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Co-maximal Graphs of Subgroups of
Groups

Saieed Akbari, Babak Mira�ab, and Reza Nikandish

Abstract. Let H be a group. _e co-maximal graph of subgroups of H, denoted by Γ(H), is a graph
whose vertices are non-trivial and proper subgroups of H and two distinct vertices L and K are
adjacent in Γ(H) if and only if H = LK. In this paper, we study the connectivity, diameter, clique
number, and vertex chromatic number of Γ(H). For instance, we show that if Γ(H) has no isolated
vertex, then Γ(H) is connectedwith diameter atmost 3. Also,we characterize all ûnite groupswhose
co-maximal graphs are connected. Among other results, we show that if H is a ûnitely generated
solvable group and Γ(H) is connected, and moreover, the degree of a maximal subgroup is ûnite,
then H is ûnite. Furthermore, we show that the degree of each vertex in the co-maximal graph of a
general linear group over an algebraically closed ûeld is zero or inûnite.

1 Introduction

Recently, using graph theoretical tools in the investigation of algebraic structures at-
tractedmany researchers. _ere aremany paperswhich apply combinatorial methods
to obtain algebraic results. _ere are many papers on assigning a graph to algebraic
structures; see for example [1,7, 8,23]. Also, the concept of co-maximal graph associ-
ated with algebraic structures was ûrst introduced by Sharma and Bhatwadekar [18]
and developed by many authors; see, for instance [3, 15].

Let G be a graph with the vertex set V(G). If u and v are two adjacent vertices of
G, then we write u—v. _e degree of a vertex v is denoted by deg(v). _eminimum
degree of vertices ofG is denoted by δ(G). Assume that n is a positive integer. By nG,
wemean the disjoint union of n copies of G. For every pair of distinct vertices x and
y ofG, let d(x , y) be the length of the shortest path from x to y and if there is no such
a path, then we deûne d(x , y) = ∞. _e diameter of G, diam(G), is the supremum
of the set {d(x , y) ∶ x and y are distinct vertices of G}. _e complete graph of order
n and the complete bipartite graph with sizes m and n are denoted by Kn and Km ,n ,
respectively. A clique of G is a complete subgraph of G and the number of vertices
in the largest clique of G, denoted by ω(G), is called the clique number of G. For a
graph G, let χ(G) denote the chromatic number of G, i.e., the minimum number of
colorswhich can be assigned to the vertices ofG in such away that every two adjacent
vertices have diòerent colors. A graph G is called perfect if ω(S) = χ(S), for every
induced subgraph S of G.

_e semidirect product of groups H and K denoted by H ⋊ K. Let H be a group
and h ∈ H and K be a subgroup of H. By Hn , ⟨h⟩, NH(K), Kh , and o(h) we mean
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Co-maximal Graphs of Subgroups of Groups 13

the n-th derived subgroup of H, the subgroup generated by h ∈ H, the normalizer of
K in H, h−1Kh, and the order of h, respectively. A subgroup K of a group H is said to
be supplemented in H if there exists a subgroup L ofH such that KL = H. In this case,
L is called a supplement of K. If K ∩ L = 1, then K is called complemented. If every
subgroup of H has a proper supplement (complement), then H is called an aS-group
(aC-group), see [14]. A metabelian group is a group whose commutator subgroup is
abelian. _e group H is called factorizable if and only if there exist proper subgroups
K and L such that H = KL (formore detail see [13]). _e set of all maximal subgroups
of the group H is denoted byMax(H). _e intersection of all maximal subgroups of a
group H, denoted byΦ(H), is called the Frattini subgroup of H. If H has no maximal
subgroup, then we deûne Φ(H) = H.

Let R be a non-zero commutative ring with identity. Sharma and Bhatwadekar
[18]deûned the co-maximal graph Γ(R) whose vertex set consists of all elements of
R and where two distinct vertices a and b are adjacent if and only if Ra + Rb = R.
Wang [21] considered a subgraph Γ2(R) of Γ(R) with vertices as non-unit elements
of R. _e co-maximal graph of a non-commutative ring was also deûned and studied
in [3, 20]. _e ideal version of co-maximal graph can be found in [6, 22]. Moreover,
the co-maximal graph of a lattice was introduced in [2]. In this paper, we deûne a co-
maximal graph of subgroups of an arbitrary group. Let H be a group. _e co-maximal
graph of subgroups of H, denoted by Γ(H), is a graph whose vertices are non-trivial
proper subgroups of H and where two distinct vertices L and K are adjacent in Γ(H)

if H = KL. For abbreviation, we use co-maximal graphs of H instead of co-maximal
graphs of subgroups of H. Obviously, if either H = 1 or H = Zp , where p is a prime
number, then Γ(H) is empty. _roughout this paper, we suppose that H /= 1 and
H /= Zp . In this paper, we study the connectivity, diameter, clique number, and vertex
chromatic number of Γ(H). For example,we show that the co-maximal graph of each
aS-group is connected. Among other results, we show that if Γ(H) is connected for a
ûnitely generated solvable group H and the degree of a vertex assigned to amaximal
subgroup is ûnite, then H is a ûnite group. Moreover,we show that the degree of each
vertex of the co-maximal graph of a general linear group over an algebraically closed
ûeld is zero or inûnite.

