | y(0) =z_and y(1) =z}, p = inf max I(y(6)).

yerl 6€[0,1)

We will show that there exists a (PS),-sequence with u > ay (A), provided that z,
and z_ are suitably chosen. Let ¢ be a C* function which satisfies 0 < ¢ < 1,
Vol <2/1, ¢ =0o0n Q;,2(n) and ¢ = 1 on Q,—,(no). Straightforward calculation,
gives the following lemma:

LEMMA 5.4. For any &5 € (0, ay(A)/2), there exists § = &(es) > O such that if
u € M(A) and I(u) < ap(A) + 8 then I(1,,0u) < ay(A) + &s, where t,, > 0 and
tupu € M(A).

With Lemma 5.4, we want to show that it > a (A).
LEMMA 5.5. u > ay(A) + 8, where § is the number defined in Lemma 5.4.

PROOF. Suppose p < ay(A) + 8. From the definition of u, there exists a y € T’
such that maxgejo,1; 1 (10(0)) < an(A) + 8. Let y(0) = t,y,69y0(6), it follows from
Lemma 5.4 that y € I' and

3
(5.10) gél[g‘)](] I(y(0) <ay(A)+es < EaM(A)'

By the definition of ¢, ¥ (6) = v, (6) +y_(0), where y,. () € A7; and y_(0) € Q;(n).
We claim that

(5.11)  there exists a 8y € (0, 1) such that v, (6y) € M(A) and y_(6;) € M(A).

Assuming (5.11) for now, we obtain I(y (6y)) = 1 (¥+(60)) + I (y_(6p)) > ay(A) +
oy (A) = 20 (A), which contradicts (5.10).

It remains to show (5.11) to complete the proof. Since y, (0) =0 and y, (1) = z,,
there exists a 8; € (0, 1) such that I'(y, (6,))y,(8,) > 0. This together with y(6,) €
M (A) implies that I’ (y_(6,))y-(61) < 0. Let

(5.12) 6, =sup{f | I'(y_(0)y-(8) < Oory_(6) € M(A)).
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Since y_(1) = 0 and y_(0) = z_, it follows that 8, € (0,1). Using I € C' and
I'(y_(62))y_(6:) = 0. Since y (62) € M(A), it follows that I'(y,(6:))y.(6,) = 0.

To complete the proof of (5.11), we need to show that y_(6;) # 0 and y,(6;) # 0.
We argue indirectly. If y_(6,) = O, then either y_(#) = O for all 8 € (6;, 1) or there
exists a 63 € (63, 1) such that I'(y-(6:))y-(63) > 0. This contradicts (5.12). Suppose
y4+(8,) = 0. Then there exists a 8, € (65, 1) such that I'(y,(64))y+(84) > 0. This
together with y (6,) € M (A) yields I’ (y_(64))y-(64) < 0O, which again violates (5.12).
Thus the proof is complete. |

Then we will show the existence of a Palais-Smale sequence with the (PS)-value p.

LEMMA 5.6. There exists a (PS),-sequence, where p is the number defined in
Lemma 5.4. .

PROOF. Suppose there does not exist a (PS),-sequence. Then there exist b > 0 and
£ > O such that || /'(«)}| > b for all u with u — & < I'(u) < .+ &. We may assume
without loss of generality that b < 1 and & < (1/2)(;t — oy (A) — (8/4)), where §
is the number defined in Lemma 5.4. Let ¥} = {u € M(A) | ||I'(w)]] < b/2 and
I(u) <3u/2}and Y, = {u e M(A) | I I'(w)]] = b and I(u) < 3u/2). Choose

(5.13) e €(0,¢), where & =min(E,b*/2, b/4).

Lety={ueMA) | I(w)<u—Eorl(u) > u+é)and Y, ={u e M(A) | u—se <
I(u) < pu+¢). Foru € M(A), set g(u) = |u— Bil/(lu— Y]l + llu— i) and
g22(w) = jlu—Nli/(lu— Nl + llu— Y2ll). Let X(u) be a pseudo-gradient vector
field for I on M(A) and

(5.14) W) = —g1() g2 h (| X () 1D X (),

where h(s) = 1 if s € [0, 1} and h(s) = 1/sif s > 1.
Consider the Cauchy problem:

dn

(5.15) o W), n@Ou)=u
t

The basic existence-uniqueness theorem for ordinary differential equations implies
that, for each u € M(A), (5.15) has a unique solution 7(z, ) which is defined for ¢
in a maximal interval [0, T(u)). Moreover, since || W(u)|| < 1 and M (A) is a closed
subset of Hj (A), so T(u) = +00. Since

d
El(n(t, u)) = —1"(n(t, u))gi(n(t, W) g2(n(t, w)h(IX (n(t, W)X (n(z, u)).
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Define I° = {u € M(A)|I(u) < a}. Since I(n(z, u)) is a non-increasing function

of ¢, hence

(5.16) n(1, "%y c 1*=.
We claim that

(5.17) n(l, Yy c I**.

Indeed, if there exists u € Y; such that n(1, u) ¢ 1#=¢, then, for all ¢ € [0, 1],
n(t,u) € Y,. Consequently g,(n(r,u)) = 1 and g:(n(¢, w)) = 1. If for some
te(0,1), | X(n(t, w)l <1, then h([| X (n(z, W))|l) = 1 and

d !
(5.18) El(n(t, w) < —[I'(n(t, w)H|* < —b*.
'On the other hand, if for some ¢ € (0, 1), || X (n(¢, u))|| > 1, then by the definition of

pseudo-gradient vector field,

d 1 b
(3.19) El(n(t, ) < =M, W)IPIX (e, w)I ™ < —Elll'(n(t, Wl = —3-

Since n(¢, u) € Yy forall ¢ € [0, 1], by (5.18) and (5.19), we have

1
d .
(5200 2e>1(n(0,u) —1(n(1,u)) = —/ Zl(n(t, u))dt > min(b/2, b°).
0

Since (5.20) is contrary to (5.13), we conclude that (5.17) must hold. Combining
(5.16) and (5.17), we have
(5.21) n(l, I#*%) c I*.
By the definition of u, there exists a y € I" such that maxgejo 1 I (¥ (0)) < pu + ¢. Let
y1(8) = n(1, y(8)). It follows from (5.21) that

(5.22) max I(y(@)) <u—e.

9€l0,1]

Since g1(u) = 0ifu € 1#-%_ it follows from (5.14) and (5.15) that n(1, u) = u if
uel** In particular, max (7 (z,.), 1(z-)) < an(2) + (6/4) implies y;(0) = y(0),
(1) = y(1) and consequently y; € I'. But then (5.22) is contrary to the definition
of u. The proof is complete. O

We are now ready to prove the existence of a positive higher energy solution of (5.1).

THEOREM 5.7. Assume that (f1)-(f4) hold. If u ¢ @(;\,,,) for some m € N, then
there exists a positive higher energy solution of (5.1).

PROOF. By Lemma 5.5 and Lemma 5.6, there exists a (PS),-sequence with
1 > ay(A), then by Theorem 5.3, we obtain a positive higher energy function
of (5.1). O
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