
GAUSSIAN PRIMES IN NARROW SECTORS

GLYN HARMAN AND PHILIP LEWIS

§1. Introduction. The purpose of this paper is to show how a sieve method
which has had many applications to problems involving rational primes can
be modified to derive new results on Gaussian primes (or, more generally,
prime ideals in algebraic number fields). One consequence of our main the-
orem (Theorem 2 below) is the following result on rational primes.

THEOREM 1. There exist infinitely many primes p with

p = m2 + n2, m,n&J.,n<pe, (1)

and

0<O-119. (2)

Of course, it is conjectured that m2 + 1 is infinitely often prime. Kubilius
[13] and Ankeny [1] have shown that there exist infinitely many primes/) with

p-m2 + n2, m,nsZ,n«\ogp, (3)

assuming the Riemann Hypothesis for Hecke L-functions with Grossencharac-
tere over G>(/). The best unconditional results in this area are due to M. D.
Coleman [7] (where references to earlier work may be found), who obtains
(1) with 0< 0-1631. We use essentially the same arithmetical information as
Coleman, but we employ a more efficient sieve procedure. However, it should
be noted that one of his important lemmas (Lemma 9 in [7]) does not work
for 9 < g. Our main result is as follows.

THEOREM 2. Let X> Xo. Then, for any given j3, ywith

| y«s | , (4)

the number of Gaussian primes p satisfying

/^arg/x/3 + y, \p\2^X, (5)

is greater than

cXy

l o g * '

where c is an absolute positive constant.

(6)

We have chosen to state only the simplest results which can be obtained
by our method. The reader may verify that our approach improves Theorem
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120 G. HARMAN AND P. LEWIS

2 of [7], replacing 0-33691 there by 0-381. From this one may deduce an ana-
logue to our Theorem 1, with mz + n2 replaced by any positive definite primitive
quadratic form with integer coefficients, thus improving Theorem 1 in [7].
Recently Matsui [14] has published results on the least Gaussian prime in a
narrow sector, apparently unaware of the literature already existing in this
field. The results of Kubilius and Ankeny mentioned above imply a better
result than Theorem 1 in [14], while from Coleman's result one can immedi-
ately deduce a far stronger form of Matsui's Theorem 2. Our main result has
the following immediate corollary.

THEOREM 3. Suppose that 0«j3=S7r/2, 0<y=£jr/2. Then there is Gaus-
sian prime p with

(7)

where K is an absolute constant.

The cognate problem of finding Gaussian primes in small circles will be
dealt with elsewhere.

Before commencing the proof of Theorem 2, we mention one further
corollary.

THEOREM 4. There are infinitely many primes p with

{Vp}</>-°262- (8)

This improves one case of the work of Balog [4] and the first author [10],
although, unlike these results, we cannot deduce an inhomogeneous result, nor
can we consider px with X*\.

§2. Notation and outline of the method. We let y = Xs l / 2 where | > 0 > | .
The proof for larger y becomes progressively easier, but some details differ as
/increases. We eventually show that (6) holds for 0= 0119. Allowing 0 to
vary at first makes the relation between the different parameters and parts of
the proof easier to comprehend. We write

1 1 1+220
a=--e, r=-+e, P = - [ i - .

1+40 _ 100 + 7 340+7
Q~ 3 ' V " 12 ' X~ 24 •

For 0 = 0119 the values of these parameters will be

(7=0-381, T = 0 - 6 1 9 , p = 0-3015,

£ = 0-492, v = 0-6825, # = 0-46205.

We write TJ = (log X)~A, where A can be made as large as we like (it usually
arises from a term which in reality is exp (-(log X)s) for some S > 0). We write
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GAUSSIAN PRIMES IN NARROW SECTORS 121

C for fixed exponents of logarithms, which might arise from an averaged
divisor function. We may thus write, for example,

r)(log X)c = O(T)), (log X)c(log Xf = 0((log X)c).

