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Abstract

We show how to systematically derive an efficient regular expression (regex) matcher using a variety
of program transformation techniques, but very little specialized formal language and automata the-
ory. Starting from the standard specification of the set-theoretic semantics of regular expressions, we
proceed via a continuation-based backtracking matcher, to a classical, table-driven state machine.
All steps of the development are supported by self-contained (and machine-verified) equational
correctness proofs.

1 Introduction

1.1 Background

The theory of regular languages is a staple of undergraduate theoretical computer sci-
ence. It introduces a number of important concepts and methods, such as the notions
of regular expressions and finite-state automata (both nondeterministic and determinis-
tic, NFAs/DFAs), and the Thompson, powerset, and partition-refinement constructions.
It also serves as a natural context for discussing issues of computability and time/space
complexity, including the trade-offs between various representations of a regular language.

However, this theory is typically presented as a semi-isolated body of knowledge,
with a collection of bespoke theorems, and specialized algorithms and data structures
(Berry & Sethi, 1986; Yi, 2006). In particular, though the theory and practice of formal
languages evidently forms a cornerstone of programming language design and implemen-
tation (including for aspects unrelated to lexing/parsing, such as various forms of static
analysis), it has been much less influenced by the corresponding aspects of program-
ming languages in general and functional programming in particular. With a few notable
exceptions (such as in the textbook by Jones (1997)), the study of semantics, analysis,
transformation, and verification of functional programs is often perceived as having little
direct relevance for the algorithmic aspects of formal languages.

It was therefore a surprising development that, as discovered by Consel & Danvy
(1989), the workhorse Knuth-Morris-Pratt (KMP) algorithm (Knuth et al., 1977) for pat-
tern matching in strings can be obtained as a simple binding-time improvement of a naive,
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2 A. Filinski

datatype re =
Char of char

| Eps
| Seq of re * re
| Void
| Alt of re * re
| Star of re

type ans = bool

(* omatch : re -> (char list -> ans) -> char list -> ans *)
fun omatch (Char c) k [] = false

| omatch (Char c) k (c’ :: s’) = c = c’ andalso k s’
| omatch Eps k s = k s
| omatch (Seq (r1, r2)) k s = omatch r1 (fn s’ => omatch r2 k s’) s
| omatch Void k s = false
| omatch (Alt (r1, r2)) k s = omatch r1 k s orelse omatch r2 k s
| omatch (r as Star r0) k s =

k s orelse omatch r0 (fn s’ => omatch r k s’) s

(* omatchtop : re -> char list -> ans *)
fun omatchtop r s = omatch r (fn [] => true | _ => false) s

Fig. 1. Original (divergence-prone) matcher.

quadratic time, but purely functional matcher, followed by a mechanical specialization of
the resulting program to a given pattern.

In this article, we will consider a conceptually similar – though not as fully mecha-
nized – approach to the more complex problem of regular expression matching. We will
reconstruct (near-)analogs of traditional regex-related constructions from almost first prin-
ciples, by systematic (but not quite automatic) program transformations, guided by a few,
suitably chosen invariants. As a side benefit, we aim to demonstrate that the framework of
functional programming provides an excellent medium for studying and teaching the basic
concepts underlying formal-language processing.

1.2 Overview of the constructions

As a starting point, we take the continuation-passing style (CPS) matcher in Figure 1.
Except for minor syntactic differences, it is identical to the one considered by Harper
(1999). (It is also very similar to the one sketched by Danvy & Filinski (1990), except
that the latter encodes nondeterministic choices not by a fixed orelse, but by explicitly
enumerating all solutions using a second layer of failure continuations, which can be fur-
ther generalized to use any suitable monad (Filinski, 1999) to combine the successes. As
we are concentrating on just binary acceptance/rejection here, though, we will not pursue
these monadic connections further.)

The traditional syntax of regexes (including one denoting the empty set) is straightfor-
wardly represented as the type re. Intuitively, a call omatch r k s tries to match a string
from the language denoted by r at the start of s and invoke the continuation k on the remain-
der of the string; it accepts when both of these tasks succeed. When there is a choice to be
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Proof-directed program transformation 3

made, both alternatives are tried in sequence, and it is enough that either one succeeds. The
initial continuation in omatchtop then merely checks that the entire string was consumed.

As it is easily seen, this matcher is prone to looping infinitely when the r0 in a Star r0

is nullable, that is, can accept the empty string. (This problem occurs regardless of the
ordering of the disjuncts in orelse, since both will be tried if the match ultimately fails
for some other reason.) One way of addressing this issue is simply to forbid iteration over
nullable sub-regexes, by suitably preprocessing the original regex into one accepting the
same language, but not containing the problematic subexpressions. This is the approach
pursued by Harper and is in many ways very reasonable. The price, however, is both a
moderately more complex overall correctness argument, and a potential blowup in the size
of the regex. The latter does not necessarily entail a corresponding reduction in the worst-
case performance (which is already not great), but it certainly complicates the complexity
analysis.

As an alternative, we may build some kind of loop detection into the matcher itself.
The key observation is that, in the second disjunct for Star r0, we may safely require
that matching the initial r0 consumes at least one character from the string, since the case
where it consumes none is already covered by the first disjunct. This can, in principle, be
expressed quite simply, by replacing the relevant recursive equation with code like this:

| omatch (r as Star r0) k s =
k s orelse
omatch r0 (fn s’ => length s’ < length s andalso omatch r k s’) s

(The calls to length, relatively expensive for a linked-list representation of strings, can
of course be avoided by redundantly passing around the number of remaining characters,
or the number consumed so far, together with s.)

However, while the above tweak does indeed correctly fix the divergence issue, it
also inadvertently cements the fundamental performance problem of the backtracking
matcher, by technically stepping outside of the conceptual machinery of finite-state string
recognition, which we could otherwise exploit.

For note that, in the original matcher, every call to omatch with some subexpression r′

of the top-level regex r occurs with a continuation k′ that depends only on the position of
r′ within r, but not on the initial string. This means, in particular, that the set of possible
continuations k in any run of the matcher contains only O(|r|) different elements. Further,
it is also very easy to see that every argument to a continuation k is some (not necessarily
proper) suffix of the original string. Thus, with a simple memoization of all such calls,
using at most O(|r| · |s|) space, we can avoid the massive work duplication inherent in the
algorithm. (In fact, we will shortly see that we only need O(|r|) such space.)

On the other hand, with the patch, some continuations would close not only over r and
k, but also over fragments of the input string s (or at least their lengths). This means that
there are now O(|r| · |s|) different continuations, and memoizing their values on all possible
input-string suffixes – even ignoring the space cost – only guarantees O(|r| · |s|2) time.

There is a more frugal way of detecting loops, however: instead of making the continu-
ation in Star r0 include a record of the exact number of characters in the original string s,
we only need to check that s′ is strictly shorter than s, but not by how much. We will see
that, for this, it is enough to maintain a single boolean flag, indicating whether at least one
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character has been consumed since the flag was last reset. This is the subject of Section 2,
where we will prove such a termination-augmented matcher correct with respect to the
usual semantics of (unrestricted) regexes.

In the following sections, we will then stepwise transform this matcher into a more
efficient algorithm. In Section 3, we apply the idea of program specialization (Jones et al.,
1993) to statically translate a tree-structured regex into a program for a specialized abstract
machine, given by a flat, O(|r|)-sized list of mutually recursive continuation specifications;
this residual representation can then be run on the input string to compute the same result
as the original, two-argument matcher. This transformation does not in itself materially
affect the asymptotic complexity of the matcher, but it sets the stage for the next step.

In Section 4, we will see that the flat specification is amenable not only to ad hoc memo-
ization, but that the results of all continuations can always be computed eagerly in a fixed,
data-independent order, in the style of dynamic programming. In fact, the vector of con-
tinuation results for any string depends only on the head character of the string, and the
vector of results for its tail; that is, we can compute all the continuation results for the ini-
tial string incrementally from the end, using only O(|r|) working space and O(|s| · |r|) time.
Effectively, we have a state machine, whose states are boolean vectors, and the computa-
tion specification tells us how to get from a state and an input character to the next state.

Finally, in Section 5, we exploit the idea of a representation change to obtain a (typ-
ically) more efficient representation of the state machine, by enumerating its reachable
states and precomputing the transitions between them. This transformation works even for
an infinite (or very large) input alphabet, because we only need to consider the machine’s
behavior on characters that are explicitly mentioned somewhere in the original regex. As
with classical DFAs, this gives us an O(|s|)-time matcher, but at the cost of an up to
O(2|r|)-sized transition table. We also briefly touch upon the topic of DFA minimization.

Toward the end of each section, we put our results into perspective with respect to
related work and possible extensions, and in Section 6 we give some final conclusions and
suggestions of topics for further exploration.

1.3 Methodology and notation

A number of the transformations, while informally plausible and natural, still rely on some-
what tricky invariants. A particular focus of this presentation is, therefore, on the formal
theorems tying the various stages together in a rigorous way. While some of the proofs
in the following are abridged, or omitted entirely, they have all been fully developed
and machine-verified. Specifically, we have used the Twelf proof assistant (Pfenning &
Schürmann, 1999), based on the Edinburgh Logical Framework (Harper et al., 1993). It
must be stressed, however, that the primary purpose of this formalization was simply to
gain additional confidence in the correctness of the paper proofs – that is, to guard against
clerical errors – as opposed to considering the formalization itself an object of study, or to
provide a formal correctness certificate for the actual SML code. As such, while the raw
Twelf code is provided for reference as an electronic supplement to this article, it is not
necessarily easy to follow and is not intended as a formal artifact of this work.

We will generally not be overly concerned with the performance implications of super-
ficial, low-level representation choices. For example, strings are uniformly represented as
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(linked) lists of characters, where it would normally be more efficient (at least space-wise)
to use pointers/indices into a fixed, linear buffer. Making such a change would be near-
trivial but would clutter the presentation. Instead, where particularly relevant, we will just
remark on how evident inefficiencies can be eliminated without material changes to the
underlying algorithm. We express all code in (the pure fragment of) Standard ML (Milner
et al., 1997) to emphasize the continuity with Harper’s work, but everything should also
work, with only surface syntax adjustments, in Haskell or other functional languages.

Finally, we have a few notes on terminology. For closed SML expressions e and
e′, we use plain equality (e= e′) to express that both sides are defined and equal, and
explicit Kleene equality (e� e′) to also allow for both sides being undefined (because their
evaluations diverge or raise exceptions). In proofs, when reasoning inductively about a
recursively defined function f , and showing that f (a)= b implies some relationship P(a, b),
we phrase the induction hypothesis in terms of f (a′)= b′ implying P(a′, b′) whenever the
evaluation of f (a) to b necessarily involves a subevaluation of f (a′) to b′. We refer to this
as an “induction on the derivation of f (a)= b,” without necessarily having any specific
formal operational semantics of SML in mind (though the one in the Definition (Milner
et al., 1997) should do fine). Notation-wise, we write |l| for the length of a list l, and l[i] for
its i’th element (zero-based); and following SML, we use l1@l2 for list concatenation.

2 A continuation-based regex matcher

2.1 Ensuring termination

As noted in the Introduction, it is conceptually quite simple to modify the defining equa-
tion for omatch (Star r0) to ensure a “progress” property, that is, that every iteration
consumes at least one input character. A somewhat harder challenge is to do so in a suffi-
ciently light-handed manner, so as to retain the desirable property that the continuation at
every point does not depend on the input string.

As with any continuation-passing program, it is straightforward to include a notion of
single-threaded state-passing in the computation, by adding an extra parameter to the con-
tinuation. It turns out that we only need a single bit of state, simply keeping track of
whether a character has been consumed since the start of the current iteration. Because all
iterations are properly nested, this flag bit can be shared by all nesting levels. Informally,
the flag is set after a successful Char c match, cleared before matching the body r0 of
an iteration Star r0, and passed along unchanged by all other constructs. Also, when an
iteration-body match succeeds without setting the flag, it is considered to have failed, and
no further iterations are attempted. The initial state of the bit does not actually matter, but
some of the results can be formulated slightly more uniformly if we set it to true at the
beginning.

