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Abstract

Let b3 5(n) denote the number of partitions of n into parts that are not multiples of 3 or 5. We establish
several infinite families of congruences modulo 2 for b3 5(n). In the process, we also prove numerous
parity results for broken 7-diamond partitions.
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1. Introduction

For any positive integer € > 2, a partition is said to be ¢-regular if none of its parts is
a multiple of £. The number of {-regular partitions of n is denoted by b,(n) and by
convention we define b,(0) = 1. The generating function of by(n) satisfies the identity

0 fg
be(n)q" = .
Z; (g = 5

Here and throughout this paper, we use the notation

fi:= (qk; qk)oo (k=1,2,...), where(a;q)w = l_[(l —aq™).

m=0
Let f(a, b) be Ramanujan’s general theta function [4, page 34] given by

fla,b) := Z " D/2pnn=1)/2

n=—o0o

Jacobi’s triple product identity states that
f(a,b) = (—a;ab)w(-b; ab)w(ab; ab)w.
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In particular,

f=q) = fl=q.-g) = D (~D'"q""V"? = (g; @)oo

Ramanujan [13, page 212] stated the following identity without proof:
f(=4",-¢"")
(=4, —¢°)
Watson [14] gave a proof of (1.1) utilising the quintuple product identity

fi = fos(R(@) — g — ¢*R™'(q)), where R(q) = (1.1)

2, 4VTRE =) = (490G (12 Dol ol )

n=—oco
For any prime p > 5, Cui and Gu [6] obtained the p-dissection formula

(r=1)/2
2 2 2_
f(=q) = Z (_l)kq(3k +k)/2f(_q(3p +(6k+l)p)/2’ _q(3p (6k+1)p)/2)

k=—(p-1)/2
k#(xp-1)/6

+(=D)EPIOGrIR (g, (12)
where the choice of the + sign is made so that (xp — 1)/6 is an integer. Note that
(B> + k)/2 # (p> — 1)/24 (mod p) as k runs through the range of the summation.

Recently, numerous infinite families of congruences modulo 2 and 3 for by(n) have
been established. For example, Xia and Yao [15] proved that
5x 2643 — 1
3

for all nonnegative integers j and n, while Cui and Gu [6] showed that

b9(26/+4n + ) = 0 (mod 2)

31 x5% -1
+—

b5(4 x 5%y -

) = 0 (mod 2).
For more examples, see [5, 7-9].

MacMahon’s partition analysis guided Andrews and Paule [2] to introduce broken
k-diamond partitions. For any positive integer k, let Ai(n) denote the number of
broken k-diamond partitions of n. The generating function of A (n) satisfies the identity

R f2f2k+1
A "= . 1.3
ZO «(n)g T (1.3)

Various authors have obtained parity results for broken k-diamond partitions (see, for
example, [10, 12, 16]). In particular, Ahmed and Baruah [1] established

A7(8n +2) = A7(64n + 54) = 0 (mod 2) (1.4)
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and )
N (24r +16) x 5% +2

3

A7(8 x 521y ) =0 (mod 2)
forall j,n > 0and r € {3,4}.

With this motivation, we obtain several infinite families of congruences for the
broken 7-diamond partitions and for the partition function b3 s(n) which counts the
number of partitions of n none of whose parts are multiples of 3 or 5. For example, we
have the following results.

TueoreM 1.1. If p is an odd prime with (=15/p) =-1,1<i<p—-1land jn >0,

b3,5(2 « ptitty 4 G 2P) ;( P 1) = 0 (mod 2). (1.5)
TueoreM 1.2. For all integers n, j > 0,
A7(26f+3n + w) =0 (mod 2) (1.6)
and )
A7(26j+6n + szﬁgﬁ) =0 (mod 2). (1.7)

Note that congruences (1.4) are special cases of (1.6) and (1.7). We prove
Theorem 1.1 and more families of congruences for b3s(n) in Section 3 and
Theorem 1.2 and further infinite families of congruences for broken 7-diamond
partitions in Section 4.

2. Preliminaries

In this section we present two lemmas which play a vital role in proving our main
results. Note that the generating function for b3 5(n) satisfies

S £ifs
b "= . 2.1
ZO s5(n)g" = 2 2.1)
LemMma 2.1. We have
55 S by omg® + gfsfio (mod 2) 2.2)
Nfs &7
and -
15 Y 4@nyg” - f fro (mod 2), 23)
L~

where d(n) is defined by
N fifis

E dn)q" = —/—-.
ma NEYE

n=0 5
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Proor. From (2.1),

which implies that

403
i bysnyg = DI _ JeLi0 @343 47)e
— Nifis fafro (@:67)e(@: )0’
q3°)oo}
(=4*:149(=0%:¢" 0 (6%9D)0(q%:¢'N)0)”

N 2f2 e a2Y (—g15e 30 NPT
2Zb3,5(2n+1)q2"+1 = f6f10f4f60{( 4404714 Do (4:97)e0(q
n=0

- 1315 fizfo

24)

Using the modular equation of degree 15 [4, Entry 11(iv), page 383], Baruah and

Berndt [3] derived the identity

{(—q; P-4 (4:9D)w(g" ;q3°)m} _ 5, f12f0
fofo

(4% 4 (=0°:9" )% (@ ¢)(q%; ¢
In view of (2.4) and (2.5), we can easily see that

i b3 5(27’1 + 1)q2n+1 = qm
= 75
From (2.1) and (2.6),

VRS wm . JafeS10fe0
A b2 (2, _
f] f15 nzz(; 3,5( ”)q + q f22f320

By the binomial theorem, we can see that for all positive integers k and m,

2 = f (mod 2).

