
Canad. J. Math. Vol. 60 (5), 2008 pp. 1050–1066

Adjacency Preserving Maps on
Hermitian Matrices

Wen-ling Huang and Peter Šemrl

Abstract. Hua’s fundamental theorem of the geometry of hermitian matrices characterizes bijective

maps on the space of all n×n hermitian matrices preserving adjacency in both directions. The problem

of possible improvements has been open for a while. There are three natural problems here. Do

we need the bijectivity assumption? Can we replace the assumption of preserving adjacency in both

directions by the weaker assumption of preserving adjacency in one direction only? Can we obtain

such a characterization for maps acting between the spaces of hermitian matrices of different sizes? We

answer all three questions for the complex hermitian matrices, thus obtaining the optimal structural

result for adjacency preserving maps on hermitian matrices over the complex field.

1 Introduction and Statement of the Main Result

One can easily verify that

d(T, S) = rank(T − S)

defines a metric on the real vector space Hn of all n × n hermitian matrices over the

complex field. The characterization of isometries of Hn with respect to this metric

was obtained by Hua [5, 6]. If such an isometry φ is assumed to be affine (that is,

linear, after the harmless normalization φ(0) = 0), then the task of describing the

general form of isometries reduces to a nice exercise. It is remarkable that in Hua’s

result the affine character of φ is not an assumption but a conclusion. Moreover,

instead of isometries, Hua considered maps satisfying a weaker assumption of pre-

serving distance 1 in both directions.

Two hermitian matrices T and S are said to be adjacent (also coherent) if

rank(T − S) = 1. Hua’s fundamental theorem of the geometry of hermitian ma-

trices over the complex field reads as follows.

Theorem 1.1 Let n ≥ 2 be an integer and φ : Hn → Hn a bijective map such that for

every pair A,B ∈ Hn the matrices A and B are adjacent if and only if φ(A) and φ(B)

are adjacent. Then there exist c ∈ {−1, 1}, an invertible n × n complex matrix T, and

S ∈ Hn such that either

φ(A) = cTAT∗ + S, A ∈ Hn,

or

φ(A) = cTAT∗ + S, A ∈ Hn.
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Adjacency Preserving Maps on Hermitian Matrices 1051

Here, A denotes the matrix obtained from A by applying the complex conjugation

entrywise.

This result has many applications. Hua’s study of the geometry of matrices is re-

lated to Siegel’s work on fractional linear transformations. In the language of special

relativity the above result in the case n = 2 can be reformulated (see [7, §5.3]) as

the statement that every bijective correspondence on spacetime events preserving the

coherence, that is, the property that the spatial distance between the two events is

equal to the product of the time difference between the two events and the speed

of light, is a Poincaré similarity, i.e., the product of a Lorentz transformation and

a dilation. Further, this result is of basic importance in the theory of linear pre-

servers [10, pp. 18–19], can be applied when studying Jordan automorphisms of Hn

[12, p. 355], and is closely related to the geometry of algebraic homogeneous spaces

[3] (see [12, §6.8] for the detailed explanation).

Hua’s theorem gives a very nice conclusion under rather weak assumptions. Still,

all the applications mentioned above motivate the question whether we can prove

an even stronger result. Can we replace the assumption that the adjacency is pre-

served in both directions by the weaker assumption that the adjacency is preserved

in one direction only and still get the same conclusion? Do we need the bijectivity

assumption?

The first question has been answered by Huang, Höfer, and Wan [8] who proved

that every bijective map on the space of n × n hermitian matrices over more general

division rings with involution that preserves adjacency in one direction preserves

adjacency in both directions.