The augmented matcher can be seen in Figure 2. The one slight oddity is that we have
introduced a single-use continuation k’ in the last equation for match. This, of course,
makes no discernible difference for correctness or performance of the matcher (indeed, a
decent compiler will probably optimize it away entirely), but it makes the code satisfy a
syntactic property that will prove important later.

Although we could in principle reason directly about the higher-order matcher, a num-
ber of constructions get a bit simpler to express and verify – especially in mechanized

https://doi.org/10.1017/S0956796820000295 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000295


6 A. Filinski

(* match : re -> (bool -> char list -> ans) -> bool -> char list -> ans *)
fun match (Char c) k b [] = false

| match (Char c) k b (c’ :: s’) = c = c’ andalso k true s’
| match Eps k b s = k b s
| match (Seq (r1, r2)) k b s =

match r1 (fn b’ => fn s’ => match r2 k b’ s’) b s
| match Void k b s = false
| match (Alt (r1, r2)) k b s = match r1 k b s orelse match r2 k b s
| match (Star r0) k b s =

let fun k’ bf ss =
match r0 (fn b’ => fn s’ =>

b’ andalso match (Star r0) k b’ s’) bf ss
in k b s orelse k’ false s end

(* matchtop : re -> char list -> ans *)
fun matchtop r s = match r (fn b => fn [] => true | _ => false) true s

Fig. 2. Termination-augmented matcher (higher-order version).

datatype cont =
CInit

| CThen of re * cont
| CStar of re * cont

(* fmatch : re -> cont -> bool -> char list -> ans *)
fun fmatch (Char c) k b [] = false

| fmatch (Char c) k b (c’ :: s’) = c’ = c andalso apply k true s’
| fmatch Eps k b s = apply k b s
| fmatch (Seq (r1, r2)) k b s = fmatch r1 (CThen (r2, k)) b s
| fmatch Void k b s = false
| fmatch (Alt (r1, r2)) k b s = fmatch r1 k b s orelse fmatch r2 k b s
| fmatch (Star r0) k b s =

apply k b s orelse apply (CThen (r0, CStar (r0, k))) false s
(* apply : cont -> bool -> char list -> ans *)
and apply CInit b [] = true

| apply CInit b _ = false
| apply (CThen (r, k)) b s = fmatch r k b s
| apply (CStar (r, k)) b s = b andalso fmatch (Star r) k b s

(* fmatchtop : re -> char list -> ans *)
fun fmatchtop r s = fmatch r CInit true s

Fig. 3. Termination-augmented matcher (first-order version).

form – if we limit ourselves to first-order programs. Therefore, in Figure 3, we present
the defunctionalized version (Reynolds, 1972) of the matcher. (In this “first-order” code,
functions are still largely written in curried style, but all arguments are of nonfunctional
type, and functions are never partially applied.)

The transformation simply consists of enumerating the three ways in which we
construct new continuation arguments (in matchtop, and in match for Seq and Star)
and replacing them with datatype constructors that keep track of the free variables of
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each continuation body. The actual bodies are then collected in the function apply. Note
that the constructor CThen (r, k), corresponding to fn b => fn s => match r k b s,
is used both in the continuation built for Seq and the outer continuation for Star. The
constructor CStar (r, k) represents almost the same continuation as CThen (Star r, k) but
also includes a check of the flag.

The higher-order and first-order versions are very closely related:

Theorem 2.1 (Defunctionalization). For any r, k, b, and s, we have fmatch r k b s�
match r (apply k) b s, and hence fmatchtop r s� matchtop r s.

Proof First, we show the correspondence for fmatch by straightforward inductions on
the derivations of each side. (These derivations are completely isomorphic, as the func-
tion closures in the higher-order version correspond 1-1 to the values of type cont.) The
correspondence for fmatchtop then follows immediately. �

For the correctness proof, let us start by establishing termination of the first-order
matcher, by identifying a suitable metric on argument sizes in recursive calls. We first
define, in the obvious way, the size |r| of a regex r (which will also be useful for other
purposes):

|Char c| = 1
|Eps| = 1

|Seq (r1, r2)| = 1+ |r1| + |r2|

|Void| = 1
|Alt (r1, r2)| = 1+ |r1| + |r2|
|Star r0| = 1+ |r0|

Less obviously, we also assign a weight to a pair k and b, ‖k‖b, by induction on k:

‖CInit‖b = 0
‖CThen (r, k)‖b = |r| + ‖k‖b

‖CStar (r, k)‖true = 1+ |r| + ‖k‖true
‖CStar (r, k)‖false = 0

Theorem 2.2 (Totality of matcher). For any r, k, b, and s, the results of fmatch r k b s
and apply k b s are defined. And hence, so is fmatchtop r s.

Proof By course-of-values induction (i.e., where the inductive step may assume that the
property holds for all lesser natural numbers, not only the immediate predecessor), with
the lexicographic order on (|s|, |r| + ‖k‖b), that is, either |s| decreases, or |s| stays the same
while the total weight |r| + ‖k‖b decreases (taking |r| = 0 for calls to apply). The function
fmatch may call itself or apply only on arguments with strictly lower weight than its own,
while apply may call fmatch on arguments with the same weight. As weights are always
nonnegative, this ensures that no chain of calls can go on indefinitely. This property is easy
to verify for all calls from fmatch:

• For Char c, in the second equation, ‖k‖true may be larger than 1+ ‖k‖b (when
b= false), but |s′|< |s|. Everywhere else, |s| stays the same.

• For Eps, Seq (r1, r2), both disjuncts in Alt (r1, r2), and the left disjunct in Star r0,
the total weight |r| + ‖k‖b decreases by at least 1.

• For the right disjunct in Star r0, |r| decreases. The raw size of k itself increases, but
‖CStar (r0, k)‖false = 0≤ ‖k‖b, so the total argument weight still decreases.
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And from apply:

• For CThen (r, k), the arguments have weight |r| + ‖k‖b on both sides.
• For CStar (r, k) we only perform a recursive call when b= true, in which case
|Star r| + ‖k‖b = 1+ |r| + ‖k‖true = ‖CStar (r, k)‖b. (In the case b= false, had
we omitted the “b andalso,” the total argument weight of the apply would be 0,
but increase to 1+ |r| + ‖k‖false > 0 in the recursive call to fmatch.)

Termination of fmatchtop r s then follows immediately. �

A closer inspection of the code reveals that, when |s| decreases in the equation for
Char c, ‖k‖true can only increase to at most its original maximal value. Thus, in any
invocation fmatchtop r s, the depth of all call chains is at most O(|r| · |s|). However,
since the case for Alt may make two consecutive such recursive calls, the bound on total
running time is potentially as bad as O(2|r|·|s|). In fact, this worst case is fairly easy to hit:
for example, running the matcher with regex ((ε | ε)k · a)∗ (i.e., k Seq-connected copies of
Alt (Eps, Eps), followed by a Char #"a", and wrapped in a Star) on input alb (which
should fail) appears instantaneous for k = l= 4, takes significant time for k = l= 5, and
becomes completely impractical for k = l= 6. Note that the Star-body itself is actually
non-nullable, so the original matcher would exhibit the same behavior.

2.2 Correctness of matcher

Having established that the augmented matcher always terminates, we now turn our atten-
tion to the correctness of its result, that is, that it only accepts strings in the language of the
regex (soundness), and that it accepts all such strings (completeness). For this, we need to
formally define the semantics of regular expressions:

Definition 2.3 (Language of regex). For all languages (sets of strings) L1 and L2, we write
L1 · L2 = {s1@s2 | s1 ∈ L1, s2 ∈ L2}; and for all natural numbers n, we define the language
Ln by L0 = {[ ]} and Ln+1 = L · Ln. Then the language accepted by a regex r can be defined
by structural induction on r:

L(Char c) = {[c]}
L(Eps) = {[ ]}

L(Seq (r1, r2)) = L(r1) ·L(r2)

L(Void) = ∅
L(Alt (r1, r2)) = L(r1)∪L(r2)

L(Star r0) = ⋃
n≥0 L(r0)n

We can then show

Theorem 2.4 (Soundness of fmatch and fmatchtop). If fmatch r k b s= true, then
there exist (not necessarily unique) s′, s′′, and b′, such that s′@s′′ = s, s′ ∈L(r), and
apply k b′ s′′ = true by a subderivation of the given one. Hence, if fmatchtop r s=
true, then s ∈L(r).

Proof For the first part, we proceed by induction on the derivation of fmatch r k b s=
true, splitting into cases on r. We show the two most interesting cases; the others are very
similar:
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• Case r= Char c. We can only have fmatch (Char c) k b s= true if s= c :: s1 for
some s1 such that apply k true s1 = true. Take s′ = [c], s′′ = s1, and b′ = true.
Then [c]@s1 = s, [c] ∈L(Char c), and apply k true s1 = true is a subderivation.

• Case r= Star r0. Let k0 = CStar (r0, k). For the match to succeed, at least one of
the two disjuncts must be true:
– Case apply k b s= true. Take s′ = [ ], s′′ = s and b′ = b. Then, [ ]@s= s, [ ] ∈

L(r0)0 ⊆L(r0)∗ =L(Star r0), and we have the required subderivation.
– Case fmatch r0 k0 false s= true. By IH on this subderivation, we obtain s0,

s′0, and b0, such that s0@s′0 = s, s0 ∈L(r0), and apply k0 b0 s′0 = true; and thus
fmatch (Star r0) k b0 s′0 = true by a smaller derivation. By IH on this deriva-
tion, we get that there exist s1, s′1, and b1 such that s1@s′1 = s′0, s1 ∈L(Star r0),
and apply k b1 s′1 = true by an even smaller derivation. Take s′ = s0@s1,
s′′ = s′1, and b′ = b1; then s0@s1@s′1 = s0@s′0 = s. And since s1 ∈L(Star r0)=
L(r0)∗, we must have s1 ∈L(r0)n for some n, and thus s0@s1 ∈L(r0) ·L(r0)n =
L(r0)n+1 ⊆L(r0)∗ =L(Star r0).

Assume now that true= fmatchtop r s= fmatch r CInit true s. By the above
argument, this means that, for some s′, s′′, and b′, we have s= s′@s′′, s′ ∈L(r), and
apply CInit b′ s′′ = true. But the latter can only happen when s′′ = [ ], so we must have
s= s′@[ ]= s′, and thus s ∈L(r) as required. �

Note that, for soundness of fmatch, the parameter b played no significant role in the
result or its proof. For completeness, on the other hand, it is crucial that matching does not
fail too often, and we need finer control over the value of b. That is, we must codify that
fmatch r k b s will invoke apply k b′ s′ with b′ = true if either b was already true, or
the matching of r consumed a non-empty prefix s of the input string to obtain s′:

Theorem 2.5 (Completeness of fmatch and fmatchtop). If s ∈L(r) and apply k (b∨
s �= [ ]) s′ = true, then also fmatch r k b (s@s′)= true. Hence, if s ∈L(r), then
fmatchtop r s= true.

Proof The first part follows by a simple induction on r. Again, we show only the key
cases here:

• Case r= Char c. Since s ∈L(Char c), we must have s= [c]. Then, evidently
fmatch (Char c) k b ([c]@s′)= apply k true s′ = apply k (b∨ ([c] �= [ ])) s′ =
true.

• Case r= Seq (r1, r2). From s ∈L(Seq (r1, r2)), we get that s= s1@s2 for some
s1 ∈L(r1) and s2 ∈L(r2). Let k1 = CThen (r2, k). We have fmatch r k b (s@s′)=
fmatch r1 k1 b (s1@s2@s′), which must be true by IH on r1, if we can show
that apply k1 b1 (s2@s′)= true, where b1 = (b∨ s1 �= [ ]). That is, we must show
fmatch r2 k b1 (s2@s′)= true, which we get from IH on r2, if apply k b2 s′ =
true, where b2 = (b1 ∨ s2 �= [ ]). But b2 = (b∨ s1 �= [ ]∨ s2 �= [ ])= (b∨ (s1@s2) �=
[ ])= (b∨ s �= [ ]), so we can directly use the assumption on k.
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• Case r= Star r0. Since s ∈L(r0)∗, we must have s ∈L(r0)n for some n. We proceed
by an inner induction on n:
– If n= 0, we have s ∈L(r0)0, that is, s= [ ]. Then, it suffices to show that the

left part of the disjunction in fmatch r k b ([ ]@s′) succeeds, for which we have
apply k b s′ = apply k (b∨ [ ] �= [ ]) s′ = true, by the assumption on k.

