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CHARACTERIZATIONS FOR PRIME SEMILATTICES 

K. P. SHUM, M. W. CHAN, C. K. LAI AND K. Y. SO 

1. Introduction. Throughout this paper when we refer to a semilattice S 
we shall mean that S is a meet semilattice. We shall denote the infimum of 
two elements a, b of S by a A b, and the supremum, if it exists, by a V b. A 
prime semilattice is a meet semilattice such that the infimum distributes 
over all existing finite suprema, in the sense that if xx V x2 . . . V xn exists 
then (x A x,) V (x A x2) . . . V (x A xn) exists for any x and equals 
x A (xx V x2 . . . V xn). Such semilattices were first studied by Balbes [1] 
and we use his terminology. 

A non-empty subset F of S is a filter provided that x A y e F if 
and only if x e F and y ^ F. A proper filter F is prime if, whenever 
X , V I 2 . - . V I W exists and is an element of F then xt e F for some / e {1, 
2, . . . , « } . A semi-ideal of £ is a non-empty subset / of S such that if b e / 
and a ^ b then a Œ I. We call / an ideal if, further, when Xj V x2 V . . . V 
x„ exists such that x,- G / for all / e {1, 2 , . . . , «}, then 

x, V x2 V . . . V xn e / . 

An ideal P is called prime if a A 6 G P implies a G P or b G P. 
Prime semilattices were first characterized by Balbes [1]. Recently, 

several characterizations for prime semilattices were also obtained by Y. S. 
Pawar and N. K. Thakare [6]. Unfortunately, some of the proofs given in 
their paper [6] were wrong. In this paper, we shall correct all these 
mistakes. Several new characterizations for prime semilattices are 
obtained. Maximal filters, maximal ideals, prime filters and prime ideals 
in prime semilattices are studied. We then consider primeness for finite 
semilattices. We prove that a finite semilattice S is D2 if and only if S is 
prime. As B. M. Schein claimed that D2 is not equivalent to Dn in general, 
our theorem shows that such counter-example cannot be found in finite 
semilattices. 

2. Ideal extensions. 

Definition 2.1. Let / be a semi-ideal of S. An extension of I by x is 
defined to be the set 

(x, /> = {a G S\a A x G / } , 

Received January 19, 1984 and in revised form September 5, 1984. 

1059 

https://doi.org/10.4153/CJM-1985-057-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-057-4


1060 K. P. SHUM, M. W. CHAN, C. K. LAI AND K. Y. SO 

where x is an arbitrary element in S. 

This terminology comes from the fact that / c (x, I) for all x G S. It 
should be noted that (JC, I) need not be an ideal of S, but it is always a 
semi-ideal of S. 

Definition 2.2. Let / be an ideal of S. If (x, I) is also an ideal of S for 
some x e X, then (x, I) is called the extended ideal of I by x. For 
simplicity, we denote (JC, (y] > by (JC, y). 

PROPOSITION 2.3. Any extension of a prime ideal in S is a prime ideal. 

Proof Let P be a prime ideal of 5. If JC G P, then (x, P) = S and there 
is nothing to prove. Assume x & P, and let y G (X, P). Because P is 
prime, y A x G P implies y G P. Thus (x, P) = P is a prime ideal. 

COROLLARY 2.4. Let I be a non-empty subset of a semilattice S. If 

I = U R or I = n P , 

vv/zere P/s are /?nme ideals, T is an index set, then (x, I) is an ideal. 

Proof Let / = nieT Pt. Then 

<JC, /> = (x9 n Py> = n (x, p,> = n (JC, P,> = n P. 

where Tr = {/ G T:x <£ PÉ) since JC G Pf. implies (JC, P7> = S. Trivially, 
non-empty intersection of ideals is an ideal, thus (JC, I) is an ideal. 
Similarly for / = U / G r Pt. 

Remark 2.5. The converse of Proposition 2.3 is not generally true, that is 
in a semilattice, an ideal with a prime extension need not be prime. For 
example, let S be the semilattice {0, a, b, c} with Hasse diagram shown 
below 

0 

Then / = {0, a} is an ideal of S but not prime. It is clear that 
<c, /> = {0, a, b}9 (b, I) = {0, a, c}, (a, I) = S, (0,1) = S are all prime 
ideals. 