The aim of this paper is to substantionally generalize the complex case of Huang,

Höfer, and Wan’s result. Our generalization will also answer the second question

above. Moreover, we will consider maps acting between the spaces of hermitian ma-

trices of different sizes. Before formulating our main result let us make one more

remark. Let m, n be positive integers with n ≥ 2 and φ : Hn → Hm a map preserving

adjacency. Then any map defined by A 7→ φ(A) + S, A ∈ Hn, where S is any m × m

hermitian matrix, preserves adjacency as well. Thus, when studying adjacency pre-

serving maps there is no loss of generality in assuming that they map the zero n × n

matrix into the zero m × m matrix. Our main result is the following.

Theorem 1.2 Let m, n be positive integers with n ≥ 2. Assume that φ : Hn → Hm is a

map such that the matrices φ(A) and φ(B) are adjacent whenever A and B are adjacent,

A,B ∈ Hn. Suppose that φ(0) = 0. Then one of the following holds.

(i) There exist a rank one matrix R ∈ Hm and a function ρ : Hn → R such that

φ(A) = ρ(A)R.

(ii) m ≥ n and there exist c ∈ {−1, 1} and an invertible m × m complex matrix T

such that either

(1.1) φ(A) = cT

[

A 0

0 0

]

T∗, A ∈ Hn,

or

(1.2) φ(A) = cT

[

A 0

0 0

]

T∗, A ∈ Hn.
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Let ρ : Hn → R be any function and R ∈ Hm a rank one matrix. Then the map

φ : Hn → Hm defined by φ(A) = ρ(A)R preserves adjacency if ρ(A) 6= ρ(B) whenever

A and B are adjacent. In particular, this happens when ρ is injective. If we take

ρ(A) = tr A, where tr A denotes the trace of A, then φ is a continuous (even real-

linear) adjacency preserving map. Indeed, if A and B are adjacent, then A − B is a

rank one hermitian matrix and every rank one hermitian matrix has a nonzero trace.

We will call any adjacency preserving map whose image is contained in a linear

span of a rank one matrix a degenerate adjacency preserving map. Any map of the

form (1.1) or of the form (1.2) will be called a standard map.

We have several straightforward consequences of our main result. Let φ : Hn →
Hm, n ≥ 2, be an adjacency preserving map with φ(0) = 0. If m < n, then φ
is degenerate. If φ is surjective, then either m = 1, or m = n. If φ is injective

and continuous, then, by the invariance of domain theorem [4, p. 344], φ must be

a standard map. Also, if φ preserves adjacency in both directions, that is, for every

pair A,B ∈ Hn the matrices A and B are adjacent if and only if φ(A) and φ(B) are

adjacent, then φ has to be standard.

We believe that the interesting corresponding problem for real symmetric matrices

is still open.1 The complex hermitian case has been studied more because of the above

mentioned application in the special relativity.

We will start by introducing the notation and presenting some preliminary results.

The third section will be devoted to the special case when m = n = 2, and the last

section to the proof of the main result.

2 Notation and Preliminary Results

Let A,B ∈ Hn. Matrices A, B are said to be adjacent if rank(A − B) = 1. The

distance d(A,B) between A and B is defined to be the smallest nonnegative integer

k with the property that there exists a sequence of consecutively adjacent matrices

A = A0,A1, . . . ,Ak = B. The distance satisfies the triangle inequality

d(A,B) + d(B,C) ≥ d(A,C) for all A,B,C ∈ Hn.

For any two hermitian matrices A,B ∈ Hn, it was proved [12] that

d(A,B) = rank(A − B).

For any two adjacent matrices A,B ∈ Hn the line l(A,B) joining A and B is defined

to be the set consisting of A, B, and all X ∈ Hn which are adjacent to both A and B. It

was also proved in [12] that l(A,B) = {A + λ(B − A) : λ ∈ R}.

Lemma 2.1 ([8, Lemma 2.1]) Let P ∈ Hn and l be a line of Hn. Then either the

distance between P and any hermitian matrix of l is the same, or there is a hermitian

matrix Q ∈ l such that d(P,X) = d(P,Q) + 1 for all X ∈ l \ {Q}.

