
J. Austral. Math. Soc. 21 (Series A) (1976), 88-95.

NOTES ON DIFFERENTIAL CALCULUS IN
TOPOLOGICAL LINEAR SPACES, III

S. YAMAMURO

(Received 1 July 1974)

Communicated by E. Strzelecki

Throughout this note, let E, F and G be locally convex Hausdorff spaces 1
over the real number field R. We denote real numbers by Greek letters. The sets
of all continuous semi-norms on E and F will be denoted by P(E) and P(F)
respectively, and A will always stand for an open subset of E.

The purpose of this note is to investigate a problem about the differentiabil-
ity proposed by Hyers (1945). The problem is the differentiability of the inverse
map of a differentiable map under natural conditions. In the previous notes
(Yamamuro, to appear; 1975) we have considered the same problem for
different differentiabilities—the Frechet and strong Frechet differentiability. For
the definitions and fundamental properties of these two differentiabilities, we
refer to Yamamuro (1974). The Hyers differentiability is stronger than Frechet
differentiability and weaker than strong Frechet differentiability, and as we shall
show in this note, it does not behave well when the differentiability of the inverse
map is involved.

1. Definition of Hyers differentiability

A map / : A —* F is said to be Hyers differentiable at a G A if there exists a
continuous linear map u of E into F such that, for

r(f,a,x) = f(a+x)-f(a)-u(x),

the following condition is satisfied:
for any q e P(F) there exists p £ P(E) such that

Urn sup q (e "' r(f, a, ex)) = 0.
e-*> p(i)Sl
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[2] Differential calculus 89

If this is the case, the map u is determined uniquely; we call it the Hyers
derivative off at a and denote it by f'(a). Since the semi-norm p in the above
condition can be replaced by any continuous semi-norm which is larger than p,
we can always suppose that a + Up CA, where Up = {x G E;p(x)^ 1}. When
E and F are normed spaces, this coincides with the usual Frechet differentia-
bility.

(1.1) The above condition is equivalent to the following: for any q €E P(F)
there exists p E.P(E) such that (1) p(x) = 0 implies q(r(f,a,x)) = O and (2)
p(xy'q(r(f,a,x))^>0 when p(x)^>0 with p(x)^0.

It immediately follows from this that the map / is continuous at a.
However, the continuity in the usual sense is not suitable to this differentiabil-
ity. One evidence for this is the following fact. Let f: A^*F be Gateaux
differentiate at every point of A and denote the derivatives by /'(*)• Then, / '
maps A into L(E,F), the set of all continuous linear maps of E into F. We
denote by Lb(E,F) the space L(E,F) equipped with the topology of uniform
convergence on bounded sets. If / ' : A —*Lb{E, F) is continuous at a, then / is
Frechet differentiate at a, but, as we have shown in Yamamuro (1974; page 52),
it is not necessarily Hyers differentiable there. It appears that each differentia-
tion has its own continuity that is most naturally connected to its definition.

Temporarily, we shall say that / : A —> F is (H)-continuous at a G.A if for
any q&P(F) there exists p e P(E) such that q(f(a +x A )- / (a) ) -»0
whenever a net (xk) satisfies p(xA)—»0. It is obvious that (H)-continuity implies
continuity and, moreover, if / ' is (H)-continuous at a in the above question,
then / is Hyers differentiable at a.

The following fact follows immediately from (1.1).
(1.2) / / / : A —> F is Hyers differentiable at a E.A, then f is (H)-continuous

at a.
Now, any differentiability which implies continuity does not always satisfy

the chain rules of more than second order, because the composition map
(«,i))->c»u of Lb(E,F)x Lb(F,G) into Lb(E,G) is not continuous unless F
is normable. In other words, it is impossible for such differentiability to
consider a category whose morphisms are more than twice differentiable.
However, the following fact has been observed by, for instance, Keller
(1963-64).