PROPOSITION 2.6. Let I be a subset ofS. If for all x G 5, (JC, I) is an ideal 
of S, then I must be an ideal. 

Proof Let y ^ z and z e. I. Consider (z, / ) . (z, / ) is an ideal 
and z G (Z, / ) , hence >> G (Z, / ) and so j> = y A z G / . Now suppose 
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x} V x2 V . . . V xn exists in S and xt G / (i = 1, 2 , . . . , n). Consider 
(x} V x2 . . . V xn9 I). Clearly, 

xi A (x, V JC2 V . . . V jt„) = xt G /, 

therefore 

X, G <X, V X2 . . . V *„ , / > . 

Since (x1 V x2 . . . V x„, / ) is an ideal and x] V JC2 . . . V xn exists in S, 
so 

x, V x2 . . . V xn G (je, V x2 . . . V x„, />. 

Hence 

x, V JC2 V . . . V xn = (je, V JC2 V . . . V xn) 

A (JC, V x2 . . . V JCW) G / 

and / is indeed an ideal of S. 

We observe that the ordering of elements in S is also related to the 
reverse set inclusion of their corresponding ideal extensions. In fact, we 
have the following proposition. 

PROPOSITION 2.7. Let x, y be elements of S. Then x = y if and only if 
(x, I) 2 (y, I) for all ideals I of S. 

Proof (=>) Let z G (y, I). Then z A y G /. Since x ^ y and / is an 
ideal, we have z A x G / . This implies that z G (X, / ) . Thus (y, I) Q 
(X, I). 

(<=) Consider (y], the principal ideal generated by y. Obviously, 
x A y G (^], so 

by hypothesis. Hence x = x A x G (^], that is, x ^ j \ 

In fact, Proposition 2.7 holds when the word "ideal" is replaced by 
"semi-ideal". 

3. Characterizations for prime semilattices by ideals. In this section, we 
shall characterize prime semilattices by ideals. 

The following theorem was obtained by Y. S. Pawar and N. K. Thakare 
in [6, Theorem 6, p. 294]. 

THEOREM 3.1. For any semilattice S the following are equivalent. 
( 1 ) S is prime. 
(2) (a, b) is an ideal for all a, b in S. 
(3) (a, b) is an ideal for all b ^ a. 

It should be noted that the proof of this theorem is wrong. Pawar and 
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Thakare assumed the existence of (a A x2) V (a A x2) V . . . V (a A xn) at 
the first instance and then proved that 

(a A JC,) V (a A x2) V . . . V (a A xn) = a A (JC, V x2 . . . V xn). 

In fact, there is no way of being sure that {a A xx) V {a A x2) . . . 
V (a A xn) exists in a semilattice. 

We now give a new characterization for prime semilattices which 
includes Pawar and Thakare's result as its trivial corollary. Their result is 
therefore true in spite of the mistake in their proof. 

THEOREM 3.2. For any semilattice S the following are equivalent. 
(i) S is prime. 

(ii) {a, I) is an ideal for any ideal I and a G S. 
(iii) (a, I) is an ideal for any ideal I such that I is bounded by a, i.e., 

i = a for any i G /. 
(iv) (a, b) is an ideal for any b = a. 
(v) (a, b) is an ideal for any a, b G S. 

Proof (i) => (ii). If x ^ y G (a, I), then 

xAa^yAa^I. 

This implies that x A a G / and hence x G (a, Is). 
Now assume xt G (0 , J ) for all / G {1, 2, . . . , n } and .x, V x2 V . . . V xn 

exists in S. Then 

(JC, V x2 V . . . V xn) A a = (JC, A a) V . . . V (x„ A a) G / 

as x, A A G / for all z G {1, 2 , . . . , n}. Hence, 

(x, V * 2 V . . . V * „ ) e (a, I). 