Let φ : Hn → Hm be any map. Note that composing such a map with ∗-congruen-

ces and the map A 7→ −A does not affect either the assumption or the conclusion

1Added in proof : The authors have been informed that this problem has now been solved.

https://doi.org/10.4153/CJM-2008-047-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-047-1


Adjacency Preserving Maps on Hermitian Matrices 1053

of our main theorem. More precisely, if T and S are any m × m invertible complex

matrix and n×n invertible complex matrix, respectively, and c, d ∈ {−1, 1}, then the

map φ : Hn → Hm preserves adjacency if and only if the map ψ : Hn → Hm defined

by ψ(A) = cTφ(dSAS∗)T∗, A ∈ Hn, preserves adjacency. Moreover, φ is degenerate

if and only if ψ is degenerate, and φ is a standard map if and only if ψ is a standard

map.

As usual, we will identify n × n matrices with linear operators acting on the

n-dimensional complex vector space C
n. Vectors will be then identified with n×1 ma-

trices. The elements of the standard basis of C
n will be denoted by e1, . . . , en and the

elements of the standard basis of the space of all n × n matrices by Ei j , 1 ≤ i, j ≤ n.

Thus, Ei j = eie
∗
j . Every rank one projection P ∈ Hn can be written as P = xx∗, where

x is a vector of norm one. Further, every rank one hermitian matrix is a scalar multi-

ple of a rank one projection. Recall that projections P,Q ∈ Hn are called orthogonal

if PQ = 0.

We will frequently use the following simple fact.

Lemma 2.2 Let A ∈ Hn be adjacent to both txx∗ and sxx∗, where x is a vector of norm

one and t, s ∈ R, t 6= s. Then A = rxx∗ for some real number r with r 6∈ {t, s}.

Proof Because A is adjacent to txx∗ and sxx∗, A is contained in the line

l(txx∗, sxx∗) = {λ(xx∗) : λ ∈ R}.

Lemma 2.3 Let P ∈ Hn be a projection and A,B ∈ Hn two matrices such that

P = A + B and rank P = rank A + rank B. Then A and B are orthogonal projections.

Proof Identifying matrices with operators we first deduce from P = A + B that

Im P ⊂ Im A + Im B. Applying the rank additivity condition we see that Im P =

Im A ⊕ Im B. For an arbitrary x ∈ Ker P we have 0 = Px = Ax + Bx, and since the

image of P is the direct sum of the images of A and B, it follows that Ax = Bx = 0.

For any x ∈ Im A we apply the inclusion Im A ⊂ Im P to obtain x = Px = Ax + Bx.

From x,Ax ∈ Im A and Bx ∈ Im B we conclude that Ax = x and Bx = 0. Similarly,

B acts as the identity on the image of B, while the restriction of A to the image of B is

the zero operator. Applying the fact that C
n

= Im P ⊕ Ker P = Im A ⊕ Im B ⊕ Ker P

we see that A and B are projections and AB = 0.

Lemma 2.4 Let k, n be integers, 3 ≤ k ≤ n, and let t1, . . . , tk be nonzero real num-

bers. Furthermore, let P1, . . . , Pk ∈ Hn be pairwise orthogonal rank one projections.

Denote A =

∑k
j=1 t jP j . If a matrix B ∈ Hn of rank k is adjacent to A − tiPi and

d(B, tiPi) = k − 1 for every i = 1, . . . , k, then B = A.

Proof We have rank B = rank(tiPi)+rank(B−tiPi), and therefore, as in the previous

lemma, the image of B is the direct sum of the images of tiPi and B−tiPi . In particular,

the image of Pi is contained in the image of B, and since B is of rank k, we have

Im B = Im P, where P = P1 + · · · + Pk. Thus, B = PBP and we may restrict our

attention to the subspace PHnP. In other words, we may assume that k = n and B

is invertible. Moreover, replacing B by (a not necessarily hermitian matrix) A−1B we

may assume that A = I, t1 = · · · = tk = 1, and B is adjacent to every diagonal
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idempotent of rank k − 1. Equivalently, I is adjacent to B−1Q for every diagonal

idempotent Q of rank k − 1. The set of all k × k complex matrices of rank k − 1

adjacent to the k × k identity matrix is the set of all idempotent matrices of rank

k − 1. Hence, B−1Q is an idempotent of rank k − 1 for every diagonal idempotent Q

of rank k − 1. It follows easily that B−1 is the identity matrix.