– If n > 0, we have s= s0@s1, where s0 ∈L(r0) and s1 ∈L(r0)n−1. If s0 = [ ], then
s= s1, and we can just use the inner IH. Otherwise, we may assume s0 �= [ ], and
we just need to prove that the second part of the disjunction succeeds (because the
first part always at least terminates by the first part of Theorem 2.2). That is, tak-
ing k0 = CStar (r0, k), we want to show that fmatch r0 k0 false (s0@s1@s′)=
true. By the (outer) IH on r0, it suffices to show that apply k0 (false∨ s0 �=
[ ]) (s1@s′)= true, and by using the assumption that s0 �= [ ], this means we need
to show fmatch (Star r0) k true (s1@s′)= true. But since s1 ∈L(r0)n−1, we
get this directly by the inner IH.

To complete the proof, take k = CInit, b= true, and s′ = [ ]. Then, regardless of s,
apply k (b∨ s �= [ ]) s′ = true, and thus, by the above result, we have fmatchtop r s=
fmatch r k b (s@[ ])= true. �

Summarizing the results:

Corollary 2.6 (Correctness of matchtop). For any r and s, there exists an a such that
matchtop r s= a, and a= true⇔ s ∈L(r).

Proof Follows directly from Theorems 2.1, 2.2, 2.4, and 2.5. �

However, while the matcher is formally correct and has decent performance on a range
of common examples, it also easily exhibits the exponential worst-case behavior men-
tioned after Theorem 2.2, even for sensibly written regexes. So there is still room for
improvement.

2.3 Perspectives

Adding flag-based cycle detection to the original CPS matcher requires only a very minor
modification to the code and correctness proof; this is arguably simpler than preprocessing
the regex, even if we do not care about performance at all. Perhaps more significantly,
in practical applications, we often want regex matching to not only return a boolean
accept/reject answer, but also some kind of parse result, recording how the string was
matched, and in particular how the nondeterministic choices were made in alternatives and
iterations (Frisch & Cardelli, 2004; Nielsen & Henglein, 2011). From this extra informa-
tion, it is easy to recover exactly which parts of the input string were matched by particular
sub-regexes. For such applications, it may be a significant complication if the regex itself
has been substantially rewritten before the matching proper (even if the set of matched
strings is ultimately unchanged), whereas merely pruning away any unproductive paths in
the matcher is unproblematic. It should thus be fairly straightforward to generalize the type
ans = bool (and the combining forms orelse and andalso) in the augmented matcher
to one carrying additional information on successes.
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3 Specializing the matcher to a regex

3.1 Staging the computation

As the first step of transformation, we will stage the matching process by translating the
tree-structured regular expression into an equivalent, flat collection of mutually recur-
sive continuation definitions, which can subsequently be evaluated against an actual input
string. The correctness of this transformation is independent of what language the matcher
is meant to recognize, or even its termination properties.

Informally, the translation can be seen as a simple, syntax-directed compilation schema:
we traverse the regular expression in a way similar to the matcher, but instead of pass-
ing the continuation around in its entirety, we generate abstract machine code for any
newly constructed continuations and pass only the code label (as a continuation number).
Similarly, instead of applying the continuation, we just generate code for a call.

This translation process is completely independent of the input string. The boolean flag
will also only be known at runtime, as the same continuation may be invoked with different
flags at different times during matching. Thus, we will need to generate code to update and
test the flag at the appropriate points.

The target code definition and compiler are shown in Figure 4. The intuitive meanings
of the various computations (continuation bodies) in comp are as follows:

• AtEnd: the computation that succeeds iff there are no characters left in the string.
• Expect (c, i): the computation that checks that the first character (if any) of the

string is equal to c, and invokes continuation i on the remainder of the string, with
the flag set to true; otherwise, the computation fails.

• Cont (p, i): the computation that invokes continuation i on the current string. If p is
false, the flag bit is set to false first; otherwise, it is passed along unmodified.

• Fail: the computation that always fails.
• Or (f1, f2): the computation that succeeds if at least one of f1 or f2 succeeds, and fails

otherwise.

A program then consists of, for each continuation position i in a list, a pair g= (u, f ),
with the boolean u specifying whether this computation is unconditional. An uncon-
ditional computation is always evaluated, whereas a conditional one is only evaluated
if the character-consumption flag is currently true, and fails immediately otherwise.
Additionally, the program explicitly identifies the main continuation, that is, the one that
has to accept for the whole string to be accepted. (In the matcher, this would correspond to
defining fmatchtop r s= apply km true s, where km = CThen (r, CInit).)

The function trans takes as arguments a regex r, the continuation (number) i to be
invoked on success, and an allocation counter (i.e., the first unused continuation number)
n; it returns a triple consisting of the computation f representing the regex, a (possibly
empty) list gs of continuation definitions generated, and the updated allocation counter
n′, where n′ = n+ |gs|. Finally, transtop defines continuation number 0 to be the initial
continuation (i.e., the one that checks that nothing is left) and also generates an explicit
definition for the main continuation, so that it too can be referenced by a number.
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datatype contno = CN of int

datatype comp =
AtEnd

| Expect of char * contno
| Cont of bool * contno
| Fail
| Or of comp * comp

type ccomp = bool * comp
type pgm = ccomp list * contno

(* trans : re -> contno -> int -> comp * ccomp list * int *)
fun trans (Char c) i n = (Expect (c, i), [], n)

| trans Eps i n = (Cont (true, i), [], n)
| trans (Seq (r1, r2)) i n =

let val (f2, gs2, n2) = trans r2 i n
val (f1, gs1, n1) = trans r1 (CN n2) (n2+1)

in (f1, gs2 @ [(true, f2)] @ gs1, n1) end
| trans Void i n = (Fail, [], n)
| trans (Alt (r1, r2)) i n =

let val (f1, gs1, n1) = trans r1 i n
val (f2, gs2, n2) = trans r2 i n1

in (Or (f1, f2), gs1 @ gs2, n2) end
| trans (Star r0) i n =

let val (f0, gs0, n0) = trans r0 (CN n) (n+1)
val f1 = Or (Cont (true, i), Cont (false, CN n0))

in (f1, [(false, f1)] @ gs0 @ [(true, f0)], n0+1) end

(* transtop : re -> pgm *)
fun transtop r =

let val (f, gs, n) = trans r (CN 0) 1
in ([(true, AtEnd)] @ gs @ [(true, f)], CN n) end;

Fig. 4. The regex compiler.

Theorem 3.1 (Totality of transtop). For any r, the result of transtop r is defined.

Proof By a straightforward structural induction on r, we see that trans r i n is defined
for all i and n. Definedness of transtop r follows immediately. �

Note that the translation, for simplicity, is expressed in terms of repeated list appends,
which nominally makes it run in O(|r|2) time. This inefficiency is straightforward to avoid:
since the newly generated continuation definitions are never subsequently inspected (by
the translation itself), we could just incrementally prepend them to a globally threaded
accumulator (like in general tree flattening); alternatively, we can replace all the “@”s with
a node constructor for a binary tree of definition lists and subsequently flatten the resulting
rope to a proper list in a single pass. We keep the current presentation for conciseness in
stating and proving the correctness properties.

It is also easy to see that the overall size (not merely length) of the program generated
for a regex r is O(|r|), because in each recursive equation for trans, the total size of the
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returned computation and any continuation definitions generated is linear in the size of r.
(Note that, in the equation for Star r0, the duplicated computation f1 has a constant size,
independent of r0.) Summarizing the contributions of the various regex forms (and the
top-level translator) to (1) the number of continuations generated and (2) the number of
references to continuations (by Expect and Cont), we have

Regex Conts Refs
(top) 2 0
Char − 0 1
Eps 0 1
Seq (−,−) 1 0

Regex Conts Refs
Void 0 0
Alt (−,−) 0 0
Star − 2 4

To cement our intuitions about the intuitive behavior of the translation, consider the
example in Figure 5. (While the regex in question and its translation are moderately large,
the individual parts can largely be understood independently of each other.) The top left
of the figure shows the tree representation of the regex, where we have explicitly labeled
all the subexpression nodes for ease of reference. Character data is drawn as boxed nodes;
the other regex forms are circles.

On the top right is a tabular representation of all the calls made to trans r i n (once each)
during the translation, as well as a summary of their results: the new allocation counter n′

(as advanced by the regex node itself and/or its children), and the continuation definitions
(with contents to be detailed below) and references produced (not merely propagated) by
the node. A labeled edge ki1

�→ ki2 means that the computation fi1 (i.e., number i1) includes a
reference Expect (c, i2) (where �= c) or Cont (p, i2) (�= ε). Note that, while the edge’s
target i2 is always either i or a continuation internally generated by the node, its source
i1 may not even have been generated yet, as the f returned by the translation represents
a collection of incoming edges from elsewhere. The first row in the table represents the
contributions of transtop, that is, the nodes for the initial and main continuations.

The bottom of the figure is a graphic representation of the program generated from the
regex. Each numbered continuation node is labeled by the continuation it represents, with
CInit shown compactly as “�”, CThen (r, k) as “r; k”, and CStar (r, k) as “r�; k”. (These
labels are for reference only; they are not explicitly represented in the data structure.)

The main continuation is indicated with an unlabeled incoming edge, while the ini-
tial one is marked with a double circle. Also, conditional computations are shown with a
dashed node border. Similarly, edges labeled with a character c represent Expect (c, i)-
references, while the (thinner) ones labeled by an ε correspond to Cont (p, i); the edge is
drawn dashed if p= false.

As suggested by the familiar-looking notation, a string belongs to the language of the
regex iff it is possible to traverse the graph from main to initial continuation, while consum-
ing the corresponding string characters on character-labeled edges, and following ε-labeled
ones freely. This picture is slightly complicated by the loop avoidance flag: initially, the
flag is true; it is set to false when following a dashed ε-edge, and back to true on following
any character edge. Moreover, when the flag is currently false, it is not possible to follow
either kind of ε-edge to a dashed node. We will shortly formalize this interpretation and
its correctness.

Note in particular that Void-regexes may cause the graph to contain unreachable
(k6) and/or dead-end (k7) nodes, but neither will require any special treatment in the
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r15 k2 3 3
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a→k3

r17 k3 4 4 k4
ε→k3

r18 k2 3 3 k3
b→k2

r19 k2 3 3 k3
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k7

r12;r8;r2;�

k5

r2;�

k6

r8;r2;�

k1
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k0
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r15;r�13;r10;�
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a ε

a ε b

ε

a

ε

b

ε

ε
ε

ε

Fig. 5. Visualization of compilation of regex
(
a | a · ∅ · ε) · (((a | ε) · (b | ε))∗ · b | ε).

following. Also, the body of the star expression in the example is evidently nullable, so it
non-trivially exercises the loop-avoidance features of the construction. In fact, the general
pattern r= (c1 | ε) · · · (cn | ε), especially when represented as an arbitrarily balanced
Seq-tree (as opposed to a left- or right-degenerate one), highlights an awkward case for
the standardization approach discussed by Harper (1999) (i.e., to statically convert the
body regex r to an r− with L(r−)=L(r) \ {[ ]}): if the given, syntax-directed construction
of r− is implemented naively, it potentially causes an exponential blowup in the size of
the regexes, because they are conceptually trees, not DAGs; recognizing opportunities for
factoring the transformed regex, so as to properly share common subexpressions, while
probably feasible, could significantly complicate the algorithm and its proof.
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val nth = List.nth

(* interp : ccomp list -> comp -> bool -> char list -> ans *)
fun interp gs AtEnd b [] = true

| interp gs AtEnd b _ = false
| interp gs (Expect (c, i)) b [] = false
| interp gs (Expect (c, i)) b (c’ :: s’) =

c = c’ andalso interpi gs i true s’
| interp gs (Cont (true, i)) b s = interpi gs i b s
| interp gs (Cont (false, i)) b s = interpi gs i false s
| interp gs Fail b s = false
| interp gs (Or (f1, f2)) b s = interp gs f1 b s orelse interp gs f2 b s

(* interpc : ccomp list -> ccomp -> bool -> char list -> ans *)
and interpc gs (true, f) b s = interp gs f b s

| interpc gs (false, f) b s = b andalso interp gs f b s
(* interpi : ccomp list -> contno -> bool -> char list -> ans *)
and interpi gs (CN n) b s = interpc gs (nth (gs, n)) b s

(* irun : pgm -> char list -> ans *)
fun irun (gs, i1) s = interpi gs i1 true s

(* imatchtop : re -> char list -> ans *)
fun imatchtop r s = irun (transtop r) s

Fig. 6. The backtracking interpreter.