2 The Connectivity of Co-maximal Graphs

In this section, we investigate the connectivity of a co-maximal graph of a group. We
prove that if δ(Γ(G)) ≥ 1, then Γ(G) is a connected graph and diam(Γ(G)) ≤ 3. We
also show that for a nilpotent group G, the graph Γ(G) is connected if and only if
Φ(G) = 1 or G ≅ Zp2 .

We start with the following theorem.

_eorem 2.1 Let G be a group. If δ(Γ(G)) ≥ 1, then every vertex of Γ(G) is adjacent
to amaximal subgroup of ûnite index andmoreover Φ(G) = 1.

Proof Let L be a vertex of Γ(G) and 1 /= l ∈ L. First, we show that L is adjacent
to a maximal subgroup. _ere exists a non-trivial subgroup H such that ⟨l⟩H = G.
Set ∑ = {K < G ∣ H ≤ K , l ∉ K}. By Zorn’s lemma, ∑ has a maximal element, say
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14 S. Akbari, B. Mira�ab, and R. Nikandish

M. We show that M is a maximal subgroup of G. Assume that there exists a proper
subgroup M1 such that M ⫋ M1. Since H ⊆ M1 and l ∈ M1, we ûnd that M1 = G,
a contradiction. _erefore, M is a maximal subgroup of G and it is adjacent to L.
Now we show L is adjacent to a maximal subgroup of ûnite index. With no loss of
generality, we can assume that L is a torsion free subgroup. _ere exists a maximal
subgroup M such that ⟨l⟩M = ⟨l 2⟩M = G, for some l ∈ L. _erefore, M is amaximal
subgroup of ûnite index of G, as l n ∈ M, for a natural number n. Also, Φ(G) = 1
follows from [14, Proposition 3.4].

Next we show that the diameter of the co-maximal graph of every aS-group does
not exceed 3.

_eorem 2.2 Let G be a group. If δ(Γ(G)) ≥ 1, then diam(Γ(G)) ≤ 3.

Proof Let H and K be two non-adjacent vertices of Γ(G). By _eorem 2.1, H is
adjacent to a subgroup L of G such that [G ∶L] < ∞. If there exists k ∈ K of inûnite
order, then K ∩ L /= 1. So if S is a proper supplement of K ∩ L, then we have the
path H—L—S—K. _us one may assume that H and K are torsion subgroups of G.
Suppose that h ∈ H and k ∈ K such that o(h) = p1 and o(k) = p2, where p1 and
p2 are primes. First assume that p1 /= p2. Let H1 and K1 be complements of ⟨h⟩ and
⟨k⟩, respectively. _us ([G ∶H1], [G ∶K1]) = 1 and so by [19, 3.13], we have H1K1 = G.
So consider the path H—H1—K1—K. Now suppose that o(h) = o(k) = p for some
prime number p. _us there are maximal subgroups M1 and M2 of index p that are
complements of ⟨h⟩ and ⟨k⟩, respectively. Assume that N is a normal subgroup that
is contained in M1 of ûnite index. If N ⊈ M2, then NM2 = G and M1M2 = G. Now
consider the path H—M1—M2—K. Let N ⊆ M2. If hN ∈ M2/N , then h ∈ M2. _us
we have the path H—M1—M2—K. Next, suppose that hN ∉ M2/N . Since o(hN) =

p, we conclude that ⟨hN⟩M2/N = G/N . So we ûnd the path H—M2—K.

Remark 2.3 Note that Γ(Zpqr) is a graph with diameter 3, where p, q, and r are
distinct prime numbers.

Now we characterize all ûnite groups whose co-maximal graphs are connected.

_eorem 2.4 Let G be a ûnite group and ∣V(Γ(G))∣ ≥ 2. _en the following state-
ments are equivalent.
(i) Γ(G) is connected.
(ii) δ(Γ(G)) ≥ 1.
(iii) G is an aC-group.
(iv) Every cyclic subgroup of prime order of G is complemented in G.
(v) G is supersolvable and its Sylow subgroups are all elementary abelian.
(vi) G is isomorphic to a subgroup of a direct product of groups of squarefree order.

Proof By _eorem 2.2, Γ(G) is connected if and only if δ(Γ(G)) ≥ 1. _e other
cases follow from [14, Corollary 3.7], [9, Corollary 2], and [11,_eorems 1 and 2].

Now we have the following remark.
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Remark 2.5 Let G be a nilpotent group and δ(Γ(G)) ≥ 1. If M is a maximal sub-
group, then by [12, Lemma 7.4], M is normal. _e equality G/M ≅ Zp implies that
G′ ⊆ M. By _eorem 2.1, Φ(G) = 1 and so G′ = 1. _us G is an abelian group. More-
over, if ∣Max(G)∣ = n, then G is isomorphic to a direct product of cyclic groups of
prime orders.

By _eorems 2.1 and 2.2, we have the following corollary.

Corollary 2.6 Let G be a nilpotent group. _en Γ(G) is connected if and only if
Φ(G) = 1 or G ≅ Zp2 , for some prime number p.

Proof Let Γ(G) be connected. If ∣V(Γ(G))∣ = 1, then G ≅ Zp2 . So we can assume
that δ(Γ(G)) ≥ 1. It follows from _eorem 2.1 that Φ(G) = 1. Hence, for every vertex
H there exists a maximal subgroup M such that H ⊈ M. By [12, Lemma 7.4], every
maximal subgroup is normal and so HM = G. _us, δ(Γ(G)) ≥ 1 and so by_eorem
2.2, the proof is complete.