(1.3) The Hyers differentiability satisfies the first order chain rule.

2. M a p s of type ( D 1 ) in the sense of H y e r s

A m a p / : A -* F is s a i d t o b e of type (D1) at a E.A in the sense of Hyers if

it satisfies the following three conditions:
(1) / is an injective map onto an open set f{A);
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(2) / is Hyers differentiable at a GA and f'(a) is an isomorphism;
(3) the inverse map g of / is (H)-continuous at /(a).
As we shall see in the next section, the inverse map of a map / : A -*F of

type (£)"') at a GA in the sense of Hyers is not necessarily Hyers differenti-
able at f(a). Therefore, we need to find a necessary and sufficient condition for
the inverse map to be Hyers differentiable at f(a). The situation is similar to the
case of Frechet differentiability treated in Yamamuro (to appear; 1975), and we
introduce a notion which is similar to the braked continuity defined in Yamam-
uro (1975).

Let (an)CR be a sequence such that an —» +°° and p GP(E). Then, a
sequence (xn)CE is said to be (an,p)-braked if (p(anxn)) is a bounded
sequence. A map /: A —* F is said to be brakedly (H)-continuous at a GA if ,
for any q GP(F), there exists p G P(E) such that (f(a + xn)-f(a)) is (an, q)-
braked whenever (*„) is (an,p)-braked.

(2.1) Letf: A -> F be of type (D1) at a G A in the sense of Hyers. Then, f
is brakedly (H)-continuous at a.

PROOF. Let q G P(F); then there exists p G P(E) such that

lim sup q(e-'[f(a+ex)-f(a)]-f'(a)(x)) = 0.
•-•O p(i)SI

Let (xn) be an (an,p)-braked sequence. We can assume that p(anxn)S 1 for all
n,p^q and q(f'(a)(x))^p(x) for all x. Then, since

q(an [f(a + xn)- f(a)]-f'(a)(«„*„))-+ 0,

we have

q («„ If (<* + xn) - f(a)]) g 1 + q (f'(a) (anxn)
=i 1 + p (<*„*„ ) S 2,

which implies that (f(a +xn)-f(a)) is a (an,q)-braked sequence.
(2.2) Let f: A-^F be of type (£>"') at a G A in the sense of Hyers. Then,

the inverse map g is Hyers differentiable at f(a) if and only if g is brakedly
(H)-continuous at f(a).

PROOF. If g is Hyers differentiable at f(a), then g is of type (D1) at f(a) in
the sense of Hyers. Hence, by (2.1), it is brakedly (H)-continuous at f(a).

Conversely, let / be of type (D"1) at a in the sense of Hyers. Then, the map

x-+f'(a)-'[f(a+x)-f(a)]

is of type (D~') at zero in the sense of Hyers. Hence, we can assume that
/(0) = 0,/ is of type (D~') at zero in the sense of Hyers and /'(0) = 1 (the
identity map).
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Assume that g is not Hyers differentiate at zero. Then, by (1.3), there
exists q GP(£) such that

sup q(e~'g(£y)-y)^0
P<y)al

for any p G P(E). Since / is Hyers differentiate and brakedly (H)-continuous
at zero, there exist p, G P(E) (i = 1,2) such that

sup q(e~'f(EX)-x)—>0
Pl(x)Sl

and, for any sequence (an)CR, every (an,p2)-braked sequence is (an,p,)-
braked. Then, for this p2, there exist (sn)CR and (yn)C.E such that
e n ^0 ,p 2 (y n )g l and

Put xn = e~n g(enyn). Since (enyn) is an (e;',p2)-braked sequence, (enxn) is
(£n',Pi)-braked, which means thatpi(jc) S y for some -y and all n. Therefore,

which is a contradiction.