3.2 Correctness of staging

We will now show that the splitting of the matcher into a compile-time and a runtime part
is meaning-preserving. Specifically, in Figure 6, we define a simple interpreter that can run
a compiled regex on an input string.

To show the equivalence of imatchtop to fmatchtop, we first define the notion of
embedding a sequence of continuation definitions in a complete program:

Definition 3.2 (Continuation slice embedding). We write gs� n ↪→ gs′ if gs′ is a slice of gs
starting at n, that is, if gs= gsl@gs′@gsr for some gsl and gsr, where |gsl| = n. Evidently,
gs� n ↪→ gs1@gs2 iff gs� n ↪→ gs1 and gs� n+ |gs1| ↪→ gs2.

Definition 3.3 (Representation of continuation in program). We say that continuation k
is represented as computation number i= CN ni in gs, written gs� k ∼ i, if gs� ni ↪→ [g],
and (by induction on k):

• If k = CInit, then g= (true, AtEnd).
• If k = CThen (r, k′), then g= (true, f ) for some f , i′, n, n′, and gs′, where gs� k′ ∼

i′, trans r i′ n= (f , gs′, n′), and gs� n ↪→ gs′.
• If k = CStar (r, k′), then g= (false, f ) for some f , i′, n, n′, and gs′, where gs�

k′ ∼ i′, trans (Star r) i′ n= (f , gs′, n′), and gs� n ↪→ gs′.

(Note that this is a purely syntactic property, with no references to b or s.)
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Lemma 3.4 (Correctness of continuation representations). If gs� k ∼ i, then for all
b and s:

a. apply k b s� interpi gs i b s.
b. If trans r i n= (f , gs′, n′) and gs� n ↪→ gs′, then n′ = n+ |gs′| and

fmatch r k b s� interp gs f b s.

Proof Assume gs� k ∼ i, that is, i= CN ni, gs� ni ↪→ [g], and g= (u, f ) satisfies the con-
ditions of Definition 3.3; and let b and s be given. Formally, we prove the Kleene equalities
by separate (mutual) inductions on the derivations of either side, but since the arguments
are virtually identical in both directions, we present them here together in equational style.

For part (a), we need to show that apply k b s� interpc gs (u, f ) b s. The most
complex case is

• Case k = CStar (r, k′), so u= false, gs� k′ ∼ i′, and for some n, n′,
and gs′, we have trans (Star r) i′ n= (f , gs′, n′), with gs� n ↪→ gs′.
If b= false, we simply have apply (CStar (r, k′)) false s�
false� interpc gs (false, f ) false s. And if b= true, then
apply (CStar (r, k′)) true s� fmatch (Star r) k′ true s�IH(b)

interp gs f true s� interpc gs (false, f ) true s. (Here, we have explicitly
indicated which of the equalities relies on the induction hypothesis.)

For part (b), the key cases for r are

• Case r= Char c. Then f = Expect (c, i), gs′ = [ ], and n′ = n, so
clearly n′ = n+ |gs′|. If s= [ ], then fmatch (Char c) k b [ ]� false�
interp gs (Expect (c, i)) b [ ]. If s= c′ :: s′ for some c′ �= c, then again both sides
are immediately equal to false. And if s= c :: s′, then fmatch (Char c) k b (c ::
s′)� apply k true s′ �IH(a) interpi gs i b s′ � interp gs (Expect (c, i)) b (c :: s′).

• Case r= Star r0. Then, we have f = Or (Cont (true, i), Cont (false, CN n0)),
gs′ = [(false, f )]@gs0@[(true, f0)], and n′ = n0 + 1, where trans r0 (CN n) (n+
1)= (f0, gs0, n0). Further, n0 = n+ 1+ |gs0|, so n+ |gs′| = n+ 1+ |gs0| + 1=
n0 + 1= n′. And gs� n ↪→ [(false, f )], gs� n+ 1 ↪→ gs0, and gs� n0 ↪→
[(true, f0)]. With k0 = CStar (r0, k) and i0 = CN n, we immediately have
gs� k0 ∼ i0. Thus,
fmatch (Star r0) k b s� apply k b s ∨ fmatch r0 k0 false s
�IH(a,b) interpi gs i b s ∨ interp gs f0 false s
� interp gs (Cont (true, i)) b s ∨ interp gs (Cont (false, CN n0)) b s
� interp gs f b s . �

Theorem 3.5 (Correctness of staging). For any r and s, imatchtop r s� fmatchtop r s.

Proof Let (gs, i1)= transtop r (always defined by Theorem 3.1). Then, gs=
[(true, AtEnd)]@gs′@[(true, f )] and i1 = CN n′, where (f , gs′, n′)= trans r (CN 0) 1.
Thus, gs� 0 ↪→ [(true, AtEnd)], gs� 1 ↪→ gs′, and gs� n′ ↪→ [(true, f )]. For k0 =
CInit and i0 = CN 0, clearly gs� k0 ∼ i0, and thus, using Lemma 3.4(b), fmatchtop r s�
fmatch r k0 true s� interp gs f true s� interpi gs i1 true s� imatchtop r s. �
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Note that the staging in itself does not materially affect the runtime of the matching
process, because the interpreted program essentially still executes in lockstep with the
backtracking matcher. (In fact, the two-phase version may be slightly slower, because we
have used a linear list for representing the program, making lookups of high-numbered
continuations potentially slow. It should be clear, however, that transtop could con-
vert the final list of continuation definitions into an SML vector (read-only array);
and correspondingly, interpi could use constant-time vector indexing instead of nth.)
However, this refinement is not actually needed, as naively interpreting the instructions
in imatchtop is merely a stepping stone for proving correctness, and will be completely
eliminated in the next transformation stage, anyway.

3.3 Perspectives

In many ways, the compilation step is analogous to Thompson’s construction (Thompson,
1968), which converts a tree-structured regex into a general NFA graph. It is a bit more
parsimonious in node allocation for alternatives, as a single choice node may have an
arbitrary combination of outgoing ε- and/or character-labeled edges; this makes especially
the representation of regexes with character classes (e.g., [a-z0-9_] in common notation)
more compact, without any explicit post-processing.

The interpreter then corresponds to a backtracking traversal of the NFA, that is, “non-
determinstically” choosing which outgoing edge to follow and reconsidering the choice if
it leads to a failure.

A key difference to classical NFAs, however, is that the compile-time loop prevention
ensures that there are no entirely undashed ε-cycles in the graph; that is, if we also cor-
rectly maintain and test the flag bit at runtime, any sequence of nondeterministic choices
must eventually consume an input character or fail finitely. We can thus simulate the NFA
directly, without explicitly keeping track of all the visited nodes.

A more subtle difference is that, while NFA vertices are normally considered just an
unordered set, the numbering of the continuations in a program will turn out to be very
significant for the constructions in the next section.

4 From lazy to eager interpretation

The usual informal interpretation of an NFA is that it specifies a (nondeterministic) control
flow graph: an edge from ki to ki′ (i.e., node number i containing a reference to i′ as one the
Or-tree leaves in the computation fi) means that, during execution, the program can choose
to transition from node i to node i′, with a potentially shorter remaining string. However,
looking at the code of the interpreter, we see that it actually treats the program more as
a data flow graph, where an edge from ki to ki′ means that the result of ki may depend
functionally on that of ki′ , again on a potentially shorter string.

For standard NFAs (i.e., with possibly unguarded ε-cycles), such an interpretation is
perhaps less natural, as a dependency loop (also known as a black hole) in the graph would
normally be considered a global error, rather than a recoverable, local failure. However,
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with the flag-based cycle prevention, we are effectively evaluating a DAG, not a general
graph, so the issue does not arise.

The original, top-down interpreter evaluates this DAG completely naively, ignoring all
sharing and recomputing the same intermediate results over and over. (On the other hand,
it will not evaluate the right child of an Or-computation at all, if the left one succeeds.)
We can think of this as a lazy (in the by-name sense) evaluation strategy. An immediate
improvement would thus be to memoize the results, that is, to remember and reuse the
results of all continuation invocations, corresponding to a by-need evaluation.

But it is easy to see that, for the top-level matcher to return a false result, every single
orelse-calculation in the tree/DAG must do likewise. Thus, unless we have a usage sce-
nario in which a substantial majority of matcher invocations can be expected to succeed,
we might as well assume the worst case and eagerly (or by-value) evaluate all continuation
results for the string and its suffixes, in a bottom-up fashion. While this may perform some
nominally unnecessary calculations, it makes the overall computation process much more
streamlined and regular than opportunistic memoization, and thus both more efficiently
implementable and easier to analyze.

In fact, the dependency graph has some additional structure that makes an eager strat-
egy particularly appealing: the DAG consists of an |s|-length stack of blocks, with all
dependency links going either between result slots in the same block (Cont-references)
or to the one immediately below (Expect-references). The cross-block dependencies are
determined by the character c at that position in the string and correspond exactly to
the Expect (c, i′)-references in the program; the Expect (c′, i′)-references with c′ �= c
contribute nothing for this string position.

Within each block, there are actually twice as many result slots as there are numbered
continuations in the program, corresponding to the flag argument to the continuation being
either false or true. All dependency links from one block to the one below go only
to the true slots of the latter (because an Expect-reference sets the flag to true); links
within each block go either to a lower-numbered slot for the same flag value, or from a
true-flag slot to an arbitrary false-flag one. The result of the false slot for a conditional
computation is fixed as false, without any further dependencies. It is fairly easy to see
(informally, at least) that this makes the dependency graph cycle-free.

At the very bottom of the dependency DAG, there is a special block of slots, in which
those corresponding to computations containing an AtEnd-pseudoreference are forced to
true, Expect (c, i)-references are ignored (as returning false), and the intra-block links
are handled as above. Thus, to compute the results for the topmost block of slots, and
especially the slot corresponding to the main continuation being invoked with a true flag,
we start at the bottom of the DAG (corresponding to the end of the string) and work upward
to the root, computing the results for each block in sequence (first all the false slots, then
the true ones, in numerical order). Between each pair of consecutive blocks, we only need
to retain the values of the true-slots from the lower block.