Implied constants will depend at most on the A implicit in this notation. We
put

W=X", T=Wrf\

We also write (script letters always denoting sets of Gaussian integers here)

J = {ne Z[i]: 0 =£ arg n < n/2, ^X^ \n\2 < X},

S(/, 2) - {ne /:p\n => \p\2^z}, if z is real,

The number of solutions to (5) with \p\2 > \X is then S(,sf, XU2).
Our philosophy is to relate 5(>/, Xxn) to S(/tf, Xl/2). It is well known that

^ (9)

This can be seen directly, since

S(,J,Xl/2) = 2 I 1+
^A /p

p m 1 mod 4 p m 3 m o d 4

Alternatively, what is required for more general situations, (9) follows from
the Prime Ideal Theorem. We would expect that

S(. v/, Xl/2)~8S(.tf, X1/2) as X->co, (10)

where 8= 2y/n. This follows for y > X~°'3 by the work of Ricci [15]. Although
we are unable to establish (10) for smaller values of y, nevertheless we can
derive formulae of the type

X S{,%q,z), (11)
P-Pq-Q p-Pq-Q

for various ranges of the parameters P, Q. Here and henceforth we write b~B
to indicate the condition B^\b\2<2B with O^arg b<n/2. Henceforth, all
Gaussian integers will be assumed to lie in the first quadrant in the complex
plane. We thus interpret the inequality j3=£ arg n < j3 + /(mod n/2), so that, for
example,

l«£argn<2 becomes 0 ̂  arg «< 2 — or l*£argn<—.

This is permissible since the angular distribution of Gaussian primes has period
n/2.
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122 G. HARMAN AND P. LEWIS

To obtain (11), we use the first author's method [9], [11], adapted to Z[i].
For this, we require arithmetical information which is obtained, as in earlier
work on this problem, from results on Hecke characters. We put, for ne I\i],

( \4m

n

We may then pick out the condition /3=£argn <j3+ y using Fourier analysis in
a familiar way, namely, for any set ? cZ[i], !T3= 1, and any weights an,

X an =
g« < (5+ y

X anX'n(n) (12)

This follows from Chapter 2 of [2], for example.
Once we have obtained results like (11), we utilize Buchstab's identity:

) = S{7,w)- X S(/r,p). (13)

When we apply Buchstab's identity to obtain expressions like \q\2 < \p\2, we will
mean

\p\^\q\ and argp<argq if|/>| = M-

This convention is required to cover our need, for each p = 1 (mod 4) with
p = a2 + b2, to sieve by both a + ib and b + ia. Applying (13) twice to both
S(,v/,Xl/2) and S(.% Xl/2), we obtain that

S( 'J, Xi/2) = S( -a, z,) - X S(. A'P , z2(p))

+ X S(^,q), (14)
Z2(p)=sk/I2<l/>I2<*"2

and

5(.^Jr1/2) = 5( .^z , ) - X S(.,yp,z2(p))
z,S|p|2<Jf"2

+ X S(,/Pli,q), (15)
22(P)«M2<I/'|2<A'"2

Here, zx and z2{p) could be any values with zx < Xl/2, z2(p) < \p\2; the appropri-
ate choices will be made in §4. Now, if we can show that

and
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then it follows that

S( ./, X1/2)- 5(1 + O(T?))S(. ^, X1/2) - X' (5S(. £pq, q) - S(. <•„, q))

&5(1 + O(ri))S( A Xl/2) - 5 £ ' S(.%q, q),
- '2(P)«M2<H2<A'"2

where ' indicates that the summation is only over those regions of p and q for
which we have been unable to establish (11). If \p\2 - X", \q\2 = Xp, and the
regions for which we have not obtained (11) correspond to (a,j3)e.'/, then,
working in an analogous manner to the case of rational primes (see [3], [9],

I ' S{./>'pq,q)

1/2 | ^ i ^ ^ (17)

where co(u) is Buchstab's function which satisfies

'1

co(u) =

ifl
u

and

All that remains to establish Theorem 2 is to show that the integral in (17) is
strictly less than 1. This is a simple exercise in numerical integration. In fact,
our method is slightly more complicated than outlined above in that (13) may
be applied four times, and so we obtain

S(. /, X]/2)& SS(. A Xxn)(\ + O(7]))(l -//, -,H),

where >, has the form of the integral in (17), while. /^ is a similar four-dimen-
sional integral.