_e requirement that G be nilpotent is necessary. For example, consider the alter-
nating group on 4 letters, A4. _en Φ(A4) = 1, but Γ(A4) has three isolated vertices.
Indeed Γ(A4) = K1,4 ∪3K1. _e isolated vertices of Γ(A4) correspond to ⟨(1 2)(34)⟩,
⟨(1 4)(2 3)⟩, and ⟨(1 3)(24)⟩. Even if G is a supersolvable group and Φ(G) = 1,
Γ(G) may not be connected. For instance, consider the Frobenius group of order
20, Fr20 = ⟨a, b ∣ ab = ba2⟩, where a = (1 2 34 5) and b = (1 4 2 3). It is not hard
to see that the isolated vertices of Γ(Fr20) correspond to ⟨(1 5)(24)⟩, ⟨(1 3)(4 5)⟩,
⟨(1 4)(2 3)⟩, ⟨(2 5)(34)⟩, and ⟨(1 2)(3 5)⟩.

In the next theorem, we investigate the connectedness of a co-maximal graph of
subgroups of a group.

_eorem 2.7 LetG be a group. If Γ(G) is a connected graph, then for every subgroup
H of G, Γ(H) is connected.

Proof It follows from [14, Proposition 3.5] and_eorem 2.2.

_e converse of the previous result does not hold in general. For example, Γ(H) is
connected for every subgroup H of Z12, but Γ(Z12) = K1 ∪ K1,2.

Corollary 2.8 Let G be a torsion nilpotent group and Γ(G) be a connected graph.
_en G ≅ Zp2 or G is isomorphic to a direct sum of cyclic groups of prime orders.

Proof If Γ(G) has exactly one vertex, then G ≅ Zp2 . So we can assume that

δ(Γ(G)) ≥ 1.

By Remark 2.5,G is an abelian torsion group, and by [17, 5.1.6],G =⊕Ap i ,where Ap i

is a p i-component for i ∈ I. Since δ(Γ(G)) ≥ 1, by [14, Proposition 3.5], the order of
each element of Ap i is p i .

Note that Γ(G) is a null graph, i.e., it has no edge, if and only if G is not a factor-
izable group.
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Remark 2.9 Let G be an abelian group.
(i) _e vertex K of Γ(G) is isolated if and only if K ⊆ Φ(G) and K has no divisible

quotient group isomorphic to Zp∞ . [10, Exercise D 10.5]
(ii) Γ(G) is a null graph if and only if G ≅ Zpk , where k ∈ {1, 2, . . . ,∞}. [17, 13.1.6]

Remark 2.10 _ere are some non-abelian groups G such that Γ(G) are null. For
instance Γ(PSL(2, 13)) is a null graph, (for more details, see [17, 13.1.11]) and for the
inûnite case Γ(Tr) is a null graph,where Tr is a Tarski monster group, see [16, Chapter
9, §28.1].

3 Diameter of Co-maximal Graphs

In this section,we study the diameter of a co-maximal graph of a group. For instance,
we show that if G is a free abelian group, then diam(Γ(G)) = 2. Furthermore, we
characterize all groups whose co-maximal graphs are complete graph.

_e following theorem characterizes those nilpotent torsion groups for which the
diameter of co-maximal graphs is 2.

Lemma 3.1 Suppose G is a nilpotent torsion group. _en diam(Γ(G)) = 2 if and
only if for some prime p, G is an elementary abelian p-group and G ≇ Zp ⊕Zp .

Proof First, assume that G ≅ ⊕i∈I Zp and A, B are two non-adjacent vertices of
Γ(G). Since G is a vector space over Zp , we have δ(Γ(G)) ≥ 1. If A and B are com-
parable, then d(A, B) = 2. So suppose that they are not comparable. Hence there are
linearly independent elements α ∈ A and β ∈ B. Now one can extend {α, β} to a basis
{α, β}∪{γ i}i∈Γ for G. IfW = ⟨α + β, γ i⟩i∈Γ , then obviously,W +A =W +B = G and
so d(A, B) = 2. Conversely, assume that diam(Γ(G)) = 2. Since Γ(G) is connected,
byCorollary 2.8,G is a direct sumof cyclic groups of prime orders. We show thatG is
a p-group. Let H and K be two non-isomorphic cyclic subgroups of G whose orders
are prime. If H and K are adjacent, then ∣G∣ = pq and Γ(G) = K2, a contradiction. So
suppose that there exists a subgroup L such that H ⊕ L = K ⊕ L = G. So we ûnd that
H ≅ K, a contradiction. _us G is an elementary abelian p-group, as desired.

Now we show that for a free abelian group, the diameter of a co-maximal graph is
2.

_eorem 3.2 If G is an abelian free group, then diam(Γ(G)) = 2.