(ii) => (iii). This is obvious. 
(iii) => (iv). Since b ^ a, the principal ideal (b] is bounded by a. So 

by (iii), (#, b) is an ideal. 
(iv) => (v). Since (0, è) = (a, a A b), (a, b) is an ideal by (iv). 
(v) => (i). Assume xx V x2 V . . . V xn exists in S and a G S. For any 

7 ^ # A xh i = 1, 2 , . . . , n, we have JC, G (a, y). 
By (v), (A, y) is an ideal of S, so 

x, V ;c2 V . . . V xn G (a, y). 

Thus, 

a A(xx V i 2 V . . . V x J G (>;], 

and 

a A ( x , \lx2...Vxn) tky. 

Clearly, a A (xx V x2 V . . . V x„) is an upper bound of {a A ^/}|G{i,2,...,w}-
This means that a A (xx V x2 V . . . V xn) is the least upper bound of 
{a A ^ } / e { U 2 v ^ } . Hence, 
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a A (je, V x2 V . . . V xn) = (a A je,) V (a A x2) V . . . V (a A JC„). 

S is therefore a prime semilattice. 

The following lemma, which has certain interest of its own, is necessary 
for the characterization of prime semilattice in Section 4. 

LEMMA 3.3. A filter F of a semilattice S is prime if and only if Fc, the set 
complement of F in S, is a prime ideal. 

The proof of this lemma is easy and therefore it is omitted. 

4. Applications of Balbes-Stone theorem. A modified version of Balbes 
Theorem has already been obtained by C. S. Hoo and K. P. Shum in [8]. 
The corrected version of Balbes' result (Theorem 2.2. of [8] ) is as 
follows. 

THEOREM 4.1. (Balbes) In a semilattice S, the following are equivalent. 
(i) S is a prime semilattice. 

(ii) If F is a filter in S and I is a non-empty subset of S, disjoint from F 
and such that x] V x2 V . . . V xn exists in I whenever xl5 x2, . • . , xn e /, 
then there exists a prime filter F such that F c F and F Pi / = 0. 

(iii) If F is a filter in S and I is an ideal of S disjoint from F, then there 
exists a prime filter F such that F c F and F n / = 0. 

(iv) If x ^ y, then there exists a prime filter Fr such that x G F and 
y £ F. 

Hoo and Shum [8] added the equivalent condition (iii) to Balbes' 
original statements. In [6], Pawar and Thakare tried to produce a proof for 
(i) => (iii) (Theorem 1 [6], p. 292). Unfortunately, the proof supplied by 
them was wrong. In their proof, they stated the following sentence: 

"Further /, A i2 A . . . A in è (qx A q2 A . . . A qn) A (JC, V x2 V . . . 
V xw)" where /',, /2, . . . , / „ are elements of an ideal / and q]9 q2,. . . , qn are 
elements of a filter Q disjoint from /. [Theorem 1 [6], p. 292, line 19]. 

The above statement is not correct as can be seen from the following 
counter example. 

Example 4.2. Let S = {0, xh x2, a, 1} with Hasse diagram shown 
below. 

I 1 

a 

Xi/ \ X-) 

0 
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It is easily checked that S is a prime semilattice. Clearly / = {0, x}, 
x2, a] is an ideal, Q = {1} is a filter disjoint from /. Take ix = xx, 
i2 = x2, q\ = \, q2 = 1, then /, = qx A x l5 z2 = #2 ^ *2- But 

/'j A /2 = x, A x2 = 0 ^ (gj A g2) A (*i V x2) = a-

Thus the statement given by Pawar and Thakare is incorrect. 
We now correct their proof. 

We shall call (i) <=̂> (iii) Stone's Theorem because such theorem was first 
obtained by M. H. Stone in distributive lattice [3, p. 74, Theorem 15]. 

THEOREM 4.3. (i) <̂> (iii). 

Proof, (i) => (iii). Let S be a prime semilattice. Then by Zorn's lemma, 
there exists a filter Q maximal with the property that it contains F and is 
disjoint from /. Suppose xx V x2 V . . . V xn exists in Q with xk £ Q for 
k = 1, 2, . . . , n. Then [Q U {X]} ), [Q U {x2} ) , . . . [ g U {xn} ) have a 
non-empty intersection with /. Hence, there exists ik G /, qk G g, 
/c = 1, 2 , . . . , n such that 

ik ^ qk A xk ^ qx A q2 A . . . A qn A xk. 