3. Spaces of type (D ') in the sense of Hyers

A space E is said to be of type (D1) in f/ie sense of Hyers if, for any F and
any map f: A —> F which is of type (D~') at a E.A, the inverse map g is Hyers
differentiate at f(a). The results in this section imply that every (F)-space
which is of (D1) in the sense of Hyers is normable.

A space E is said to be (H) levered if, for any null sequence (*„) CE such
that xnjt 0 for all n, there exists q G P{E) such that the following condition is
satisfied: for any pGP(E) there exists (an)CR such that p(a,Jt,) = l but
q (<*„*„) yi 0. Roughly speaking, the condition is equivalent to say that
q(xn)lp(xn)^0 for every p GP(JE).

In Yamamuro (1974; page 148), we have called a space £ levered if, for any
null sequence (xn)CE such that JC/̂ 0, there exists (an)CR such that («„*„)
does not converge to zero. It is evident that (H)-levered spaces are levered.

(3.1) If E is of type (D ') in the sense of Hyers, then it is (H)-levered.

PROOF. Let E be of type (D 1 ) in the sense of Hyers. First, let us assume
that E is not levered. Then, by Proposition (2.3) in Yamamuro (1974; page 148),
there exists a null sequence (yn) such that anyn -»0 for any (an)CR and there
exists (%)EE (the dual of E) such that (yB, yn) is biorthogonal.
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We define a null sequence (xn) by

xn =2~2"y, + 2-2""y2+--- + 2'2yn,

and prove that for any q e P(E) there exists p e P(E) such that, if p(anxn) ^ 1
for all n, then q (anxn) —> 0.

To prove this, let us take an arbitrary q £ P(E). Then, it is easy to see that
there exists k such that q{yn) = 0 if n =S k. Then,

is a continuous semi-norm on E. Assume that p(anxn)^ 1 for all n. Then, if
n Sfc,

Ik

q(a,,JC)S £<?(<*„2~2" "*'#)•
i = i

Moreover , since

a n 2 2 " " I = |<a«x.,y,) | S p ^ j g l for i = l ,2 , - - - , f c + 1,

we have

| a B 2 | = \aH 2 | 12 | ,

S 12~2 '**| —>0 if rt->°° and I S / gfc + 1.

Hence, q(anxn)—*0.
Now, from these two sequences (xn) and (>>„), we construct the same map

as we constructed in Proposition (2.4) of Yamamuro (1974; page 150). Namely,
we first put

and define a map / : £—»£ as follows:

/ ( x n . k ) = Xn.*-i f o r n S l a n d k g 2 ,

/ ( * . ) = y . f o r n s i ,

/ ( y » . k ) = y»./t+i f o r n g l a n d fc g 1,

f(x) = x elsewhere.

Then, it is easy to see that / is Hyers differentiable at zero and /'(0) = 1.
Moreover, since (*„) and (yn) are null sequences, g is (H)-continuous at zero.

Finally, we show that the inverse map g: E—*E is not Hyers differenti-
able at zero, which means, by (1.3), that the identity map is not the Hyers
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derivative of g at zero. To do so, we choose q £ P(E) and (an) CR such that
an —>oc and q(anxn)-A0. For instance, q(x) = \(x,y,)| will do. Put zn = anyn.
Then, since zn -»0, for any p £ P ( £ ) , p ( 2 , ) g l except for at most finite n.
Moreover,

q(ang(an'zn)-zn) = q(ang(yn) - anyn) = q(anxn - anyn)7^0,

which means that the identity map is not the Hyers derivative of g at zero.
Thus, it has been proved that a space of type (D1) in the sense of Hyers is
levered.

Now, assume that E is not (H)-levered. Then, there exists a null sequence
(en) CE such that en/0 for all n with the following property: for any q £ P(E)
there exists p £ P ( £ ) such that p(anen)^ 1 implies q(anen)—*0. Since E is
levered, there exists (pn)CR such that (pnen) is not null. Since every finite
dimensional subspace Is (H)-levered, we can assume that, by taking a
subsequence if necessary, that (en) is linearly independent and pn —> 00.