Proof We have G ≅⊕i∈I Z. Consider the standard basis {e i}i∈I for G. Let A and B
be two vertices of Γ(G). First suppose that I is ûnite. If G ≅ Z, then diam(Γ(G)) = 2.
So suppose that ∣I∣ = n ≥ 2. If a = (a1 , . . . , an) ∈ A and b = (b1 , . . . , bn) ∈ B are two
non-zero elements of G, then we show that there exists a proper subgroup W of G
such that W + ⟨a⟩ = W + ⟨b⟩ = G. If there exists i, 1 ≤ i ≤ n, such that a i /= 0 and
b i /= 0, then deûneW = ⟨e1 , . . . , e i−1 , (3a ib i + 1)e i , e i+1 , . . . , en⟩. It is not hard to see
that W is a proper subgroup of G andW + ⟨a⟩ = W + ⟨b⟩ = G. Otherwise, there are
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two distinct indices i , j, 1 ≤ i , j ≤ n, such that a i /= 0 and b j /= 0. Set

W = ⟨e1 , . . . , e i−1 , e i + a ib je j , e i+1 , . . . , e j−1 , e j + a ib je i , e j+1 , . . . , en⟩.

Let M be a matrix such that the columns of M are generators ofW . IfW = G, then
the columns of M are generators for Zn and so M ∈ GLn(Z). But this contradicts
detM /= ±1. It is not hard to check that W + ⟨a⟩ = W + ⟨b⟩ = G, as desired. Now
suppose that I is inûnite. Let a = (a i)i∈I ∈ A and b = (b i)i∈I ∈ B be two non-zero
elements. Let J be a ûnite subset of I such that for every i ∈ I ∖ J, a i = b i = 0 and
∣J∣ = m. Againwe show that there exists a subgroupW such thatW +⟨a⟩ =W +⟨b⟩ =
G. _us ⟨a⟩, ⟨b⟩ ⊆ Zm . By the previous case, there exists a subgroup W1 such that
W1 + ⟨a⟩ = W1 + ⟨b⟩ = Zm . Let W = ⟨W1 , em+1 , em+2 , . . . ⟩. Obviously, W /= ⊕i∈I Z
andW + ⟨a⟩ = W + ⟨b⟩ = ⊕i∈I Z. _us diam(Γ(G)) ≤ 2. Since ⟨2e i⟩ and ⟨2e j⟩ are
not adjacent, we ûnd that diam(Γ(G)) /= 1, as desired.

In the next theorem, we characterize all ûnitely generated nilpotent groups whose
co-maximal graphs have diameter 2.

_eorem 3.3 Let G be a ûnitely generated nilpotent group. _en diam(Γ(G)) = 2 if
and only if for some prime p, G ≅ (⊕Zp)⊕ (⊕Z) and G ≇ Zp ⊕Zp .

Proof Suppose that diam(Γ(G)) = 2. Since δ(G) ≥ 1, byRemark 2.5,G is an abelian
group. It follows from the fundamental theorem of ûnitely generated abelian groups
[17, 5.4.2] that G is a direct sum of ûnitely many cyclic groups. If G has no torsion
part, thenwe are done. Nowwe claim that the torsion part of G is a p-group. Assume
that H and K are two non-isomorphic cyclic subgroups ofG whose orders are distinct
primes. If H and K are adjacent, then ∣G∣ = pq and Γ(G) = K2, a contradiction. So
suppose that there exists a subgroup L such that H ⊕ L = K ⊕ L = G. _en we ûnd
that H ≅ K, a contradiction, and the claim is proved. Since Γ(G) is connected by
_eorem 2.7, the co-maximal graph of torsion part of G is connected, too. It follows
from Corollary 2.8 that the torsion part of G is an elementary abelian p-group. _e
converse follows from Lemma 3.1 and_eorem 3.2.

_e following theorem characterizes all ûnite groups whose co-maximal graphs
have diameter 2.

_eorem 3.4 LetG be a ûnite group. _endiam(Γ(G)) = 2 if and only ifG ≅ Zq⋊Zp ,
where p and q are distinct primes or G is isomorphic to an elementary abelian p-group
and G ≇ Zp ⊕Zp .

Proof Assume that diam(Γ(G)) = 2. Let p be the smallest prime number such that
p divides ∣G∣. If there exists another prime number q that divides ∣G∣, then there exist
subgroups H and K such that ∣H∣ = p and ∣K∣ = q. IfHK = G, then by [12, Proposition
6.1] we have G ≅ Zq ⊕ Zp or G ≅ Zq ⋊ Zp . Note that Γ(Zq ⊕ Zp) = K2. Now we can
assume that H and K are not adjacent vertices. We claim that G is a p-group. Since
diam(Γ(G)) = 2, there exists a complement subgroup L ofH and K. By [12, Corollary
4.10] L is a normal subgroup and we have H ≅ K, a contradiction. So G is a p-group
and the claim is proved. It follows from Lemma 3.1 that G is an elementary abelian
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p-group. Conversely, assume that G is an elementary abelian p-group. By Lemma 3.1,
diam(Γ(G)) = 2. Now assume that G ≅ Zq ⋊ Zp , where p and q are distinct prime
numbers. It is not hard to see that diam(Γ(G)) = 2.

In the sequel, we study those groups whose co-maximal graphs are complete. We
show that ifG is a nilpotent group and Γ(G) has a vertex adjacent to all other vertices,
then Γ(G) is a complete graph.

_eorem 3.5 Let G be a nilpotent group. _en the following are equivalent.
(i) _ere exists a vertex adjacent to all other vertices of Γ(G).
(ii) G ≅ Zp ⊕Zq , where p and q are (not necessarily distinct) primes.
(iii) _e graph Γ(G) is complete.