Because / is an ideal, 

qx A q2 A . . . A qn A xk G /. 

Also, by the primeness of S, 

(q, A q2 A . . . A qn) A (xx V x2 V . . . V xn) 

= qx A q2 A . . . qn A xx) V . . . 

V(qx A q2 A . . . A qn A xn) e /, 

as / is an ideal. Thus / Pi Q =£ 0 which contradicts the choice of Q. Hence 
Q is a prime filter. The proof is completed, 

(iii) => (i). This follows as in [6]. 

We now call Theorem 4.3 as Balbes-Stone theorem and apply this 
theorem to give two new characterizations for prime semilattices. 

THEOREM 4.4. A semilattice S is prime if and only if' (x, P) ^ (y, P) for 
any prime ideal P of S =» x = y. 

Proof (=>) Suppose that x ^ y. Since S is prime, by Balbes-Stone 
Theorem (iv), there is a prime filter F such that JC G F but y £ F. By 
Lemma 3.3 / = Fc is a prime ideal such that x & I and y G /. As y G; /, 
so 

5 = (y, I) ç (X, I). 

Then x G (JC, I) implies x G / = Fc. This contradicts x G F. Thus 
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(<=) Suppose that x -^ y. Then there is a prime ideal / such that 
(x, / ) 2 (y, I)- Hence, there is an element z such that z A x € I and z A 
y e /. Therefore JC £ (z, / ) and y e (z, / ) . By Proposition 2.3, (z, /> is a 
prime ideal. Let F = (z, 7>c be the set complement of (z, /> in S. Then, by 
Lemma 3.3, F is a prime filter of S. Thus, x e F and y £ F. Apply 
Balbes-Stone Theorem (iv), 5 is a prime semilattice. The proof is 
completed. 

THEOREM 4.5. A semilattice S is prime if and only if for any ideal I in S, 
I = n {J J is a prime ideal containing I}. 

Proof (<=) By Corollary 2.4, (JC, I) is an ideal for any ideal / and JC e S. 
Consequently S is prime, by Theorem 3.2. 

(=>) Clearly, I Q Pi {J:J is a prime ideal containing / } . Now assume 
that there exists an element x £ I and JC G y for any prime ideal / 
containing /. Then [JC) PI / = 0. By Theorem 4.3, there exists a prime filter 
F such that [JC) Q F and F n / = 0. Apply Lemma 3.3, we know that 
J0 = Fc is a prime ideal containing /. But x £ J0 contradicts our 
assumption. Thus 

I — n [J:J is a prime ideal containing / } . 

The following statement was stated by Grâtzer in ([3], Corollary 18, 
p. 75): 

"Every ideal of a distributive lattice is the intersection of all prime 
ideals containing it." 

As we notice that the concepts of primeness and distributivity given in 
( [3], p. 36) are exactly the same in a lattice, so by Theorem 4.5, we can 
modify Gràtzer's result as follows: 

COROLLARY 4.6. A lattice L is distributive if and only if every ideal of L is 
the intersection of all prime ideals containing it. 

5. Filters, ideals and complemented semilattices. Filters and ideals in 
prime semilattices were studied by Pawar and Thakare in [6]. The 
following theorem was stated by them. 

THEOREM 5.1. Let S be a prime semilattice with 0 and 1 in which the 
complement of every maximal ideal is a maximal filter. Then S is 
complemented. ( [6], Theorem 9, p. 296). 

Unfortunately, the proof of this theorem provided by Pawar and 
Thakare is wrong. In this section, we shall amend this result which leads to 
a thorough study of complemented prime semilattices. 

As the condition "complement of every maximal ideal is a maximal 
filter" is a rather ambiguous statement, we shall study what it can mean. 
We first obtain the following proposition. 
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PROPOSITION 5.2. Let S be a prime semilattice with 1 in which Nc (the set 
complement of N) is a maximal filter for every maximal ideal N of S. Then 
for any ideal M the following are equivalent. 

(i) M is a maximal ideal. 
(ii) Q = Mc is a maximal filter. 