As a possible runtime optimization, if the results from some block are all false, we
know that the overall computation can never recover, and we may safely fail early. (For
simplicity, our code will not exploit this property, however.)
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type state = ans list (* only if complete *)

type ’a nextc = (char * ’a) option

(* aevali : contno -> ans list -> ans *)
fun aevali (CN n) v = nth (v, n)

(* aeval : comp -> bool -> ans list -> ans list -> state nextc -> ans *)
fun aeval AtEnd _ _ _ NONE = true

| aeval AtEnd _ _ _ (SOME _) = false
| aeval (Expect _) _ _ _ NONE = false
| aeval (Expect (c, i)) _ _ _ (SOME (c’, v’)) = c = c’ andalso aevali i v’
| aeval (Cont (true, i)) true vf vt cv = aevali i vt
| aeval (Cont (true, i)) false vf vt cv = aevali i vf
| aeval (Cont (false, i)) _ vf vt cv = aevali i vf
| aeval Fail _ _ _ cv = false
| aeval (Or (f1, f2)) b vf vt cv =

aeval f1 b vf vt cv orelse aeval f2 b vf vt cv

(* aevalc : ccomp -> bool -> ans list -> ans list -> state nextc -> ans *)
fun aevalc (true, f) b vf vt cv = aeval f b vf vt cv

| aevalc (false, f) b vf vt cv = b andalso aeval f b vf vt cv

(* astep : pgm -> state nextc -> state *)
fun astep (gs, _) cv =

let fun asf [] vf = vf
| asf (g :: gs’) vf = asf gs’ (vf @ [aevalc g false vf [] cv])

fun ast [] vf vt = vt
| ast (g :: gs’) vf vt = ast gs’ vf (vt @ [aevalc g true vf vt cv])

in ast gs (asf gs []) [] end

(* aobs : pgm -> state -> ans *)
fun aobs (_, i1) v = aevali i1 v

(* arun : pgm -> char list -> ans *)
fun arun pgm s =

let val v = foldr (fn (c,v) => astep pgm (SOME (c,v))) (astep pgm NONE) s
in aobs pgm v end

(* amatchtop : re -> char list -> ans *)
fun amatchtop r s = arun (transtop r) s

Fig. 7. The eager, computation-sharing interpreter.

4.1 An eager interpreter

The code realizing the above-described approach is in Figure 7. The function aeval finds
the value of a computation, given the value of the flag, the current character (unless we are
at the very end of the string), and the results of all other continuations it may depend on.
(Attempts to reference an unavailable continuation result, including a direct self-reference,
will cause aevali (via nth) to raise an exception; the correctness proof must establish that
this will not happen.)
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a k0 k1 k2 k3 k4 k5 k6 k7 k8

k0

k1

k2 ◦
k3 ◦
k4 �
k5 •
k6 •
k7

k8 � �

b k0 k1 k2 k3 k4 k5 k6 k7 k8

k0

k1 �
k2 ◦ ◦
k3 ◦ �
k4 ◦ •
k5 • •
k6 • •
k7

k8

$
k0 �
k1

k2

k3

k4

k5 •
k6 •
k7

k8

TFFF FTTF F

v1

FFFF FFFF T

v2

FFFF FFFF F

v0

FTTT TTTF F

v3

FFTT TTTF T

v4

FFTT TTTF F

v5

FFFF FFFT F

TFFT FFFF T

· · · · · ·

a

b

a, b
a, b

a

b

a

ba

b

a

b

b

a

Fig. 8. Visualization of transition functions and (fragment of) state space for running example.

Then aevalc evaluates individual continuation definitions, and astep computes, in two
passes, the results of all continuations, given the current character and the corresponding
results for the remainder of the string (except if we are at the end). Finally, aobs simply
extracts the result of the main continuation from the vector, and arun iterates backward
through all the characters of the string before reading off the final answer.

As coded, the incremental construction of the next-state vector in the loops asf and ast
of astep is somewhat inefficient because we need to both append to the vector and access
random existing elements. This would be easy to achieve efficiently with mutable, single-
threaded arrays, as we never modify the contents of a cell after initializing it. Alternatively,
at a modest performance cost (O(log n), instead of O(1), time per lookup), we could use
random-access lists (Okasaki, 1995) with a purely functional implementation.

The state machine corresponding to the regex from Figure 5 is visualized in Figure 8.
The top part of the figure shows an extensional representation of the transition functions
for each character. In the table for a character c, there is a full mark � in row i, column
i′ whenever there is a c-labeled edge from node ki to ki′ . Similarly, there is a (dashed)
box around each such position whenever there is a (dashed) ε-transition between the two
nodes. (Note that the boxes are in the same positions for all characters c.) Finally, the row
label ki is written in a dashed box if it corresponds to a dashed node in the graph, and
the main continuation (i.e., with the unlabeled incoming edge) is underlined. (The 4-wise
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grouping with extra spacing is merely a visual aid for easier counting, with no semantic
significance.) This table will in general be fairly sparse, with the number of non-blank
positions linear in the size of the original regex.

Additionally, the table elements corresponding to the (pre)-ε-closure of the character
transitions, derived using the boxes and already filled entries, are marked with a smaller
bullet. Because of the ordering properties, this closure can always be uniformly computed
in two passes per column, with the filled bullets (• ) corresponding to those entries marked
during the first pass in astep, and the open ones ( ◦ ) in the second one. (The kinds of mark
do not matter for the actual transition function; they merely illustrate when the information
is computed.)

The top rightmost, single-column table similarly marks the directly accepting node (�)
and those from which this node is reachable by ε-edges (• ), with the latter again computed
in two linear passes (in fact, one pass would suffice here). It can be seen as the transition
function for the end-of-input token, that is, the initial state of the machine when processing
the input from right to left.

As suggested by the notation, the state transition function corresponds precisely to a
boolean multiplication of the transition matrix and the state (column) vector. That is, the
new state will have a true value in position i precisely if there exists an i′ such that there
is a mark in matrix position (i, i′), and i′ is true in the old state. We stress, however, that
the transition matrices are not explicitly precomputed, which would actually make them
slower to apply, since they can in general be quite dense with all the closure marks added.
For example, the a-matrix for regex (a | ε)n has n � -entries in the lower diagonal, and
• -entries everywhere below that.

The bottom part of the figure visualizes the state space of the machine. Each node cor-
responds to a boolean vector, with the node drawn with a double border precisely when
its result for the (underlined) main continuation k8 is true. Every node has exactly one
outgoing edge per character in the alphabet. The initial state from above is labeled v1.

The state labeled v0, the all-false vector, is the canonical dead state; clearly, no nonzero
state can be reached from it by pre-multiplication with any transition matrix, whether
derived from a regex or not. It is drawn thinner, as are the transitions to it.

Note that the state-space diagram conceptually includes a node for all 512 possible state
vectors, with corresponding transition edges between them. However, the vast majority of
these (in our example, though not always) are unreachable from the starting state. A few
such nodes, and the transitions from them, are drawn dotted in the figure. The nine state
vectors with exactly one true position (e.g., the one for k7 in top left part of the diagram)
form a spanning set: column i of each transition matrix for a character (or a sequence of
such characters) corresponds to the value of transition function (or their composition) on
the i’th singleton vector.

4.2 Correctness of eager evaluation

We start by formalizing the above-observed ordering constraints on references:

Definition 4.1 (Well-formed and ordered programs). We say that a program (gs, CN n1)
with |gs| = n is well formed if 0≤ n1 < n, and whenever gs� ni ↪→ [(u, f )], then all
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occurrences of Cont (p, CN ni′ ) and Expect (c, CN ni′ ) in f satisfy 0≤ ni′ < n. Further,
a well formed program is (topologically) ordered if the occurrences of Cont (p, CN ni′ ) in
f also satisfy ni′ < ni, unless u= p= false.

(Programs constructed by transtop also satisfy that references Expect (c, CN ni′ ) at
position ni are backward-only. That is an accidental property, which is not required by the
constructions in the following.)

A well-formed program can be executed by the lazy interpreter in Figure 6 without nth
aborting, but it might still recurse infinitely because of circularities, and/or the subcompu-
tation dependencies at runtime might vary based on the input string. On the other hand,
for an ordered program, we will show that we can always safely evaluate the computations
using two left-to-right passes. As already indicated, the translation does indeed produce
such programs:

Lemma 4.2 (Orderedness of compiler output). If transtop r= pgm, then pgm is ordered.

Proof It is an easily checked invariant that, in any call to trans r (CN ni) n, whether
top-level in transtop, or recursive from inside trans, we have ni < n; and that if
trans r (CN ni) n= (f , gs, n′), then the well-formedness and ordering constraints are
satisfied by f (when placed in any position ≥ n′) and by gs (when placed at precisely
position n).

The only place where the “unless” clause in the definition of ordering is needed
is in the translation of Star r0, in which the conditional computation [(false, f1)] is
generated for position n. (All other continuation definitions have u= true.) Here, in
f1 = Or (Cont (true, CN ni), Cont (false, CN n0)), the first disjunct does satisfy ni < n (as
it needs to), but the second one does not, because of the “forward reference” to n0 = n+
|gs0| �< n. �

Lemma 4.3 (Totality of aeval and aevalc). Suppose |gs| = n; cv is either NONE or
SOME (c, v) with |v| = n; and either b= false, |vf| = ni, and |vt| = 0; or b= true,
|vf| = n, and |vt| = ni. Then, when gs[ni]= (u, f ) satisfies the ordering constraints, we have

1. aeval f b vf vt cv is defined, unless b= u= false
2. aevalc (u, f ) b vf vt cv is always defined.

Proof Part (1) follows by a simple structural induction on f , where we just need to check
that all calls to aevali succeed. The one for Expect (c, i′) is immediate by the assump-
tion on cv. And for Cont (p, i′), the only problematic case is when p= u= false (so the
ordering constraint only guarantees ni′ < n) and b= false (so |vf| = ni, and we may not
have ni′ < ni); but this situation is specifically ruled out. For part (2), we then immediately
verify that aevalc does not invoke aeval in the forbidden case. �

Lemma 4.4 (Totality of astep). If pgm is ordered and of length n, then

1. astep pgm NONE= v1 for some v1 with |v1| = n.
2. For all c, and v with |v| = n, astep pgm (SOME (c, v))= v′ for some v′ with |v′| = n.
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Proof For each of the two loops asf and ast, we easily verify that they call aevalc
with precisely the vector lengths stipulated by Lemma 4.3; thus, definedness follows
immediately from part (2) of that lemma. �

Theorem 4.5 (Totality of arun). For any ordered pgm and s, arun pgm s is defined.

Proof Let (gs, i1)= pgm. By induction on s, using Lemma 4.4, we immediately get
that v = foldr (...) (...) s is defined; and since i1 < |gs| = |v|, so is aobs pgm v=
aevali i1 v. �

Having established that the eager interpreter always returns a result, let us next verify
that it agrees with the lazy/backtracking one.

Definition 4.6 (Tabulation of continuation values). We first define what it means for v to
(partially) tabulate the continuation results for gs on b and s:

gs� v⇐b s ⇐⇒ ∀n < |v|. v[n]= interpi gs (CN n) b s

We also define gs� cv⇐ht s, which returns (if possible) the head character of s and the
complete vector of continuation results for the tail:

gs� NONE⇐ht [ ]
gs� SOME (c, v′)⇐ht (c :: s′)⇐⇒ gs� v′ ⇐true s′ ∧ |v′| = |gs|

Lemma 4.7 (Soundness of eager evaluation). Suppose we have gs� vf⇐false s, gs�
vt⇐true s, and gs� cv⇐ht s. Then,

1. If aeval f b vf vt cv = a, then also interp gs f b s= a.
2. If aevalc (u, f ) b vf vt cv = a, then also interpc gs (u, f ) b s= a.

Proof Part (1) can be shown by a simple structural induction on f :

• Case f = AtEnd. If s= [ ] (and hence cv = NONE), both sides simplify to a= true;
otherwise, to a= false.

• Case f = Expect (c, i), where i= CN n. If s= [ ], we likewise have cv = NONE,
both sides simplify to false, and we are done. Otherwise, s= c′ :: s′ and cv =
SOME (c′, v′), where gs� v′ ⇐true s′. If c′ �= c, both sides again immediately sim-
plify to false. Thus, it remains to consider the case c′ = c, for which, using
the property of v′, we get aeval f b vf vt (SOME (c′, v′))= aevali i v′ = v′[n]=
interpi gs i true s′ = interp gs f b s.

• Case f = Cont (p, i), where i= CN n. In the subcase where p= b= true, we have
a= aeval f true vf vt mc= aevali i vt = vt[n], and so by assumption on vt, also
interp gs (Cont (true, i)) true s= interpi gs i true s= a. Otherwise (i.e., if
p= false and/or b= false), we analogously get that both sides are equal to vf[n].