(2.5)

(2.6)

Q2.7)

(2.8)

Congruence (2.2) follows from (2.7) and (2.8). Replacing g by —¢ in (2.7) and using

the relation 5
(=4 —9 = 5
U AS

Nifis _ N A2 - qufs(;flzzfzo'

his = fefio
Congruence (2.3) readily follows from (2.9) and (2.8).
Lemma 2.2, Set 337 0 prrim-11(Mq" = fifm. Then

fHfs= Z Pi-15-12n)g™ = qfizfo + qfafro

n=0

and

fifis = fofio — ¢ fafeo + Z pu-1s-n(2n + Dg*t.
n=0

https://doi.org/10.1017/S0004972715001367 Published online by Cambridge University Press

(2.9)

(2.10)

@2.11)


https://doi.org/10.1017/S0004972715001367

404 M. S. Mahadeva Naika et al. [5]

Proor. In [11], we used Ramanujan’s theta function identities to derive the identities

Sfiafoo @

fofio qfﬁflO 12

(4340 (=0": 0" )0 = (@3 D)o(@”: "o = 29

and

Jofio 2f4f60
At hf

Equations (2.10) and (2.11) follow easily from (2.12) and (2.13), respectively. O

(~4: )0 (=0"; 60 + (@ )o@ oo = 27 (2.13)

3. Congruences for b3 s(n) modulo 2
In this section, we prove infinite families of congruences modulo 2 for b3 5(n).

TueorEM 3.1. Let j > 0. Then

= S 2x5Y+1
D b3,5(2 x 5%n + X3—+)q" = £f (mod 2) G.1)
n=0

and, for alln > 0,r € {14,26} and s € {22,28},

. x 5% +1
b3,5(2 X 54ty %) = 0 (mod 2) (3.2)
and 2j+1
: X597+ 1
b3,5(2 X 5% 4 sf) = 0 (mod 2). (3.3)

Proor. From the equations (2.1) and (2.2),

D b3s@n+1)q" = fifs (mod 2), (3.4)
n=0

which is the j = 0 case of (3.1).
Suppose that the congruence (3.1) holds for some integer j > 0. Using (1.1),

2x5% +1
Zbgs(zxszf ) = ARG - ¢ - R @) (mod 2). (3.5)

Extracting the terms in ¢" with n = 3 (mod 5) and using (1.1) again yields

2x5%+ 1y,
e

Zb3,5(2 XS5 +3) + =

n=0

- , 4x 55 +1
=y bg,s(z x 5%+ 4 —)q”
n=0 3

= fifis = fisfs(R(@) — ¢ = ¢°R ™' (@) (mod 2). (3.6)
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In the same way, using (3.6),

= . 4 x 52+ 4]
wa(z X 52 (5p 4+ 1) + f)q"
n=0

s ) 2 52j+2 1
-y b3,5(2 x 527%2 4 %)q" = fifs (mod 2).
n=0

Thus, (3.1) is true for j+ 1. Hence, by induction, (3.1) is true for any nonnegative
integer j. Congruences (3.2) and (3.3) follow from (3.5) and (3.6), respectively. O

TueoreM 3.2. For any prime p > 5 with (—15/p) = —1 and any integers j,n > 0,
= o 2xpH4l
> b3,5(2 X pPin + pT)q" = fifs (mod 2). 3.7)
n=0
Proor. Note that (3.4) is the j = 0 case of (3.7). Consider the congruence

2k 3m 2
3. 2+ +5. m2+ms”3 (mod p), (3.8)

where —(p — 1)/2 < k,m < (p — 1)/2. We can rewrite (3.8) as

(18k + 3)> + 15(6m + 1)> = 0 (mod p).