(iii) Q = Mc is a prime filter. 
(iv) M is a prime ideal. 
(v) M is a minimal prime ideal. 

(vi) Q is a minimal prime filter. 

Note. It is a well-known fact that a maximal ideal of a prime semilattice 
must be prime. The converse is easily shown to be false in general. 
However, from Proposition 5.2, we note that if the complement of a 
maximal ideal is a maximal filter, then there is no difference between 
maximal and prime ideals in prime semilattices with 1. 

Proof, (i) =» (ii). This follows by assumption. 
(ii) =̂> (iii). Q is a maximal (proper) filter, so there exists an element 

x e S — Q. Apply Balbes theorem (or more explicitly, apply Theorem 2 
in [6] ), there exists a prime filter F such that F 2 Q and x £ F. By the 
maximality of Q, we must have Q = F. Thus Q is a prime filter. 

(iii) => (iv). See Lemma 3.3. 
(iv) => (i). Suppose M is not a maximal ideal of S. Because S has 1, by 

Zorn's lemma there is a maximal ideal M] such that M Q M] Ç S. 
By assumption, Qx = M\ is a maximal filter. As Q = Mc is a filter and 
Q 2 Qu this contradicts the maximality of Qv Hence M is a maximal 
ideal. 

(iv) => (v). Let M' be a prime ideal of S such that M' Q M Ç S. Since 
M' is a maximal ideal (by (i) <^> (iv) ) thus M' = M. Therefore M is a 
minimal prime ideal. 

(v) => (iv). This is trivial. 
(iii) => (vi). Suppose that Qx Q Q Ç S and Qx is a prime filter. Then, 

because (iii) <=> (ii), Qx is a maximal filter. Therefore Qx = Q, and so Q is a 
minimal prime filter. 

(vi) =» (iii). This is trivial. 
The proof is thus completed. 

Remark. In [6], Pawar and Thakare also proved (ii) => (iii). But they had 
to assume that the semilattice has 0. In fact, our proof shows that the 
assumption of zero is superfluous. 

In general, the complement of a maximal ideal M in a prime semilattice 
with 1 need not be a maximal filter, but it is a filter. 

PROPOSITION 5.3. Let S be a prime semilattice with 1. Then for every 
maximal ideal M, Q = Mc is a filter. 
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Proof. Suppose that x A y G Mc = Q. If x G M, then JC è x A >> 
implies that JC A y G M since M is an ideal. This contradicts the fact that 
x A y G Mc. Hence, JC G g and J / G Ç - Suppose that i G g j e g and 
x A y G M. Since Af is a maximal ideal, we have (MU{x} ] = S. 
Therefore 

xV mxV ...\J mk= \ 

for some m]9 ra2, . . . mk G M (see [2] ), and hence 

y A (JC V m] V . . . V mk) = y. 

As S is a prime semilattice, so 

y = (y A JC) V (y A m,) V . . . V (y A m^). 

Because j A x e M, and y A mÉ ^ M for all / = 1, . . . , k, we have 
y G M, which is a contradiction. Thus JC A y G Q. Hence g = Mc is a 
filter. 

A^te. In proving Theorem 5.1, Pawar and Thakare considered the ideal 
(a, 0) for any a G S and assumed a V * ¥= 1 for all * G (#, 0). Then they 
considered the set 

A = {{a, x}u:x G (a, 0> } 

and let 7 = A1, where for any non-empty subset Y of S, Y" and Yl denote 
the set of all upper bounds of Y and the set of all lower bounds of Y 
respectively. As J is a proper ideal in S and 1 G S, 7 Q M for some 
maximal ideal M in 5. Then they claimed that a G S — M. However, we 
observe that 0 G (a, 0) and in fact a is the smallest element in A, so 
J = A1 = (a]. Therefore a G / ç M. Thus Pawar and Thakare's proof is 
incorrect. Also, they claimed that (a, 0) Q M, but such claim is not 
justifiable. ( [6], Theorem 9, p. 296, lines 5-12). 

In order to amend the mistakes made by Pawar and Thakare [6], we find 
a rather interesting result which, in fact, is a characterization for 
complemented semilattices. The following lemma, which has certain 
interest of its own, is crucial for such characterization. 