• Case f = Fail: immediate, as both sides are false.
• Case f = Or (f1, f2): follows straightforwardly from the IH on f1 and f2.

Part (2) follows immediately from part (1), for both possible values of u. �
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Lemma 4.8 (Soundness of astep). If gs� cv⇐ht s and astep (gs, i1) cv = v, then gs�
v⇐true s

Proof From Lemma 4.7(2) we get that, whenever gs� vf⇐false s, |vf| = n, gs�
n ↪→ [g], and aevalc g false vf [ ] cv = a, then a= interpc gs g false s=
interpi gs (CN n) false s, and thus also gs� vf@[a]⇐false s. Since (vacuously)
gs� [ ]⇐false s, by induction on the derivation of vf = asf gs [ ], we get gs� vf⇐false s.
And hence, by an analogous argument for v = ast gs vf [ ], we conclude gs� v⇐true s. �

We also note, for future reference:

Lemma 4.9 (Dead states). If v0 is an all-false vector, and astep pgm (SOME (c, v0))= v,
then v = v0.

Proof A couple of straightforward inductions. �

Theorem 4.10 (Soundness of arun). If arun pgm s= a, then also irun pgm s= a.

Proof Let pgm= (gs, i1), where i1 = CN n1. We have a= aobs pgm v = aevali i1 v =
v[n1], where v= foldr · · · s. By induction on s, using Lemma 4.8 for the both the base
case (s= [], cv = NONE) and the step (s= c :: s′, cv = SOME (c, v′), gs� v′ ⇐true s′), we get
that gs� v⇐true s. And from that, using Definition 4.6, we immediately get irun pgm s=
interpi gs i1 true s= v[n1]= a. �

Corollary 4.11. For any r and s, amatchtop r s= imatchtop r s.

Proof Follows immediately from Theorems 3.1, 4.5, and 4.10. �

4.3 Perspectives

The transformation in this section effectively corresponds to the powerset construction
(Rabin & Scott, 1959) for transforming NFAs to DFAs, but it is motivated by concerns
of efficiency (avoiding recomputations), rather than decidability. As a notable difference,
however, instead of computing the ε-closure for the target node(s) of each character tran-
sition (i.e., which NFA nodes can we get to after following a c-labeled edge from a given
node?), we compute it on the source node(s) (i.e., from which nodes can we get to the
given one by following a c-labeled edge?), corresponding to processing the input string
from the end.

Also, the state machine we construct is not (yet) a classical transition-table automaton,
in which each state corresponds to a concrete graph vertex in a data structure. Rather,
determining the next state from the current one and the input character requires a full
evaluation of all the computations in the program, at a per-step cost of O(|r|). (On the
other hand, the cost is not sensitive to the size of the input alphabet �, other than by
assuming that two characters can be compared for equality in O(1) time.)

Using memoization (or dynamic programming) for parsing-related tasks is not a new
idea (Frost & Szydlowski, 1996), though it is more commonly used for parsing languages
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more complicated than regular ones. In the present setting, however, the actual code needed
to properly share continuation results becomes particularly simple and uniform.

As mentioned, the eager interpreter effectively processes the input string backward. This
is very evident here, as arun uses foldr, not foldl, to traverse the string. To obtain a
more direct correspondence to a traditional left-to-right automaton, we can reverse the
input string first, exploiting the identity foldr f a s= foldl f a (rev s). If reversing
the string is inconvenient or impractical, for example, because it is being incrementally
read from a file, or produced in a streaming fashion, we can instead exploit that rev s ∈
L(r) iff s ∈L(←r ), where the regex ←r is obtained by recursively swapping the order of
the arguments r1 and r2 in all occurrences of Seq (r1, r2) in r. And this transformation
can easily be merged into transtop, by simply exchanging r1 and r2 on the RHS of the
defining equation for trans (Seq (r1, r2)).

5 Tabulating transitions

5.1 Changing state machine representations

The running time of the matcher so far is evidently linear in the length of the input string.
However, processing each string character (i.e., evaluation of astep) takes time pro-
portional to the size of the program (or the original regex), for a total running time of
O(|r| · |s|).

There is one more speedup opportunity that we have not exploited yet. The type state
of possible machine states, that is, O(|r|)-length boolean vectors, is evidently finite (though
potentially quite large). Since the input alphabet � = char is also finite (and, in SML,
fairly small), this means that the state transition function � × state→ state has a finite
domain and can thus be precomputed as a lookup table.

In fact, we do not even need � to be finite: we can show that any input character that does
not occur explicitly in the regex-derived program as an argument of at least one Expect
(i.e., is not relevant) will cause the machine to transition to a dead state. Since there can
be at most O(|r|) relevant characters in an r, we do not have to worry about the underlying
character set being potentially large (such as Unicode) or even infinite.

A collection of definitions for a table-driven state machine are shown in Figure 9. We
introduce a distinct type stateno for state numbers, with SN 0 specifically representing
the canonical dead state.

The function pgmchars pgm determines the set (represented as an ordered, duplicate-
free list) of characters c occurring as Expect (c, i) anywhere in pgm. As a slight nod to
efficiency, we calculate it by incrementally adding characters to an accumulator, rather
than by repeated unions.

The type charmap represents finite maps from characters to state numbers, here rep-
resented for simplicity as plain association lists. The function lookc looks up a character
in a map, returning SN 0 if not found; conversely, mkcharmap constructs a character
map from equal-length lists of characters and corresponding state numbers, with only
mappings to nonzero states explicitly included. Clearly, this minimal implementation is
not practically efficient, as lookups take time linear in the domain of the map. A minimal
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datatype stateno = SN of int

type charset = char list (* ordered, duplicate-free *)
type charmap = (char * stateno) list

type dfa = (charmap * ans) list * stateno

(* pgmchars : pgm -> charset *)
fun pgmchars (fs, _) =

let fun insert c [] = [c]
| insert c (cs as c’ :: cs’) =

if c > c’ then c’ :: insert c cs’
else if c = c’ then cs else c :: cs

fun inschars (Expect (c, _)) cs = insert c cs
| inschars (Or (f1, f2)) cs = inschars f2 (inschars f1 cs)
| inschars _ cs = cs

in foldl (fn ((_, f), cs) => inschars f cs) [] fs end

(* lookc : char -> charmap -> stateno *)
fun lookc (c:char) [] = SN 0

| lookc c ((c’, j) :: cm) = if c = c’ then j else lookc c cm

(* mkcharmap : charset -> stateno list -> charmap *)
fun mkcharmap [] [] = []

| mkcharmap (c :: cs) (SN 0 :: js) = mkcharmap cs js
| mkcharmap (c :: cs) (j :: js) = (c, j) :: mkcharmap cs js

(* dstep : dfa -> stateno nextc -> stateno *)
fun dstep (_, j1) NONE = j1

| dstep (es, _) (SOME (c, SN m)) =
let val (cm, _) = nth (es, m) in lookc c cm end

(* dobs : dfa -> stateno -> ans *)
fun dobs (es, _) (SN m) = let val (_, a) = nth (es, m) in a end

(* drun : dfa -> char list -> ans *)
fun drun dfa s =

let val j = foldr (fn (c,j) => dstep dfa (SOME (c,j))) (dstep dfa NONE) s
in dobs dfa j end

Fig. 9. Table-driven state machine.

realistic alternative would be to take charmap = (char * stateno) vector, with the
characters ordered, so that lookc could perform a binary, instead of linear, search.

With those preliminary definitions out of the way, the actual state machine definition is
tiny. A dfa consists of a state table (again inefficiently represented as a list, for uniformity),
where each entry contains a character map and a boolean value indicating whether this state
is accepting. Also, the machine description includes a designated starting state (typically,
but not necessarily, SN 1). The functions dstep, dobs, and drun are then the direct analogs
of astep, aobs, and arun for the new representation.
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5.2 Correctness of representation change

Let us first summarize what we will need to know about relevant characters and character
maps.

Lemma 5.1 (Correctness of relevant-character collection). For any pgm, pgmchars pgm
returns the set (as an ordered list) of all characters c occurring as Expect (c, i) anywhere
in pgm.

Proof We first show, by induction on cs, that the call insert c cs correctly adds c to the
ordered list cs; then the result follows by straightforward structural induction over pgm. �

Lemma 5.2 (Correctness of character maps). Assume cs is strictly increasing, and |js| =
|cs|. Then cm= mkcharmap cs js is defined; and for any c, if c= cs[k] for some (necessarily
unique) k, then lookc c cm= js[k]; otherwise (i.e., if c is not in cs), lookc c cm= SN 0.

Proof Straightforward induction on the structure of cs. �

Lemma 5.3 (Failure for irrelevant characters). If c does not occur in pgm, and
astep pgm (SOME (c, v))= v′, then v′ = v0 (the all-false vector).

Proof Straightforward induction on the evaluation derivation, noting that since we are
evidently not at the end of the string, the only way for aeval to return a true value
(possibly to be subsequently propagated to other vector positions) is when c is the same as
a c0 occurring as an Expect (c0, i) in pgm. �

For the more interesting parts, we note that state tabulation is merely an extreme case of
representation change for state machines.

Definition 5.4 (State machine). A state machine with input alphabet � and output
set A is a quadruple M= (Q, q1, δ, α). Here Q is the state set; q1 ∈Q is the initial
state; δ : � ×Q→Q is the transition function; and α : Q→ A is the observation func-
tion. Any such a machine evidently determines a function runM : �∗ → A, given by
run(Q,q1,δ,α) [c1, ..., cn]= α(foldr δ q1 [c1, ..., cn])= α(δ(c1, ..., δ(cn, q1))).

The set A can be just the booleans, representing acceptance/rejection, but it could also
be a more involved observation, such as a parse tree or other output. We do not need to
require that Q and � are finite. Note that, for consistency with the development so far, we
are still processing the input string right-to-left.

Definition 5.5 (State machine simulations). A simulation of a state machine M by another
M′ (with the same input alphabet and output set) is witnessed by a partial function h : Q ⇀

Q′ such that:

1. h(q1)= q′1.
2. If h(q)= q′, then for all c ∈�, h(δ(c, q))= δ′(c, q′).
3. If h(q)= q′, then α(q)= α′(q′).
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Note that h need not be injective; that is, multiple states in Q can correspond to the same
state in Q′. Also, not every state in Q needs to have a counterpart in Q′; however, all the
reachable ones do.

Lemma 5.6 (Correctness of simulation). If there exists a simulation of M by M′, then for
any s ∈�∗, runM s= runM′ s.

Proof This follows directly from Definition 5.5. Let q= foldr δ q1 s. By induction on s
(using property (1) for [ ] and (2) for ::), we get that foldr δ′ q′1 s= q′ for some q′ with
h(q)= q′. Then, by (3), we get runM s= α(q)= α′(q′)= runM′ s. �

In concrete applications, we will generally not work with arbitrary transition and
observation functions, but only with ones that are derived uniformly from some finitary
description of the machine. We also fix � = char and A= ans= bool. Then, for our two
state machine families, we take

Definition 5.7 (Concrete state machines). For any ordered pgm= (gs, i1), we
define the machine A(pgm)= (V , v1, δ, α), where V = {v ∈ state | |v| = |gs|}, v1 =
astep pgm NONE, δ(c, v)= astep pgm (SOME (c, v)), and α(v)= aobs pgm v. Similarly,
for any dfa= (es, j1), we take D(dfa)= (J , j1, δ′, α′), where J = {SN j ∈ stateno | 0≤ j <

|es|}, and δ′ and α′ are derived analogously from dstep and dobs.

Note that the description-interpreting functions only need to be defined for elements
of the corresponding state set, not all elements of its containing SML type. For example,
aobs pgm v is allowed to crash if v has the wrong length wrt. pgm.

5.3 Constructing transition tables

Our final task will be to obtain a lookup-table-based state machine, with associated sim-
ulation, from the boolean-vector one. The basic idea is to incrementally construct the
components of M′ and h together, starting from the initial state of M, and extending
to all states reachable from it.