Proof (i)⇒ (ii). Let H be a vertex of Γ(G) adjacent to all other vertices. We claim
that every vertex of Γ(G) is a maximal with prime order. It is easy to see that H is
a maximal subgroup of prime order of G. Now we show that every other vertex is a
maximal subgroup. Let H /= K be an arbitrary vertex. Since K is a complement of H,
by [12, Lemma 7.4],we have K ≅ G/H and so K is amaximal subgroup of prime order
and the claim is proved. So G ≅ Zp ⊕Zq , where p and q are primes.

(ii)⇒ (iii) and (iii)⇒ (i) are clear.

It isworthmentioning that Γ(Zp⊕Zq) = K2,where p /= q and Γ(Zp⊕Zp) = Kp+1.
_e condition of G to be nilpotent in the previous theorem is necessary; see the next
example.

Example 3.6 Consider the symmetric group S3. _en Γ(S3) is K1,3 and the sub-
group ⟨(1 2 3)⟩ is adjacent to every other vertex in Γ(S3).

Corollary 3.7 _e graph Γ(G) is complete if and only if G ∈ {Zp2 ,Zp ⊕Zq}, where
p and q are (not necessarily distinct) primes.

4 Finiteness of Degree in Co-maximal Graphs

In this section, we show that if the minimum degree is at least 1 and the degree of
each vertex corresponding to a maximal subgroup of a co-maximal graph is ûnite,
then the co-maximal graph is ûnite. Also, we prove that if G is a ûnitely generated
solvable group, δ(Γ(G)) ≥ 1 and deg(M) <∞ for amaximal subgroup M, then G is
a ûnite group.

_eorem 4.1 Let G be a group and δ(Γ(G)) ≥ 1. If deg(M) <∞ for everymaximal
subgroup M, then G is a ûnite group.

Proof Let M be an arbitrary maximal subgroup. We claim that M is ûnite. Assume
to the contrary that {H i}i≥1 is an inûnite family of non-trivial subgroups ofM; see [12,
Exercise 8, p. 37]. Since δ(Γ(G)) ≥ 1 and deg(M) <∞, there exists at least one vertex
K i that is adjacent to H i and each K i is contained in a maximal subgroup M i , for
i ≥ 1. If the number of thesemaximal subgroups is inûnite, then deg(M) =∞, which
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is impossible. If the number of thesemaximal subgroups is ûnite, then deg(M i) =∞,
for some i, a contradiction. _us M is ûnite and the claim is proved. Since deg(M) is
ûnite, there exists another maximal subgroup M1 such that MM1 = G. So we deduce
that G is a ûnite group, as desired.

Remark 4.2 _e condition of δ(Γ(G)) ≥ 1 is necessary. For instance, consider a
Tarski Monster group. _e degree of every maximal subgroup is ûnite but a Tarski
Monster is not a ûnite group.

_eorem 4.3 Let G be a group. If deg(M) <∞ for a normal maximal subgroup M,
then G is a ûnite group.

Proof Let a ∈ G ∖M and o(a) =∞. _en there exist inûnitely many natural num-
bers {n i}i≥1 such that an i ∈ G ∖ M, for i ≥ 1. Hence, there exist inûnitely many
distinct subgroups which are not contained in M which contradicts deg(M) < ∞.
Hence o(a) < ∞, for every a ∈ G ∖ M. We show that ∣G ∖ M∣ < ∞. Assume to the
contrary that ∣G∖M∣ =∞. Since o(a) <∞ for every a ∈ G∖M,we deduce that there
exist inûnitely many subgroups which are adjacent to M, a contradiction.

_e requirement that M be amaximal subgroup in _eorem 4.3 is necessary. For
instance, consider the subgroupZ2×0 ofZ2×Z. _en deg(Z2×0) = 1 and Γ(Z2×Z)

is connected.
It is interesting to investigate the correctness of _eorem 4.3 if the maximal sub-

group M is not normal. First, we need the following lemma.

Lemma 4.4 Let G be a group and δ(Γ(G)) ≥ 1. If deg(M) <∞ for some maximal
subgroup M, then M is a torsion subgroup.

Proof Assume to the contrary that a ∈ M has inûnite order. Let A = {K l}l∈L be
the set of all vertices adjacent to ⟨a i⟩, for i ≥ 1. With no loss of generality, one can
suppose that each K l is maximal. Since deg(M) < ∞, we conclude that A is ûnite.
We claim that there exist i and l such that K l is a complement of ⟨a i⟩. Suppose that
K1 is adjacent to ⟨a⟩. If K1 is a complement of ⟨a⟩, then we are done. So assume that
⟨a i1⟩ = ⟨a⟩∩K1. Since δ(Γ(G)) ≥ 1, there exists a vertex K2 which is adjacent to ⟨a i1⟩.
If K2 is a complement of ⟨a i1⟩, thenwe are done. So assume that ⟨a i2⟩ = ⟨a i1⟩∩K2. By
repeating this procedure, since A is ûnite,we ûnd that there exists ⟨a i j⟩ such that ⟨a i j⟩

is contained in K l , for every l ∈ L, which is impossible. So the claim is proved. By
[19, Exercise 7, p.29], MKx

l = G, for every x ∈ G and so [G ∶NG(K l)] < ∞. Since K l
is amaximal subgroup, [G ∶K l ] is a ûnite number and so there exist distinct integers
n1 and n2 such that a in1K l = a in2K l . _us a in1−in2 ∈ ⟨a i⟩∩K l , a contradiction. So M
is torsion, as desired.