LEMMA 5.4. Let S be a prime semilattice with 0 and 1, then the following 
statements are equivalent: 

(i) For any maximal ideal M, Mc is a maximal filter. 
(ii) For any a in S, there exists a sequence of elements {^l/en ...,„\ in 

(a, 0) such that 

Û V / 1 V / 2 V . . . V / „ = 1 . 

Proof (i) => (ii). First, we claim that 

( (a] U (a, 0> ] = S for all a G S. 
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Suppose if possible that ( (a] U (a, 0) ] Ç S. Then, by Zorn's lemma, 
there exists a maximal ideal M such that 

((a] U (û, 0>] Ç M ç S. 

This is because S has 1. Now let Q = Mc\ by assumption (i), Q is a 
maximal filter. Hence a £ Q implies [Q U {a} ) = S. Consequently, we 
can pick some element q G Q such that q A a = 0, which implies that 
q ^ Q D M = 6, a contradiction. Therefore we have proved that 

( (a ] U <tf,0>] = S. 

Thus, there exists a' = a, {f/}"=i in (a, 0) such that 

a 'Vf, V . . . Vfw = 1. 

Clearly a V /, V . . . V tn = 1, so (ii) is established. 
(ii) => (i). Let M be a maximal ideal, Mc be its set complement in S. 

Clearly, Mc is a filter (by Proposition 5.3). Assume that there exists a 
filter F such that Mc Ç F Ç 5, then M O F ¥* 0, that is, there, exists 
# G M n F. Now, by (ii) there exists {//}"=i in (a, 0) such that 

flV/,V...V/„ = l. 

If tt G M for all / = 1, . . . , n then 

1 = a V /, V . . . V tn G M, 

a contradiction. Therefore /f. G Mc c Ffor some / G {1 , . . . , «} , but then 
0 = a A tt Œ F9 again, a contradiction. Thus M c is indeed a maximal filter 
of S. 

Remark 5.5. Let S be a prime semilattice with 0 and 1 in which the 
statement of Proposition 5.4 (ii) holds. Then statements (i)-(vi) in 
Proposition 5.2 are all equivalent. 

THEOREM 5.6. Let S be a prime semilattice with 0 and 1, then the 
following statements are equivalent. 

(I) (i) For any maximal ideal M, Mc is a maximal filter. 
(ii) S is pseudocomplemented. 

(II) S is complemented. 

Proof. (I) => (II). By Lemma 5.4, for any a in S, there exists a sequence 
of elements {'/} /en ...,«} i n (a> 0) s u c r i t r i a t 

flV/,V/2V...V/„ = l. 

Now let <2* be the pseudocomplement of a. Then /, â a* for all 
/ G {1 , . . . , «} , clearly a V a* = 1, as Û* A Û = 0, therefore S is 
complemented. 

(II) =» (I). By virtue of Lemma 5.4, clearly (i) is established. Since S is 
complemented, for any a G S, there exists / e S such that a A t = 0 and 
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a\J t = 1. We claim that a* = t, for if a A x = 0 then 

je = (a V 0 A JC = (a A JC) V (/ A x) = / A JC, 

that is, JC ^ /. Hence, S is pseudocomplemented. 

COROLLARY 5.7. 2>f S be a prime semilattice with 0 <z«<i l. If S is a 
complemented semilattice, then the six statements as stated in Proposition 5.2 
are equivalent. 

6. Relative annihilators. In this section, we study semilattices in which 

(a, b) V (ft, a> = 5. 

(a, b) V (6, a) means the ideal generated by (a, b) U (b, a). We shall see 
that these semilattices can be characterized as those in which the filters 
containing any given prime filter form a chain. In fact, such characteriza
tion for lattices has already been obtained by Mandelker [5]. Most of his 
results can be transferred verbatim to semilattices with only slight 
modifications. 

In [6], Pawar and Thakare proved the following theorem. 

THEOREM 6.1. In a prime semilattice if the filters containing the given 
filter F form a chain then F is prime and 

(a, b) V (b, a) = S. 

Also, they said that it will be interesting to see whether the condition 
(a, b) V (b, a) = S is also necessary [6, Theorem 8, p. 295]. 