The code is in Figure 10. The key data structure here is D trie, which compactly
represents partial maps from boolean vectors to D using binary trees. To look up a vector
v in a trie t, we examine v’s bits in order, traversing into the tt or tf subtrie (for true and
false, respectively) of t= Node (tt, tf), until we either encounter a Leaf d with the result,
or Empty. Note that we will only use a t for vectors all of the same length n, so all Leaf d-
leaves will be found at depth n in t (where the root is at depth 0). On the other hand, we
may encounter an Empty leaf after only traversing a prefix of the vector, if the trie contains
no mappings for that prefix; in particular, a proper trie will never contain a subtree of the
form Node (Empty, Empty), which is equivalent to just Empty.

The function accesst is used for both trie lookups and updates: accesst t v d returns
either Found d′, if t contains a mapping of v to d′; or Added t′ if t did not contain a mapping
for v, but t′ extends t with a mapping of v to d.

The function trav then constructs, in a depth-first manner, the transition table, as
well as the trie witnessing the simulation. A typical call has the form (j, es, t′, m′)=
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datatype ’d trie = Empty | Leaf of ’d | Node of ’d trie * ’d trie

datatype ’d accres = Found of ’d | Added of ’d trie

(* accesst : ’d trie -> ans list -> ’d -> ’d accres *)
fun accesst Empty [] d = Added (Leaf d)

| accesst Empty (a :: v) d = upd (accesst Empty v d) a Empty
| accesst (Leaf d’) [] d = Found d’
| accesst (Node (tt, tf)) (true :: v) d = upd (accesst tt v d) true tf
| accesst (Node (tt, tf)) (false :: v) d = upd (accesst tf v d) false tt

(* upd : ’d accres -> bool -> ’d trie -> ’d accres *)
and upd (Found d’) _ _ = Found d’

| upd (Added tt’) true tf = Added (Node (tt’, tf))
| upd (Added tf’) false tt = Added (Node (tt, tf’))

(* trav : charset -> pgm -> state -> stateno trie -> int ->
stateno * (charmap * ans) list * stateno trie * int *)

fun trav cs pgm v t m =
case accesst t v (SN m) of

Found j => (j, [], t, m)
| Added t0 =>

let val vs = map (fn c => astep pgm (SOME (c, v))) cs
val (js, es1, t1, m1) = travl cs pgm vs t0 (m+1)

in (SN m, (mkcharmap cs js, aobs pgm v) :: es1, t1, m1) end
(* travl : charset -> pgm -> state list -> stateno trie -> int ->

stateno list * (charmap * ans) list * stateno trie * int *)
and travl cs pgm [] t m = ([], [], t, m)

| travl cs pgm (v :: vs) t m =
let val (j, es1, t1, m1) = trav cs pgm v t m

val (js, es2, t2, m2) = travl cs pgm vs t1 m1
in (j :: js, es1 @ es2, t2, m2) end

(* mkdfa : pgm -> dfa *)
fun mkdfa pgm =

let val cs = pgmchars pgm
val v0 = map (fn _ => false) (#1 pgm)
val v1 = astep pgm NONE
val ([SN 0, j1], es, t, m) = travl cs pgm [v0, v1] Empty 0

in (es, j1) end

(* dmatchtop : re -> char list -> ans *)
fun dmatchtop r s = drun (mkdfa (transtop r)) s

Fig. 10. Conversion to table-driven machine.

trav cs pgm v t m. Here, the input cs is the set (ordered list) of relevant characters to
consider for character maps, and pgm is the state machine (these two never change); v is
some state; t is the current trie; and m is an allocation counter for state numbers. In the
output tuple, j is the state number corresponding to v; es is a list of new entries to be
added to the table from position m; t′ is the possibly updated trie; and m′ is the new allo-
cation counter, so that m′ =m+ |es|. If the given state v was already present in t, trav
just returns its corresponding state number; but if v needs to be added, we allocate a new
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state number for it, compute its character map (enumerating all states reachable from v by
a single astep with a character from cs), and generate a table entry for it.

The auxiliary function travl is simply the “effectful” list extension of trav: instead of
a single vector v, it takes a list vs; and instead of a single result j, it returns a list js, with
|js| = |vs|. Moreover, t and m are threaded through the computation in a state-like manner,
while the output es is accumulated by concatenation.

Finally, mkdfa converts a complete state machine to its transition-table representation.
It first allocates the permanent-failure state as SN 0, and then finds the state number of
the initial state, which will normally be SN 1 (because the initial continuation accepts the
empty input and thus the state contains at last one true bit), but as a “side effect” it also
computes the transition table for all states reachable from the initial one. Then, dmatchtop
is the final matcher.

The state labels vj in Figure 8 represent precisely order in which the DFA entries are
created. In particular, v2 is created before v3, and v4 before v5, because a < b. The dotted
nodes are never reached in the traversal, and so are not assigned state numbers.

5.4 Correctness of conversion

We first need some simple results about tries.

Definition 5.8 (Trie extension). A trie t′ extends t, written t� t′, if t′ arises by replac-
ing some Empty nodes in t with potentially larger subtries. More formally, � is the least
relation on tries satisfying

1. Empty� t′.
2. Leaf d � Leaf d.
3. Node (tt, tf)� Node (tt′, tf′) if tt � tt′ and tf � tf′.

It is immediate to verify that � is a preorder (reflexive and transitive).

In order to show that we cannot keep extending a trie forever, we define

Definition 5.9 (Trie free space). For an n-level trie t, the count ‖t‖n of unused slots in t is
defined by induction on n:

‖Empty‖0 = 1
‖Leaf d‖0 = 0

‖Empty‖n+1 = 2 · ‖Empty‖n

‖Node (tt, tf)‖n+1 = ‖tt‖n + ‖tf‖n

(Note that there are no equations for ‖Leaf d‖n+1 or ‖Node (tt, tf)‖0, as those would not
be well-formed n-level tries.)

The trie-access function then satisfies a couple of straightforward properties:

Lemma 5.10 (Correctness of tries). Let t be an n-level trie, and v a length-n vector. Then:

1. accesst t v d is defined.
2. If accesst t v d = Found d′ and t� t′, then also accesst t′ v d′′ = Found d′.
3. If accesst t v d = Added t′, then t� t′, and accesst t′ v d′ = Found d.
4. If accesst t v d = Added t′, then ‖t′‖n = ‖t‖n − 1.
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Proof Each part can be shown by a simple induction on t. �

A trie t determines a partial function t† from states to trie data, given by t†(v)= d if
accesst t v d0 = Found d (for some fixed d0), and t†(v) undefined otherwise. (By property
(2), the choice of d0 does not matter.)

Lemma 5.11 (Invariants for conversion). If trav cs pgm v t m= (j, es, t′, m′), or
travl cs pgm vs t m= (js, es, t′, m′), then

1. m′ =m+ |es|
2. t� t′

3. If t† is injective and onto m (i.e., its range is the set {SN mj | 0≤mj < m}), then t′†

is injective and onto m′.

Proof Each part can be proved by a straightforward (mutual) induction on the evaluation
derivations. Briefly:

1. We see that m is incremented precisely when trav generates a new table entry;
travl does not emit any table entries on its own, but only through trav.

2. We use Lemma 5.10(3), as well as reflexivity and transitivity of �.
3. In trav, for the call accesst t v (SN m), we have assumed that SN m is not in the

range of t†, so that if t gets extended to t0, t†
0 will still be injective, but now onto

m+ 1. The function travl only modifies t through trav. �

Note that we do not in general need t† to be injective, or to have any particular range,
for it to witness a simulation, but we will use those properties for showing correctness of
our simple conversion algorithm.

Definition 5.12 (Entry soundness). Let cs, pgm, and t be given. A transition table entry
e= (cm, a) is t-sound for state number j if there exists some v, with t†(v)= j, such that:

1. aobs pgm v= a.
2. For all c in cs, if lookc c cm= j′, then astep pgm (SOME (c, v))= v′ for some v′

with t†(v′)= j′.

A list es is t-sound for position m if its constituent entries are sound for state numbers
SN m, SN (m+ 1), ..., SN (m+ |es| − 1), respectively. It is immediate to check that, if es1 is
sound for m, and es2 is sound for m+ |es1|, then es1@es2 is also sound for m.

Lemma 5.13 (Soundness of trav and travl). The traversal functions are correct in the
following sense:

a. If trav cs pgm v t m= (j, es, t′, m′), and t′ � t′′, then es is t′′-sound for position m,
and t′′†(v)= j.

b. If travl cs pgm vs t m= (js, es, t′, m′), and t′ � t′′, then es is t′′-sound for position
m, and map t′′† vs= js.
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Proof The two parts are proved by mutual induction on the evaluation derivations:

a. There are two subcases. If accesst t v (SN m)= Found j, then es= [ ], which
is vacuously t′′-sound; and since t′ = t, we have t� t′′, so also t′′†(v)= j by
Lemma 5.10(2).

Otherwise, accesst t v (SN m)= Added t0, where t� t0, and we have j= SN m
and es= (cm, aobs pgm v) :: es1, where cm= mkcharmap cs js, (js, es1, t′, m′)=
travl cs pgm vs t0 (m+ 1), and for all k < |cs|, vs[k]= astep pgm (SOME (cs[k], v)).
Since t0 � t′ (Lemma 5.11(2)) and t†

0(v)= j (Lemma 5.10(3)), also t′′†(v)= j. From
IH(b) on the travl-evaluation, we get that es1 is t′′-sound for m+ 1, so it remains to
show that (mkcharmap cs js, aobs pgm v) is t′′-sound for m. The second component
satisfies the requirement by definition; and for the first, let c= cs[k] for some k <

|cs|. If lookc c cm= j′, then by Lemma 5.2, we have j′ = js[k]= (map t′′† vs)[k]=
t′′†(vs[k])= t′′†(astep pgm (SOME (c, v))), again as required.

b. Follows by pointwise application of IH(a) for the elements of vs, using transitivity
of � and the concatenation property of t′′-sound entry sequences. �

Theorem 5.14 (Correctness of conversion). For any ordered pgm, we have mkdfa pgm=
dfa for some dfa such that D(dfa) simulates A(pgm).

Proof Let pgm= (gs, i1) and n= |gs|, We first note that cs= pgmchars pgm is always
defined (Lemma 5.1), as is astep pgm v for all v with |v| = n (Lemma 4.4). Next, we
observe that the mutually recursive functions trav and travl necessarily terminate by
the measure ‖t‖n on their t-parameters, because trav either returns immediately or invokes
travl with a t0 that has one less free slot than t (Lemma 5.10(4)); and that function simply
invokes trav back exactly |cs| times, threading the trie sequentially through all calls. Thus,
the computation terminates after at most ‖Empty‖n · |cs| = 2n · |cs| =O(2|r| ·min(|�|, |r|))
steps.

In particular, we can safely compute (js, es, t, m)= travl cs pgm [v0, v1] Empty 0,
where v0 is all-false of length n, and v1 = astep pgm NONE. By Lemma 5.13(b) (and reflex-
ivity of �), we get that es is t-sound for position 0, and js= [SN 0, j1], where j1 = t†(v1).
Thus, the pattern-matching val-binding in mkdfa will succeed, and dfa= (es, j1), so
condition (1) of Definition 5.5 (with h= t†) is immediate.

For the remaining two, let v be given such that t†(v)= j= SN mj. Then by t-soundness
of es, we have es[mj]= (cm, a), where the entry (cm, a) is t-sound for mj. By injectivity of
t† (Lemma 5.11(3), since Empty† is clearly injective and onto 0), the vj in the definition of
t-soundness must be the same as v, so in particular, aobs pgm v = a= dobs dfa j, giving
us condition (3).

For condition (2), let c be arbitrary, and let v′ = astep pgm (SOME (c, v)) and j′ =
dstep dfa (SOME (c, j))= lookc c cm. We must show that t†(v′)= j′. If c is in cs, this
follows from the condition on cm in t-soundness; and otherwise, by Lemma 5.3, we know
that v′ = v0; and by Lemma 5.2 that j′ = SN 0, and so again t†(v0)= SN 0= j′. �
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Corollary 5.15. For any r and s, dmatchtop r s= amatchtop r s.