Next, we construct the same map as in Proposition (3.3) of Yamamuro
(1974; page 153). Namely, we take (AJCK and (/xJCK such that
An -»0, ixn -»0 and /x '̂An = pn + 1, and put

,n = ( 2 - T - j An and p.n,k=\2- — \

Then, define a map f:E—>E as follows:

f(\n,ken) = An,k-,3n for n g l and k g 2,

/(Anen) = /inen for n S 1,

/ ( / A n , k C n ) = / i , , , k + i e n f o r d g l a n d k i ? 1 ,

/(*) = * elsewhere.

Then, since (en) is linearly independent, / is an injective map of E onto E. In
order to prove that the identity map is the Hyers derivative of / at zero, we take
an arbitrary q e P(E). Then, by the assumption, there exists p £ P ( £ ) such
that p(<*„£„)= 1 implies q(anen) —*0. Hence, it is easy to see that

sup q(e 'f(ex)-x)—>0

for these p and q. It is also obvious that g is (H)-continuous at zero, because
(An), (/xn) and (en) are null sequences.

If g is Hyers differentiate at zero, then g ' (0)=l . However, this is
impossible because, if we take q £ P(E) such that q{pnen)-£0, then

q(ix~'g(ixnen)-<?„) = q(ii~'\nen -en) =
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and, moreover, for each p EP(E), p(en)= 1 except for finite n.
Thus, if E is of type (£>'), then E is (H)-levered.
It is easy to see that every normed space and every strict inductive limit of

an increasing sequence of Banach spaces are (H)- levered. The next result
shows that there are not many (H)-levered spaces besides these.

(3.2) Ifkin (F)-space is (H)-levered, then it is normable.

PROOF. If an (F)-space E is not normable, then the topology is defined by
an increasing sequence of semi-norms (p,) whose members are mutually
non-equivalent. Hence, in the same manner as in Proposition (3.3) of Yamam-
uro (to appear (a)), we can choose a sequence (xn)cE such that

P i U J S l and npi(xn)<pi + l(xn) if l S i , n < ° ° .

Then, for an = l/npn(xn), («„*„) is a null sequence and anxn ^ 0 for all n. Then,
for each j ,

Pi (anxn )lp, + ,(£*„*„) < - - » 0 ,

which means that E is not (H)- levered.

4. Remarks

If E and F are normed spaces, / : A —* F is Frechet differentiate at a £ A
and f'(a) has a continuous inverse, then / is weakly injective at a, that is, there
exists a neighbourhood U of zero such that f(a) ^ f(a + x) whenever x G U. In
Yamamuro (to appear (a)), we have shown that this fact remains true for locally
convex spaces under the strong Frechet differentiability but it fails under the
Frechet differentiability. The map / of a countable product of reals defined by

(£.-£*) for *=(£,),
which was first presented by Keller (1963-64), is Hyers differentiate at zero
and /'(0) = 1, but it is not weakly injective at zero.

From these observations, it seems to be reasonable to conclude that there
is not much sense in using the Hyers differentiability instead of more
convenient Frechet differentiability. The only significant difference between
these two differentiabilities is that the former implies continuity whereas the
latter does not. However, in view of the remark given after Proposition (1.2),
we can not regard this as an advantage of the Hyers differentiability. In fact, a
differentiability is useful if either it does not imply continuity and satisfies the
chain rules of all orders (for example, Frechet differentiability) or it behaves
well in such problems as differentiability of the inverse maps and weak
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[8] Differential calculus 95

injectivity under natural conditions (for example, strong Frechet differentiabil-
ity). The Hyers differentiability does not have any of these properties.

In Yamamuro (1974; 1.12), we have seen that, among all differentiabilities
proposed so far, there is only one differentiability which is stronger than the
Hyers differentiability; it is the strong Frechet differentiability.
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