The same basic philosophy lies behind the recent proof [3] that intervals of
the form [x,x + x0525] contain primes for all x>x0. However, in our present
situation we are hampered by a lack of results analogous to those used in [3].
We have a mean-value estimate, a zero-free region, and a mean-square L-
function estimate which correspond to results used for rational primes in short
intervals. We lack an analogue of the Halasz-Montgomery-Huxley large
values estimate, the fourth power moment, and Watt's mean value theorem.
Except for the last mentioned of these results, our problems stem from only
having the 'Fourier variable' in play for our auxiliary estimates (compare [7]

https://doi.org/10.1112/S0025579300014388 Published online by Cambridge University Press

https://doi.org/10.1112/S0025579300014388


124 G. HARMAN AND P. LEWIS

with [8]—Coleman explains this point on p. 81 of [7]). The L-functions of
importance here are the Hecke L-functions, defined for 9?5 > 1 by

L(s,Xm)= I |«r2*A», (19)
0«argn<^/2

which may be continued to the whole complex plane, as was first shown by
Hecke [12]. The function is entire except when m = 0, when there is a simple
pole at s= 1.

§3. The arithmetical information. In this section, we assemble all the infor-
mation currently available appropriate for the sieve method described in the
next section.

(20)

LEMMA 1. Suppose that T^ 1, N^ 1. Then, for any coefficients c(n),

I c(ri)Xm(n)

where

ci(n)= I c(v),
arg v - arg n

and the ' on the right hand side of (20) indicates that the summation is only over
primitive Gaussian integers n, that is, n = x + iy with (x, y) = 1.

Proof. See Lemma 6 of [7].

LEMMA 2. Suppose that Js=2, C/5=2. Then

u
T

m= 1
-U

(5 + ft, Xm)\2dt« TU(\og TUf. (21)

Proof This follows from Lemma 10 of [7]. It is important in our situation
that the right side of (21) has a factor TU, not T2 + U2. That is why the known
fourth power moment result is unsuitable for our purposes. We give a weaker
fourth power result in the following lemma, which will suffice for our purposes.

LEMMA 3. Suppose that Js=2, r 5 / 3 3= (73= 2. Then
u

-u

(22)

Proof. This follows from Lemma 2, along with the bound

(M + |m|)1/3 log4(M + \m\)
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(see (6.16) of [7]), and the known fourth power moment

(\+it, Xm)\4dt«(T2+U2)(\og UT)C.

125

LEMMA 4. Say that R,U^2, T^ S^ R+ exp ((log UT)4/5),
£ U. Then

I \p\2"^m(p)
R*£\p\£<S

«Sexp|-
2(log TU)1

(23)

Proof. Let A(n) be the von Mangoldt function on J\i\. By partial sum-
mation, we need only show that, for max(/?, Si/2)^ V^S,

I h(ri)\n\2ilXm(n) «5exp - ,7/10 •2(log TU)

Using the Perron formula (Theorem 3.12 in [16]) with c= 1 +(log V)~\ we
have

c + iV

I A(n)\n\2"Xm(n) = - ~ ( -(s-it,Xm) — ds + o(Vl/2). (24)
in\2-cy 2ni J L s

c-iV

Using the zero-free region for L(s, Xm) (see [6]), we can move the line of inte-
gration to 9ls = y with

j = l - ( l o g £ / 7 T 7 / 1 0 . (25)

Using a standard upper bound (see (4.7) of [5]), we have

for

From this we deduce that the right side of (24) is

7
2(log TU)i

which completes the proof.

In the following, we write

= exp((logZ)4/5).

LEMMA 5. Suppose that U, Fs= W, UV^XyT1, and the coefficients au, bv

are bounded by divisor functions. Then

I I X I aubvX
m(uvp)

m- \\u~U v~Vpure *?
«XT\. (26)
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126 G. HARMAN AND P. LEWIS

Proof. Using Perron's formula, it suffices to establish that, for

T

X
m= 1

X X I aubvX
m{uvp)\uvp\2u «Xr].

fy/2(v(v+ ff2f2 exP [-

Using Cauchy's inequality with Lemmas 1 and 4, the left side above is

«Xr],

as required.