_eorem 4.5 Let G be a ûnitely generated solvable group. If δ(Γ(G)) ≥ 1 and
deg(M) <∞ for somemaximal subgroup M, then G is ûnite.

Proof Let M be a maximal subgroup of G such that deg(M) < ∞. Assume that n
is the smallest number such that Gn = 1. So Gn−1 is an abelian normal subgroup of
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G. If Gn−1 ⊈ M, then Gn−1M = G and so [G ∶Gn−1] < ∞. It follows from [17, Exer-
cise 8.4.33, Part (a)] that Gn−1 is ûnitely generated and hence Gn−1 ≅ Zr ⊕Zn1 ⊕ ⋅ ⋅ ⋅ ⊕

Znk . If r ≥ 1, then p iZr is a characteristic subgroup ofGn−1,where p i is the i-th prime
number and so by [17, Exercise 2.11.13], G has inûnitely many normal subgroups. By
Lemma 4.4, M is torsion and hence deg(M) =∞, a contradiction. _us r = 0. Since
[G ∶Gn−1] < ∞, we conclude that G is ûnite. Now let Gn−1 ⊆ M. Assume that M1 =

M/Gn−1 and G1 = G/Gn−1. Now consider Gn−2/Gn−1. If Gn−2 ⊈ M, then by a similar
argument we conclude that [G ∶Gn−1] < ∞. It follows from [17, Exercise 8.4.33, Part
(a)] that Gn−1 is ûnitely generated and so by [17, Exercise 8.4.36], Gn−1 is ûnite. _us
G is ûnite. Now if Gn−2 ⊆ M, then by repeating the previous procedure, we ûnd that
G′ ⊆ M. _us M is a normal subgroup of G. Now _eorem 4.3 implies that G is a
ûnite group.

_eorem 4.6 Let G be a metabelian group. If δ(Γ(G)) ≥ 1 and deg(M) < ∞ for a
maximal subgroup M, then G is a ûnite group.

Proof If G′ ⊆ M, then by _eorem 4.3 G is ûnite. Now suppose that G′ ⊈ M. _us
G′M = G and so [G ∶G′] <∞. _erefore, [M ∶M ∩G′] <∞. IfM ∩G′ = 1, then M is
ûnite and so G is ûnitely generated. Now the result follows from _eorem 4.5. Hence
assume that M ∩ G′ /= 1. We claim that ∣M ∩ G′∣ < ∞. Assume to the contrary that
∣M ∩ G′∣ = ∞. Lemma 4.4 implies that M is torsion. We show that the set of prime
divisors of the orders of elements of M is ûnite. Let o(m i) = p i , where p i is a prime
number and m i ∈ M. _ere exists M i such that ⟨m i⟩M i = G and so [G ∶M i] = p i .
Since deg(M) < ∞, we can deduce that the set of prime divisors of the orders of
elements of M is ûnite. By [17, 5.1.6], M ∩ G′ = Ap1 ⊕ ⋅ ⋅ ⋅ ⊕ Ap t , where every Ap i is
a p i-component. Since δ(Γ(G)) ≥ 1, it follows from _eorem 2.2 and _eorem 2.7
that Γ(Ap i ) is connected. By Corollary 2.8, Ap i is an elementary abelian p i-group.
Since ∣M ∩ G′∣ = ∞, we deduce that Ap i is inûnite for some i. Since deg(M) < ∞,
we have deg(⟨a⟩) < ∞ for every 1 /= a ∈ Ap i . _us there exists a vertex M1 which is
adjacent to inûnitely many vertices ⟨x i⟩, where x i ∈ Ap i . Let X = {x i}

∞
i=1, a1 = x1,

and ak+1 ∈ X ∖ ⟨a1⟩ ⋅ ⋅ ⋅ ⟨ak⟩, for every k ≥ 1. Since G = ⟨ak⟩M1, k ≥ 1, we deduce
that there exists ik such that a−1

1 a
ik
k ∈ M1. Set bk = a−1

1 a
ik+1
k+1 . Note that b i /= b j

for every i /= j. _us there exists a vertex M2 which is adjacent to inûnitely many
vertices ⟨b i⟩. _e equality G = ⟨bk⟩M2, k ≥ 1 implies that there exists jk such that
b−1
1 b

jk
k ∈ M2. Deûne ck = b−1

1 b
jk+1
k+1 . It is not hard to check that c i /= c j , for every i /= j

and moreover ck /= a i , for each k, i. But every vertex ⟨ck⟩ is not adjacent to M1 and
M2. _us there exists a vertexM3 which is adjacent to inûnitelymany ⟨ck⟩. Repeating
this procedure shows that deg(M) = ∞, a contradiction. So the claim is proved and
since [M ∶M∩G′] <∞,M is ûnite and soG is ûnitely generated. Now by_eorem4.5
the proof is complete.

Now we propose the following conjecture.

Conjecture Let G be a solvable group and δ(Γ(G)) ≥ 1. If deg(M) < ∞ for a
maximal subgroup M, then G is a ûnite group.
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Remark 4.7 Let G be a simple group. If there exists a vertex H in Γ(G) such that
1 ≤ deg(H) <∞, then G is ûnite. To see this, let K be a subgroup such that G = HK.
By [19, Exercise 7, p. 29], HKx = G for every x ∈ G and so [G ∶NG(K)] <∞. Since G
is simple, we conclude that G is a ûnite group.