The proof of Theorem 6.1 is essentially taken from the necessity part of 
Mandelker's theorem [5, Theorem 3] as Stone's theorem for distributive 
lattices also holds for prime semilattice (Theorem 4.3). However, if one 
goes through Mandelker's proof, it can be seen that the sufficient part of 
Mandelker's theorem also holds for prime semilattices. This answers the 
question of Pawar and Thakare without any difficulty. We would like to 
point out that in proving Theorem 6.1, Pawar and Thakare did not 
mention the chain condition which is a key step in the proof. 

We now extend Mandelker's theorem [5, Theorem 3] from lattices to 
semilattices as follows. 

LEMMA 6.2. In any prime semilattice S, each of the following conditions on 
a given filter F implies the next. 

(i) For any element a and b of S, there exists an element x in F such that 
a A x and b A x are comparable. 

(ii) The filters containing F form a chain. 
(iii) The prime filters containing F form a chain. 
(iv) F is prime. 
(v) F contains a prime filter. 
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Proof, (i) => (ii). Let G and H be filters containing F, and suppose that 
they are not comparable. Choose a G G — H and b G H — G. Choose 
x G F c G such that a A x and b A x are comparable. Without 
loss of generality, we may assume a A x ^ b A x. Since x G G, we have 
# A JC G G. This implies b A x G G and hence Z> G G for G is a filter. This 
contradicts the fact that b <£ G. 

(ii) => (iii). This is trivial. 
(iii) => (iv). Let the prime filters containing F be denoted by {Fa}. Since 

the Pa 's form a chain, it is easily seen that ( n a Pa) = F is also a prime 
filter such that F Q F . If F c F , then there exists x & F — F. Because S 
is a prime semilattice, by Balbes-Stone Theorem (Theorem 4.3), there 
exists a prime filter G such that F Q G, x £ G. But F Q G, a 
contradiction. Thus F = F and so P is a prime filter. 

(iv) => (v). This is trivial. 

THEOREM 6.3. Let S be a prime semilattice. The identity 

(a, b) V (b, a) = S 

holds for any a, b in S if and only if all the conditions of the lemma are 
equivalent. 

Proof (=>) It suffices to show that (v) implies (i). Let P be a prime filter 
contained in F and choose z G P. For any a and b in S we have 

(a, b) V (b, a) = S 

= {s:s = z , V z 2 V . . . V z / , 

zt G (a, b) U (Z), fl> }. 

This is because S is prime [2, Theorem 1.1]. Thus 

z = x 1 V x 2 V . . . V x „ V j 1 V 7 2 V . . . V ; m , 

where x, e (0, 6), _y. G (6, a) . Since P is a prime filter, z G P implies JC, or 
yj G P for some /,y. Without loss of generality, let xx ^ P Q F. Consider 
a A JCJ. Clearly A A X , â Z? as xx G (0, /?). Thus 

a A xx ^ b A xx. 

Therefore, there exists JC1 G p such that a A x} and Z> A xx are 
comparable. 

(<= ) Suppose that there exist a and b of S which are such that 

j = (a, b) V (b, a) 

is a proper ideal. Then by Stone's Theorem for prime semilattices 
(Theorem 4.3), there exists a prime filter P such that J n P = 0. Thus P 
satisfies condition (iv) in Lemma 6.2 and hence satisfies condition (i). 
Thus, there exists x G P such that Û A X and b A x are comparable. 
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Without loss of generality, suppose 

a A x ^ b A x ^ b . 

Then x e (a, b) Q J. But x is in P, which contradicts J n P = 0. 
Hence 

J = (a, b) V (b, a) = S. 

The proof is completed. 

Thus the question raised in the paper of Pawar and Thakare [6] is now 
completely solved by Theorem 6.3. 