LEMMA 6. Suppose that U^XT/j, \lfau is bounded by a divisor function.
then

T

X
m= 1

Id, 1
U~U MUG

(27)

Prao/ Let M = X1/2. Write

U~U

Using the Perron formula we then have

1 ds W/2

^ | L{s,Xm)[~\(\-2-r-+0\ X kl^r log*

= ./m + o(z1/2(iogjr)c),

say. We now shift the contour of integration back to 3is — \. Writing '/'„, for
the new integral and using the bound \L(s, Am)|=£(|m "CT)/2

, we get

( I X
max X k | n i

/ \
Using

Thus

Also,

'T the error term above is no more than ^ ( log X)c, where

( l~° l\- l

\ °' + O+ 4 2 / 2 '

X W = X \j'm
m = 1 /« — I

T

X
m= 1

T

= X
m= 1

dt

t/)1/2(logZ)C,
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using Cauchy's inequality with Lemmas 1 and 2. The bound (27) then follows,
since T< U and 2 1

LEMMA 7. Suppose that U^X^~\ K^JT/T1, 0>ji, UV^Xv^fl. If au,
bL are bounded by divisor functions, then

X au X bv X Xm{uvr)
u~U u~V uvrtES

«Xr\. (28)

Proof. We may work as in the previous lemma, with the final expression
to estimate being

M
T

I
m= 1

\v\-l-2itXm{v)bv
i +

- M

An appeal to Holder's inequality and Lemmas 1 and 3 then gives an upper
bound

«(logX)cA-1/2r5/12(C/+ T)l/2(V2+ T)u\

The conditions on U, V, 6 ensure that all the following four conditions are

satisfied:

T5/6UV«Xt], Tn/6V«Xr],

T1/3«Xri, T*/3U«Xri.

This establishes (28).

§4. Asymptotic Formulae. We can use (12) in conjunction with Lemma 5
to obtain some asymptotic formulae immediately. Suppose that we consider
numbers

Pi •• -pje. •/,

where

The number of such numbers, say S', is SS+ 0{Xyr\), where S represents the
number of solutions to

Pi---pje. •//, with pi ~P,. (29)

It is straightforward to obtain an asymptotic formula for 5 from (9), and thus
deduce a formula for 5". Indeed, if ar, bs are bounded by divisor functions,
then we have

X arbs=S X arbs+O(Xrn). (30)

|r|2> W, |.t|-> W, \rs\2n-sX \r\2 > W,\s\2> W, \rs\2n^X

Now we introduce the sieve method.
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LEMMA 8. Suppose that W« Y«XX~E for some e > 0. Let l(ri) be a given
function ofneZ[i], with n~Y, of the form /(«) = R\n\k, where R>0, -2=sA:=£2,
and

Then, assuming that an is bounded by a divisor function,

£ aHS(.sSn, /(«)) = 5 1 anS(.'Jn, /(»)) + O(Xyr]). (31)
n~Y n~r

Proof. By Buchstab's identity,

say. Since |ngr|2«ArT, |«|2^= W7, |^r|2^^, we recover a formula for S2 from (30),
after an appeal, if necessary, to Perron's formula to remove the condition
\q\2 </(«). The required formula for Si may be obtained by appealing to the
familiar "Fundamental Lemma" concerning sieve theory. For this we need the
arithmetical information from Lemma 3, from which we can deduce that

This suffices to obtain the required formula

X anS{ c/n, fi) = 5 X fl«5(- Jn, M) + O(XyT7),

by modifying the argument on page 258 of [11] say.

We now extend the result of Lemma 8 to smaller values of Y. To do this,
we first write

o+2), if wx~u+V)e^ Y< wx-jej=o, 1,2,...

LEMMA 9. Suppose that Xe«Y«W. Let l(ri) be a given function of
neZ[i], n~Y, with l(n) = R\n\k, where R>0, -2=sfcs£2, and

Then, assuming that an is bounded by a divisor function,

I an Si, < , / (»)) = 5 ^ 4 4 / («)) + O(Xm). (32)
n~Y n-Y

Proof. The idea is to decompose the left side of (32) using Buchstab's
identity into parts for which either the Fundamental Lemma or a variant of
Lemma 8 may be applied. Suppose that

Y< W.
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Then, as in the previous lemma, we write the left side of (32) as Si - S2, where
we can give an asymptotic formula for S, using a fundamental lemma. For
that part of S2 with \pn\2 s= W, we note that

\pn\2«Xz/2W1/2 = X1/2,

and

\P\2«
Y\P\2'

Although iS2 does not quite have the same form as the left side of (31), the
proof of Lemma 8 goes through essentially unchanged for our current sum.