_eorem 4.8 Let G be a ûnitely generated torsion group and δ(Γ(G)) ≥ 1. _en for
every g ∈ G, deg(⟨g⟩) <∞.

Proof Assume to the contrary that ⟨g⟩ is a vertex of inûnite degree. If K is adjacent
to ⟨g⟩, then [G ∶K] <∞. By [19, Exercise 3, p. 66],G contains ûnitelymany subgroups
of index at most [G ∶K], a contradiction.

5 Co-maximal Graphs of Linear Groups

Let F be a ûeld and n be a positive integer. In this section, we investigate the degrees
of vertices of the co-maximal graph of GLn(F). For instance, we show that if K is a
proper subgroup ofGLn(F),where F is an algebraically closed ûeld, then deg(K) = 0
or deg(K) =∞.

_eorem 5.1 Let F be a ûeld and n be a positive integer. If deg(M) is ûnite in
Γ(GLn(F)), for every M ∈ Max(GLn(F)), then F is a ûnite ûeld.

Proof If n = 1, then by _eorem 4.3 G is ûnite. _us assume that n ≥ 2. Let M ∈

Max(GLn(F)). If SLn(F) ⊆ M, then M is normal and so the result follows from
_eorem 4.3. Hence, onemay assume that SLn(F) ⊈ M. Assume to the contrary that
F is inûnite. It follows from [5,_eorem 1] that F× = F ∖{0} is not ûnitely generated.
_us we have the following chain: ⟨x1⟩ ⊊ ⟨x1 , x2⟩ ⊊ ⋅ ⋅ ⋅, where x i ∈ F×, for i ≥ 1. Let
N i = ⟨[ I 0

0 x i ]⟩ SLn(F). It is clear that N i /= N j for all i /= j, a contradiction.

Now we show that if F is an algebraically closed ûeld, then each vertex in
Γ(GLn(F)) is either isolated or has inûnite degree.

_eorem 5.2 Let F be an algebraically closed ûeld, n be a positive integer and K ∈

V(Γ(GLn(F))). _en either deg(K) = 0 or deg(K) =∞.

Proof Assume that 1 ≤ deg(K) < ∞ and H is a vertex adjacent to K. By [19, Exer-
cise 7, p. 29], KHx = GLn(F) for every x ∈ GLn(F) and so [GLn(F) ∶NGLn(F)(H)] <

∞. So there exists a normal subgroup N ⊆ NGLn(F)(H) such that [GLn(F) ∶N] <∞.
Since N is a normal subgroup, we conclude that either N is central or SLn(F) ⊆ N .
Clearly, N is not central and so SLn(F) < N . _us NGLn(F)(H) contains SLn(F) and
so NGLn(F)(H) is normal. By [4, _eorem 11], H is a normal subgroup of GLn(F).
_erefore, either H is central or SLn(F) ⊆ H. Now we divide the proof into the two
following cases.

Case 1: _e subgroup H is central. Since F is inûnite, it follows from [5,_eorem 1]
that F× is not ûnitely generated. _us we have following chain: ⟨x1⟩ ⊊ ⟨x1 , x2⟩ ⊊ ⋅ ⋅ ⋅,
where x i ∈ F for i ≥ 1. Let L i = ⟨[ I 0

0 x i ]⟩H. _en each L i is adjacent to K. Since
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deg(K) < ∞, we have x i = x t
j for some i , j, t, which is impossible. _erefore, Case 1

does not occur.

Case 2: _e subgroup H contains SLn(F). We claim that det(H) /= F×. Assume that
det(H) = F×. Let B be an arbitrary element of GLn(F) and det(B) = b. We know
that there exists A ∈ H such that det(A) = b. Hence BA−1 ∈ SLn(F) and so B ∈ H.
_is implies that H = GLn(F), a contradiction, so the claim is proved. Since F is an
algebraically closed ûeld, we conclude that the index of det(H) in F× is inûnite and
so [GLn(F) ∶H] is inûnite. Hence deg(K) is inûnite, a contradiction.

We close this section with the following result.

_eorem 5.3 Let D be a division ring, n be a positive integer, and deg(SLn(D)) <∞

in Γ(GLn(D)). _en D is a ûnite ûeld.

Proof By Wedderburn’s theorem (see [17, 14.1.4]), it is enough to show that D is
ûnite. Assume to the contrary that D is inûnite. Note that every element of GLn(D)

is a product of a diagonal matrix and an element of SLn(D). So 1 ≤ deg(SLn(D)). Let
L be a subgroup such that SLn(D)L = GLn(D). Since deg(SLn(D)) < ∞, one can
suppose that L is amaximal subgroup. We consider two cases.
Case 1: _e subgroup L is central. Since deg(SLn(D)) < ∞ and L is a normal sub-
group, [GLn(D) ∶L] <∞, a contradiction.

Case 2: _e subgroup L is not central. One may assume that L is not normal. It
follows from [19, Exercise 7, p. 29], that[GLn(D) ∶L] < ∞. So GLn(D) contains a
normal subgroup of ûnite index, say N < L. _erefore, either N is central or contains
SLn(D). But each case leads to a contradiction, and the proof is complete.

6 Some Further Results

A natural question can be raised: for a given group G, when is Γ(G) a tree? In this
sectionwe completely answer this question for ûnite groups. Also,we characterize all
ûnitely-generated abelian groups whose co-maximal graphs are forests.