Proof On both sides, we compute pgm= transtop r, which we know is defined
(Theorem 3.1), and pgm is ordered (Lemma 4.2). Further, on the LHS, we have a
dfa= mkdfa pgm, and there is a simulation of A(pgm) by D(dfa) (Theorem 5.14). Finally,
by Lemma 5.6, amatchtop r s= arun pgm s= drun dfa s= dmatchtop r s. �

5.5 DFA minimization

An optional final step in a regex-matching implementation consists of minimizing the con-
structed DFA, by collapsing indistinguishable states. For example, in the DFA of Figure 8,
we observe that the states labeled v3 and v5 are equivalent, in that both are non-accepting,
and both transition to v4 on a and to one of each other on b.

A number of algorithms for DFA minimization are known, notably those of Brzozowski
(1962) and Hopcroft (1971). However, while a minimization step may make the DFA more
compact, sometimes significantly so, it does not materially affect the runtime efficiency of
the matcher (other than by second-order effects due to better cache utilization). Thus, we
will not formally consider minimization further here.

Still, it is worth remarking that, with our representations of programs and automata,
Brzozowski’s construction in particular can be expressed exceptionally concisely. Recall
that, in a traditional presentation, it consists of reversing all the edges in the DFA (yielding,
in general, an NFA, because a DFA node may still have multiple incoming edges labeled
by the same character), making the initial state of the DFA an accepting state of the NFA,
and making all the DFA accepting states initial in the NFA (by adding suitable ε-transitions
from a single initial state, if necessary). Not very surprisingly, this yields an NFA for the
reversed language; that is, a string is accepted by the newly constructed NFA precisely
when its reverse is accepted by the original DFA. The unexpected part is that converting
this NFA back to a DFA (using the usual powerset construction) actually yields a mini-
mal DFA for the reversed language; that is, any two distinct states demonstrably lead to
different acceptance/rejection outcomes for at least one string, and so cannot be collapsed.

The same construction turns out to work very smoothly for our analogs of NFAs and
DFAs: because the conversion from matcher program to state machine inherently reverses
the conceptual direction of the edges, we can directly convert a character map in the tabu-
lated automaton to a computation with an Or-linked list of Expect-nodes. The endpoint of
each such list becomes AtEnd if the automaton entry was accepting, and Fail otherwise.
DFA transitions into the designated dead state, which are not explicitly represented in the
character maps, are not included in the program, either. No Cont-references are needed,
and all computations are unconditional. Finally, the initial state of the DFA becomes the
main continuation of the program.

The resulting code is shown in Figure 11. The function mkpgm performs the conversion,
and minrevdfa implements the full pipeline from regex to minimal automaton. Note that
the returned automaton, nominally for the reversed language of the regex, can actually be
seen as a conventional, left-to-right (i.e., foldl-based) DFA for the original language.

An example of the construction is shown in Figure 12. Here, we have taken the (non-
dotted part of) the DFA in Figure 8 and viewed it directly as a program, with the same
interpretation of the graph nodes as in Figure 5. From the graph, we can directly read off

https://doi.org/10.1017/S0956796820000295 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000295


34 A. Filinski

(* mkpgm : dfa -> pgm *)
fun mkpgm (es, SN n1) =

let fun mkcomp (cm, a) =
foldl (fn ((c, SN n), f) => Or (Expect (c, CN n), f))

(if a then AtEnd else Fail) cm
in (map (fn e => (true, mkcomp e)) es, CN n1) end

(* minrevdfa : re -> dfa *)
fun minrevdfa r = mkdfa (mkpgm (mkdfa (transtop r)))

(* eqvre, subre : re -> re -> bool *)
fun eqvre r1 r2 = minrevdfa r1 = minrevdfa r2
fun subre r1 r2 = eqvre (Alt (r1,r2)) r2

Fig. 11. Constructing minimal DFAs by Brzozowski’s method.

a k̄0 k̄1 k̄2 k̄3 k̄4 k̄5

k̄0 −
k̄1 �
k̄2 −
k̄3 �
k̄4 �
k̄5 �

b k̄0 k̄1 k̄2 k̄3 k̄4 k̄5

k̄0 −
k̄1 �
k̄2 −
k̄3 �
k̄4 �
k̄5 �

$

k̄0

k̄1

k̄2 �
k̄3

k̄4 �
k̄5

FFTF TF
v̄1

FTFT TT
v̄2

FFFF FF
v̄0

FFFT TT
v̄3

a, b

a

b
a

b

b

a

Fig. 12. Transition matrices, (reachable) state space, and DFA labeling for running example.

the transfer matrices for the individual characters, and the initial vector, as shown in the
top part of the figure, where we have adopted the position numbering k̄i = vi. (The matrix
entries marked with a − represent the transitions to the canonical dead state v0 in the
DFA. They can be safely omitted in the conversion from character maps to computations,
as the continuation-result vector will always have a false entry in position 0.) Note that
the computations contain no Cont-references and are hence trivially ordered. (However,
unlike for the directly regex-derived transfer matrices, the �-entries are not confined to lie
strictly below the main diagonal.)

The (reachable) nodes of the state space and the transitions between them are then shown
in the bottom part of the figure, and the labels v̄0 through v̄3 reflect what the depth-first,
alphabetical-order traversal assigns in the tabulation. Inspecting the resulting DFA, we see
that it precisely recognizes, in an evidently minimal way, the language of the original RE:
a single a, followed by zero or more a’s and/or b’s, but where the last one must be a b.

However, the arguably main significance of DFA minimization lies not in the marginal
improvement in efficiency or space savings it may provide, but in that the minimal DFA
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for any regular language is actually unique up to labeled graph isomorphism (including
the edge labels, and the initial and accepting nodes). That is, two regular expressions
denote the same language precisely when their minimal automata can simulate each other.
And since our tabulation algorithm traverses the state space of an automaton in a canon-
ical way (depth-first, with outgoing edges processed in alphabetical order), the tabulated
representations of isomorphic graphs are actually identical.

This is exploited in the function eqvre, which decides whether two regexes denote the
same language. (The reversal inherent to the construction is not a problem, because both
languages are reversed before the comparison.) Using the equivalence tester, we can also
easily decide whether one regex’s language is included in the other’s, by exploiting the
set-theoretic equivalence L1 ⊆ L2⇔ L1 ∪ L2 = L2), this is codified in function subre.

Still, since we have not rigorously proved the correctness of the construction (which,
despite the deceptive simplicity of the code, is not a trivial undertaking), we will not
state any of the above as formal theorems at this time. It would be interesting to con-
sider, however, whether the correctness of Brzozowski’s algorithm (or another, possibly
more efficient one) can also usefully be argued from a functional-programming/semantic
perspective, rather than from a classical automata-theoretic one.

5.6 Perspectives

The incremental construction of a transition-table DFA from a more implicit specifica-
tion of the transitions between the states is a common idiom, though here we particularly
emphasize that the set of observations can be more complex than the booleans (corre-
sponding to accepting/rejecting states), and that an explicitly tabulated version is just an
extreme representation of the state machine, for minimizing transition times. Usually there
is a trade-off between runtime performance, and the work (and space) needed for pre-
computation, and the general formulation of the simulation easily accounts for hybrid
representations, such as caching (in runtime-mutable memory) the character maps for oft-
visited DFA states, and possibly also evicting them as needed, if the cache grows too
large.

We have picked a very simple representation of character maps, which (with the already
mentioned binary-search improvement) is fine for applications where Char c regexes only
match specific characters – but probably not larger character classes, such as all digits or
uppercase letters, for which explicitly listing all members of a class in character maps may
incur a substantial space penalty. In many such cases, a slight generalization of the maps
to also allow compact representation of contiguous character ranges mapping to the same
state should suffice, though. The refinements to regexes with general character-class leaves
considered by Owens et al. (2009) in the context of Brzozowski derivatives might also be
applicable here.

6 Conclusions

6.1 Summary and potential directions for future work

We have seen how to derive an efficient, table-driven matcher for regular expressions, by
a series of relatively simple, meaning-preserving program transformations starting from
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Harper’s (incomplete) CPS-based matcher – using general techniques such as cycle detec-
tion, defunctionalization, specialization, change of evaluation strategy, and tabulation of
finite functions. While the net result we obtain is essentially the same as with classical
methods rooted in formal languages and automata theory, the abstractions we use are
somewhat different, and many standard constructions are “sliced” differently.

To keep the development focused, we have explicitly only considered the problem of
deciding membership in the language of a regex. However, there is reason to hope that, by
exposing some of the underlying algorithmic and program-transformation principles, the
results would prove more robust, modular, and easily generalizable than existing, highly
tuned solutions for specific problems. For example, we might consider one or more of:

• generalizing the task from yes/no recognition of whole strings to various notions of
regex parsing (disambiguated as, e.g., greedy) or transduction.

• generalizing the language description from regular expressions to, for exam-
ple, regular grammars, or extended regular expressions (with intersection and/or
complementation).

• generalizing the languages recognized from regular to larger classes, such as (frag-
ments of) Perl-compatible regular expressions (including, e.g., backreferences),
parsing expression grammars (PEGs), (possibly limited) context-free grammars, or
beyond; or considering approximate or error-tolerant matching.

• generalizing the input data type from linear strings to trees or graphs.
• generalizing the computation model from sequential to control and/or data parallel,

for improving performance on modern hardware.

Many of these are already readily covered by existing methods and results, but often vary-
ing only one parameter at a time, not several at once; and it is often far from obvious
how to combine multiple generalizations along different dimensions, when their underlying
algorithmic principles are obscured.

The development also hopefully serves to attest to the naturalness and power of func-
tional programming as a framework for reasoning about algorithm derivation: we were able
to express, concisely and uniformly, all the relevant invariants and relationships formally
connecting the set-theoretic semantics of regular expressions to the efficient, table-driven
recognizer; and the relevant theorems can all be shown by elementary means.

6.2 Notes on the formalization

As mentioned, all theorems and their proofs have been fully formalized and verified in
Twelf. While computations on strings are not an ideal application domain for this proof
assistant (in particular, we are not playing to its strengths in reasoning about variable
bindings and substitutions, while still suffering its weaknesses in expressing equational-
reasoning arguments concisely), it proved quite adequate for the task. All the required
lemmas and theorems are (or can easily be restated as) 
0

1-formulas (i.e., of the form
∀...∃...) about finite trees, and the proofs are by simple inductions with (sometimes lexico-
graphic) subtree orderings. A few lemmas, especially the ones involving the higher-order
CPS matcher, could probably be formulated and proved a bit more smoothly with deeper
quantifier alternations and/or higher-order logic features, as readily available in many
current proof assistants, but we easily manage even without that.
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As Twelf developments are effectively “blank-slate,” explicitly defining everything
(including basic arithmetic in Peano style) from scratch, and with essentially no automa-
tion of the proof itself (beyond checking that all cases are covered, and that inductions
are well founded with respect to a subterm ordering), one might be concerned about the
size of the formalized proofs. And indeed, the full formalization is of non-negligible,
but still very manageable size. The executable content of the constructions, some 250
lines of SML code in this article, expands to about 900 lines of Twelf code, largely due
to the (near-mechanical) transcription of the functional code into a significantly more
verbose logic-programming style (but not exploiting backtracking or two-sided unifica-
tion), and the need to hand-implement a number of primitive types and functions. The
correctness proofs come to about 3400 additional lines, again including a number of triv-
ial and generic/boilerplate lemmas about list concatenation being associative, character
comparisons being decidable, etc., all of which are routinely taken for granted in even a
semi-formal proof.

Almost certainly, essentially the same proofs could be expressed significantly more
compactly in Coq or Agda, especially with some rudimentary automation of the routine
tasks. (Or, alternatively, the development itself could be expressed in a dependently typed
language, optionally followed by extraction of the executable content into a separate pro-
gram, for efficient execution.) On the other hand, the raw size of the formalization does
give a useful indication of the intrinsic conceptual complexity of the constructions.
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