We have that part of S2 with \pn\2 < W still to deal with. We apply Buch-
stab's identity, and again have three cases to deal with: fundamental lemma, a
variant of Lemma 8, and a sum

I an I S{,¥npq,q),

for which a further application of Buchstab's identity is necessary. Since each
prime variable has modulus squared at least ju, the iterative process must stop
after no more than (logA')1/5 steps. Since the error involved at each stage is
O(Xyri), we thereby obtain (31) upon combining all the sums involving .'£.

There are no difficulties in extending the range for Y to
)e^:Y< WX~je,

by taking j= 1, 2, .... in turn. This completes the proof.

LEMMA 10. With the same notation,

S( ,/, X0) = 5S(.'J, X6) + 0{XyVi).

Proof. This follows using the same procedures as Lemma 9.

LEMMA 11. Suppose that W^P«XX and that

max (XT/P, PX~2e)« Q«Xv/(P^i).

Then there is an asymptotic formula for
I S(^pg,q). (33)

P~P,q~Q

Proof. First, we note that % < C a n ^ t n a t
yv yp

Pfi H

It follows, using Lemma 7 and a fundamental lemma, that we can give an
asymptotic formula for

X s(..*k,/i).
p~P,q~Q
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Applying Buchstab's identity to (33) leaves us to estimate

X I S(,^pqr,r). (34)
P~P-q~Qn^\r\2<,\n\2

We note that we can assume that

/ X \ ! / 2

I 12 1 - ^ 1

H « —

for otherwise the inner sum in (34) is empty. Thus
i 1/2

Hence (34) counts numberspqrse,^' which satisfy

\qs\2»W, \p\2>W, \r\2>jJ.,

and so a formula may be obtained from (30) (after applying Perron's formula
to disentangle the relationship between r and s).

LEMMA 12. Suppose that W^PQ^XC/JT\ PQR^XV^T], P^Q^
R 3= Xe. Then there is an asymptotic formula for

p~p,i~Q
r~R

Proof. Using a fundamental lemma result as in Lemma 11, it remains to
estimate

p~p,q~Q, j
r ~R

This counts numbers pqrst where

1 1 2 ^ I 1 2 ^ w A 12 X X US
\s\ 3= u, off 5= Pr, and r; »- - » = W.

\pqsy PQXT/PQ
Hence (30) is again applicable to complete the proof, after removing the inter-
dependence between s and t.

LEMMA 13. Suppose that P^Q^X8, W^PQ^X^'1, PQ2^XvfT\ If
Q2P<XT, then there is an asymptotic formula for

S= 1
P~P,q~Q

Otherwise

S= I S(,,/pq,X
x/PQ)

p~P,q~Q

I S(,^/pgr,XyPQ)+ I S(.spqrs,s), (35)
P~P,q-Q P~P.q~Q

XZ/PQ& \r\2 < \q\2 XX/PQ =! |.i-|- < \r\- < \q\2
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and there is an asymptotic formula for the first two terms on the right side of
(35).

Proof. This follows from Buchstab's identity in conjunction with Lemmas
8 and 12.

LEMMA 14. Suppose that P^Q^X6, WX~e^PQ<W. If PQ3<XX,
then there is an asymptotic formula for

S= I
p~P,q~Q

Otherwise,

p-P.q~Q

p~Pf~Q2 2

with * representing

P~P, q~Q, [±A ^H2<M2,
\PQ) " ^ PQ\r\2

and there are asymptotic formulae for the first two sums on the right of (36).

Proof. This result follows from Buchstab's identity in conjunction with
Lemmas 8 and 9. It should be noted that the variable s may take values with
modulus squared smaller than Xe. Indeed, for 6 = 0119 the value of |.s|2 can
reduce down to A*0475.