Lemma 6.1 Let G be a nilpotent group. _en Γ(G) is a tree if and only if G ≅ Zpq ,
where p and q are two prime numbers.

Proof Let Γ(G) be a tree. If Γ(G) has one vertex, then G is Zp2 . So we can assume
that Γ(G) has at least two vertices. By Corollary 2.1, we have Φ(G) = 1. Since Γ(G)

is a tree, G has at least two maximal subgroups. It follows from [12, Lemma 7.4] that
everymaximal subgroup is normal. Now ifG hasmore than twomaximal subgroups,
then Γ(G) has a cycle, which is impossible. Suppose that Max(G) = {M1 ,M2}. _e
equality Φ(G) = 1 implies that M1 ∩M2 = 1. So G is a subgroup of Zp ⊕Zq , where p
and q are prime numbers. Clearly, G ≇ Zp and G ≇ Zq . Also, if G ≅ Zp ⊕ Zp , then
Γ(G) is not a tree and so G ≅ Zpq , where p and q are distinct primes. _e converse is
clear.

Using Lemma 6.1, we have the following theorem.
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_eorem 6.2 Let G be a ûnite group. _en Γ(G) is a tree if and only if
G ∈ {Zpq ,Zq ⋊Zp},

where p and q are prime numbers.

Proof If Γ(G) has one vertex, then G is Zp2 . So we can assume that Γ(G) has at
least two vertices. Also, it follows from Lemma 6.1 that G is not a p-group. Let p be
the smallest prime number which divides ∣G∣ and o(g) = p, for some g ∈ G. Assume
that M is a maximal subgroup of G which is adjacent to ⟨g⟩. Since ∣G∣ = p∣M∣, by
[19, Exercise 3 p. 34] we may suppose that M is normal. We claim that M ∩ M i = 1
for every M /= M i ∈ Max(G). To the contrary, suppose that M ∩ M i /= 1 for some
M /= M i ∈ Max(G). Since Γ(G) is connected, there exists a subgroup L such that
L(M ∩ M i) = G. So we have the cycle L—M—M i—L, a contradiction. Hence the
claim is proved. We show that ∣G∣ = pq, where p and q are distinct primes.

Since G is not a p-group, G contains an element g′ of a prime order q /= p. _e
connectivity of Γ(G) implies that there exists amaximal subgroup M j such that G =

⟨g′⟩M j . Hence G contains a maximal subgroup M j such that [G ∶M j] = q, where
q /= p is a prime and MM j = G. _us ∣G∣ = pq and by [12, Proposition 6.1] we have
G ≅ Zpq or G ≅ Zq ⋊Zp . _e converse is clear.

_eorem 6.3 LetG be a ûnitely generated abelian group. _en Γ(G) is a forest if and
only if G ≅ Zpmq , where p and q are two primes and m ≥ 0.

Proof Suppose that Γ(G) is a forest. Sowe conclude thatG has atmost twomaximal
subgroups. If G has exactly onemaximal subgroup, then G ≅ Zpk , for some positive
integer k. Now assume thatG has twomaximal subgroups, sayM1 ,M2. SoG ≅ Zpmqn ,
where p and q are two distinct prime numbers. Suppose that m ≥ 1. _en we show
that n = 1. Assume to the contrary that n > 1. With no loss of generality, suppose
that the order of M1 is pm−1qn and the order of M2 is pmqn−1. Let H1 and H2 be the
subgroup of order qn and pm , respectively. Since H1 ∩H2 = 0, we deduce that H1 and
H2 are two adjacent vertices in Γ(G). So Γ(G) has the cycleH1—M2—M1—H2—H1,
a contradiction. Conversely, if G ≅ Zpm , then by Remark 2.9 (ii) we are done. _us
suppose that G ≅ Zpmq ,where p and q are two distinct prime numbers andm ≥ 1. We
show that Γ(G) is the union of K1,m and m − 1 copies of K1. Let H i be the subgroup
of order pi for i = 1, . . . ,m and K i be the subgroup of order piq for i = 0, . . . ,m − 1.
Note that Hm is amaximal subgroupwhich is adjacent to each K i for i = 0, . . . ,m− 1.
Also, each H i is an isolated vertex for i = 1, . . . ,m − 1. _is completes the proof.

In the following theorem,we ûnd the clique number and the chromatic number of
a co-maximal graph of a ûnitely generated nilpotent group.

_eorem 6.4 Let G be a ûnitely generated nilpotent group. _en
ω(Γ(G)) = χ(Γ(G)) = ∣Max(G)∣.

Proof Since every maximal subgroup is normal (see [12, Lemma 7.4]), the set of
maximal subgroups of G forms a clique. We color maximal subgroups with diòerent
colors. Let H be a vertex of Γ(G). Since H is contained in a maximal subgroup M,
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we assign the color of M to H. If H is contained in more than one subgroup, choose
one of them. Now we show that this coloring is proper. Let K and L be two adjacent
vertices. Since KL = G, we conclude that K and L are contained in diòerent maximal
subgroups and so they have diòerent colors, as desired.

By a similar argument to the proof of _eorem 6.4, one can show that Γ(G) is a
perfect graph.

We close this paper with the following question: is it true that for every group G,
ω(Γ(G)) = χ(Γ(G))?
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