Since (—15/p) = —1, the only solution of this congruence is k = m = (xp — 1)/6. This
fact along with (1.2) and (3.4) yields

> bg,s(z(pzn n pT) 4 1) 7" = fsfs (mod 2),
n=0

which is the j = 1 case of (3.7). Iterating this procedure yields Theorem (3.2). O

Proor oF THEOREM (1.1). From the proof of Theorem (3.2) it is clear that the
congruence (3.8) holds only when k = m = (£p — 1)/6. Thus, employing (1.2) in (3.7),

- , 21\ 2xp¥+1
Zb3,5(2 X pzf(pn + d ) + Xp )q"
n=0

3 3

2x pPt? +1

3 )qn = f3pf5p (mOd 2)’

= Z b3’5(2 X p2j+ll’l +
n=0

which implies that, fori=1,2,...,p— 1,

2% pPt? 41
3

from which the congruence (1.5) follows immediately. O

b3,5(2 x pH(pn + i) + ) =0 (mod 2),
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Tueorem 3.3. For all integers n > 0 and j > 0,

bs 5(261“11 + 26j+; *1 ) = b3s(2n+ 1) (mod 2), (3.9)
b ,5(26f+4n t 6j+; *1 ) = 0 (mod 2), (3.10)
by 5(26f+7n £ 2% 2?6 i 1) =0 (mod 2), 3.11)
b3,5(26j+6n + &) =b ,5(261'*2 + %) (mod 2), (3.12)
5% 26/t 41 5x20/%2 41

b3,5(26f+5n n ) = b3,5(26f+3n N ) (mod2).  (3.13)

3 3

Proor. By using (2.10) in (3.4) and extracting the terms involving odd powers of g,

D basn +3)¢”" = qfs fro = fizfro (mod 2),

n=0
which yields
D bss@n+3)q" = fifis - fofio (mod 2). (3.14)
n=0
By substituting (2.11) in (3.14) and extracting the terms involving even powers of g,
D bss(8n+ 3)q" = q s fro (mod 2). (3.15)
n=0

It follows from (3.15) that

D bss(16n+ 11)g" = i fis (mod 2) (3.16)
n=0

and
b35(16n + 3) = 0 (mod 2). (3.17)

In view of (3.14) and (3.16),
b35(32n + 27) = b3 5(8n + 7) (mod 2). (3.18)
Using (2.11) in (3.16) and extracting the terms involving even powers of ¢,

> b3s(32n+ 11)q" = fofs = qfofs0 (mod 2). (3.19)

n=0
It follows from (3.4) and (3.19) that

b35(64n + 11) = b3 5(4n + 1) (mod 2). (3.20)
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By substituting (2.10) in (3.19) and extracting the terms containing odd powers of ¢,

Z b35(64n +43)q" = fofio (mod 2). (3.21)
n=0
From (3.21),
b35(128n + 107) = 0 (mod 2) (3.22)
for all n > 0 and
Z b35(128n + 43)q" = f3f5 (mod 2). (3.23)
n=0
By (3.4) and (3.23),
b35(128n + 43) = b3 5(2n + 1) (mod 2). (3.24)

Congruence (3.9) follows from (3.24) and mathematical induction. Using (3.17) and
(3.22) in (3.9), we deduce (3.10) and (3.11), respectively. Congruence (3.12) follows
from (3.9) and (3.20). Congruence (3.13) follows from (3.9) and (3.18). O

4. Parity results for broken 7-diamond partitions

In this section, we prove infinite families of congruences modulo 2 for A;(n), using
our results for b3 s(n).

TueorREM 4.1. For any integers n > 0 and j > 0,

) 26j+2 2
A7(261+2n T —+) = by5(8n + 3) (mod 2). @.1)
Proor. Setting k =7 in (1.3),
_ ffis
A(n)q" = (mod 2),
; S it h f 15

which implies that

I [(4:0)0(=4"14")e + (4:61)(q": 6o
A7 (2n)g™" =
Z ena 2f2f30{ (4% 4M)e0(37: 4"

Using equation (2.13) in (4.2) and replacing ¢° by g,
Z Ar2n)g" = (f2f3fsf30 fzfao) ( VEYE

}(mod 2). (4.2)

- qflfls) (mod2).  (4.3)

- f13f135 f1f15 fifis
Using equation (2.2) and (2.11) in (4.3),
D Asn + 24" = ¢ fafeo (mod 2). (4.4)
n=0
From (3.15) and (4.4),
A7(4n + 2) = b3 5(8n + 3) (mod 2). 4.5)
Congruence (4.1) follows from (3.9) and (4.5). O
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Proor oF THEOREM 1.2. From (4.1),

6j+2

A7(26f'+2(2n) + %) = bs5(8(2n) + 3) (mod 2) (4.6)

and
) 26j+2 +2
A7(26-’+ (16n + 13) + T) = by58(16n+13)+3) (mod 2). (4.7
Congruence (1.6) follows readily from (3.17) and (4.6). Congruence (1.7) follows
from (3.22) and (4.7). O

TueorREM 4.2. For any prime p > 5 with (—=15/p) = —1 and any integers j,n > 0,

- AxpH 42

A7(4 x pYin + pT) = by 5(8n + 3) (mod 2). 4.8)
Proor. Combining equations (3.4) and (3.7) with (4.5) yields (4.8). O
Tueorem 4.3. If p is an odd prime with (—=15/p) = -1 and 1 <i < p — 1, then, for all
jn=0,

, 24i + 16p) x p?*l +2
A7(8 « pritzy 4 24 160 )3 P ) =0 (mod 2).
Proor. We omit the proof, since it is similar to the proof of Theorem 1.1. O
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