7. w-distributive semilattices. We call a semilattice S m-distributive if 
and only if it satisfies the equation 

(Dm):y A (x, V x2 ... V xj 

= (y Axx)V(y A x2) . . . V ( j A xm) 

in the sense that whenever the left hand side exists then so does the right 
hand side and the two sides are equal. This idea was first put forward by 
Schein [7]. We will denote the class of m-distributive semilattices by Dm for 
each m = 2, 3 . . . and the class of semilattices which satisfy (Dm) for each 
m = 2, 3, . . . by Dw. In fact the elements of Du are just the prime 
semilattices. According to [9, p. 222], a semilattice S is distributive if 
whenever .x, a, b G S are such that x ^ a A b, there exists a', V G S with 
a' ^ a, V = b and x = a! A b'. If we denote the class of distributive 
semilattices by D then the following series of inequalities holds: 

D2 D D3 2 . . . 3 Z>w 2 Z). 

In 1972, B. M. Schein [7] conjectured that D2 and Z)m (m > 2) are not 
equivalent. Also the referee of [6] asked whether D2 is sufficient for a meet 
semilattice S to be Z)w. As far as we know, in the literature, Schein's 
conjecture is not yet solved. In this section, we shall show that D2 = Du in 
finite semilattices. Thus a partial answer to the above question is 
obtained. 

THEOREM 7.1. Let S be a finite semilattice. Then S is D2 if and only if 
S is a prime semilattice. 

Proof. (<= ) This is trivial. 
(=>) Suppose tn = xx V x2 V . . . V xn exists for some JC15 . . . , xn G S. We 

first claim the existence of xx V x2 V . . . V xk, for every 1 ^ k ^ n. 
Now, 

{*!, * 2 , . . . ,x k y # 0 
(where 7" means the upper bounds of the set Y)\ this is because 
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tn G {xl9X2,...,Xk}
U. 

Since S is a finite semilattice, 

tk = A{X], x2,...,xk) 

exists. Clearly tk is the least upper bound of {xu x2, . . . , ^ } . Therefore 

/* = x, V x2 V . . . V xk. 

Our claim is established. Hence, for all x e S, we have 

x A (JC, V x2 V . . . V x„) = x A (fw_, V JCW) 

as ^ _ , = i , V JC2 . . . V xw_! exists. Therefore, by D2, we have 

* A (/„_, \J xn) = (x A fw_,)V(x A x j 

= (x A f„_2) V(x A *„_,) V (x A *„) 

= . . . = (JC A *,) V (x A x2) V . . . V (x A JCW). 

Thus, S is a prime semilattice. 

From Theorem 7.1, it is now clear that a counter-example showing that 
D2 is not equal to Dn (as conjectured by Schein in [7] ) does not hold in 
finite semilattices. Also, the question asked by the referee in [6] is partially 
answered. However, we are still unable to prove that D2 is equal to Dn in 
infinite meet semilattices, although we suspect that this may be so, in 
contrast to Schein's conjecture. 

Finally, we prove a theorem which we feel may provide some useful 
information in solving Schein's conjecture. 

THEOREM 7.2. Let S be a semilattice which is Dn. Let a, b, Cj, . . . , ck 

(1 = k ^ n — 1) be elements of S. If a ^ b such that 

a V c , V . . . V q = * V c 1 V . . . V q 

exists, then there exists ct(\ ^ / = k) such that 

a A c, $ b A ct. 

Proof Suppose a A ct = b A ct for all 1 ^ / ^ fc Then 

b = b A (b V cx V . . . V ck) 

= b A (a V c, V . . . V ck) 

= (b A a) V (b A c,) V . . . V (b A ck) 

= aV (a A C])V ...V (a A ck) 

= a 
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in contradiction with a $ b. 
Thus there exists an element c; such that 

a A cl # b A c(. 

The proof is thus completed. 

In closing, we would like to pose the following problem for solution. By 
virtue of the proof in Theorem 7.1, we see that the statements of Lemma 
5.4 (ii) and Theorem 5.6 (II) are equivalent in a finite prime semilattice 
with 0 and 1. In this case, the complementation of S and the statement of 
Lemma 5.4 (i) are equivalent. Thus the Theorem 9 in [6] is true in the finite 
case. Our question is: does this hold in the infinite case? In other words, is 
it true that for any element a of an infinite prime semilattice S with 0 and 
1, there exists a sequence of elements {f/]/Gn 2,..,«} *n (a> 0) such that a V 
/, V t2V .. .V tn = 1 implies the complementation of SI 
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