§5. The final decomposition. Having gathered all the arithmetical infor-
mation in the previous section, we can now embark on the final part of the
proof: to apply Buchstab's identity to £(,>/, X1/2) in such a way that (18) holds
with .9l+.92<\. Applying Buchstab's identity twice, we have

S(v,Xl/2) = S(v,Xe)- X S(..«£,zfl/>|2)) + I*S(.i*k,e). (37)
X*&\p\2<Xm

Here * represents the conditions

X* ^ \p\2 < X i < 2 , z(\p\2) ^ \q\
2 < m i n [\p\2, ^

We can give asymptotic formulae for the first two terms on the right side of
(37) using Lemmas 8-10. We consider the final sum in sections as follows.

1. W^\p\2<XX/2. We can apply Lemma 11 to part of this sum. We dis-
card the remainder of the sum leading to a "loss"
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where
/*(l-a)/2 X a-28 l/2(l-a)/2\

<Pl (
*(l-a)/2 X a-28 l/2(l-a)/2\

I W hi I H
a v-a 1/4 + 38/2 T-a x T-a /

Strictly speaking, v - a should be v-a-exp(-(logA')1/5), but this only intro-
duces a further error O(Xyq). We shall not point out similar details in future.
Numerical integration gives, for 6 = 0119,

<p, < 0-275.

2. X1/3^\p\2<W. If \pq\2<X*, then \pq2\2 = \pq\A\p\~2 <X2/i <XV. Hence
we can apply Lemma 13 to part of the sum in our present case. We thus have
a loss from a two-dimensional integral

92= \ ~2 dpda.
P

1/3 ?-a

and a loss from a four-dimensional integral amounting to
a C-ot mm(P,a+p-2e)min(Y,(l-a-p-y)/2)

l/3(T-a)/2 t-a-p x-a-p

At 0 = 0-119, we have

<P2<0-341, <p3<0001.

3. Z P ^ I / J I ^ X 1 7 3 . Again, \pq\2<Xc =>\pq2\2<Xv, so the analysis of this
section is identical to the previous one, except that the upper limit for \q\ is
now \p\. Thus we have losses

1/3 a

0)((l-a-/3)/j

P C -

and
1/3 c-« P y

p (t-a)/2 r-a-p T-a-p

At 0 = 0-119, we have

«p4 < 0-156, q»s< 0-001.

4. WX~a^\p\2<Xp. Now the constraint \pq2\2<Xv is more stringent than
\pq\ < X^. For this case, we have a two-dimensional loss

1/2-26 (v-a)/2
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and a four-dimensional loss

p (v-oO/2 13 *

1/2-28 (r-cO/2 T-a-p

Here the * indicates the conditions

T-a-/3=s<5=sy and 5> 1 -a-y-oif a+y^ a.

At 0=0119, we have

<p6<0112, <j>7< 0-001.

5. |/?|2 < WX~e, \pq\2 > WX~e. In view of Lemma 14, we can always give an
asymptotic formula for the part of the sum with \p\2 < Xxlx, and a formula for
that part of the remainder with \pq3\2 < Xx, \p$ < W. When \pq\2 > W we have
a two-dimensional loss

v/3 (v-oO/2

and a four-dimensional loss

a-e min((v-a)/2,a) min((̂ ,̂  +a-2

/3 (T-aj/2 z-a-t

min(y,(l -a -J3-y

afiy52

T-a-p

(We omit here a couple of extra conditions on the integral ranges, correspond-
ing to other ways of combining variables to get asymptotic formulae). At 9 =
0-119 we have

% < 0036, ^ < 0-001.

When \pq\2 < W there is just the four-dimensional loss

1/2-29 1/2-28-oc J3 y

T/4 (T-a)/3 ( i -o-p) /2 t -a-J- r

At 0 = 0-119, we have

«plo<0-017.
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6. \pq\2 < WX~e. Here we have just the four-dimensional loss
l/2-3emin(a,l/2-2e-a) /3 y

T/5 (T-a)/4

We have <pn< 0-001 at 0 = 0-119.

Conclusion of Proof. We have

I 9, < 0-943.

Thus

S(.J3< JT1/2) > 50051 S(. A XU2)

This completes the proof of Theorem 2. The lower bound constant by the
above method ceases to be positive for some value of 0 between 0117 and
0-118, but we have not thought it worthwhile to spend a great deal of time on
the numerical calculations. The more interesting challenge would be to
improve the results of §3.

Acknowledgements. The authors thank the referee for his helpful com-
ments. This paper was written while the second author was supported by an
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