Lemma 2.5 Let m be a positive integer and A,B ∈ Hm with rank A = 1. Assume that

rank(A + tB) = 1 for every real number t. Then B = 0.

Proof We have rank B ≤ 1, since otherwise rank(A+tB) > 1 for large real numbers t .

Thus, B is either 0 or a rank one matrix. We must show that the second possibility

cannot occur. Assume on the contrary that B is a rank one hermitian matrix. Then,

since rank(A + B) = 1, we have B = rA for some nonzero real number r. It follows

that A + (− 1
r
)B = 0, a contradiction.

Lemma 2.6 (See [8, Lemmas 2.5 and 2.6]) Let A,B ∈ Hn be invertible matrices,

A 6= B. Then there exist a positive integer m and a sequence of invertible matrices

A = A0,A1, . . . ,Am = B such that all the pairs Ak,Ak+1, k = 0, . . . ,m − 1, are

adjacent and for every k = 0, . . . ,m − 1 there exists Ck ∈ l(Ak,Ak+1) of rank n − 1.

Let φ : Hn → Hm, n ≥ 2, be an adjacency preserving map. By the definition of a

line, we have the following.

Lemma 2.7 Let A,B ∈ Hn be an adjacent pair. Then φ(l(A,B)) ⊂ l(φ(A), φ(B)),

and the restriction of φ to the line l(A,B) is injective.

Lemma 2.8 Let φ : Hn → Hm be an adjacency preserving map such that φ(0) = 0.

Set k = max{rankφ(A) : rank A = n}. Assume that k ≥ 2 and that for every singular

A ∈ Hn we have rankφ(A) < k. Then rankφ(B) = k for every invertible B ∈ Hn.

Proof Let B ∈ Hn be any invertible matrix. Choose an invertible matrix A such that

rankφ(A) = k and a sequence A = A0,A1, . . . ,At = B as in Lemma 2.6. Further, let

Ck, k = 0, . . . , t − 1, be as in Lemma 2.6. By Lemma 2.7, the line l(A0,A1) is mapped

by φ injectively into the line l(φ(A0), φ(A1)). By Lemma 2.1 and rankφ(A0) = k,

we know that there is at most one point T on the line l(φ(A0), φ(A1)) such that

rank T < k. Obviously, φ(C0) is such a point. It follows that rankφ(A1) = k.

Using the same argument once again, we conclude that rankφ(A2) = k. After t steps

we arrive at the desired equation rankφ(B) = k.

Lemma 2.9 Let φ : Hn → Hm be an adjacency preserving map. Assume that there

exist P,Q ∈ Hn such that d(φ(P), φ(Q)) = n. Then d(φ(A), φ(B)) = d(A,B) for every

A,B ∈ Hn.

Proof Because φ is an adjacency preserving map we get immediately from the defi-

nition of distance d that φ is a contraction with respect to d, that is, d(φ(A), φ(B)) ≤
d(A,B) for every A,B ∈ Hn.

First we prove that for A ∈ Hn, d(A, P) = n implies d(φ(A), φ(P)) = n. Let

σ be the map X 7→ σ(X) = X + P for all X ∈ Hn and let σ ′ be the map X 7→
σ ′(X) = X − φ(P) for all X ∈ Hm. Let ϕ = σ ′ ◦ φ ◦ σ. Then ϕ preserves adjacency,
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rankϕ(Q − P) = n, and ϕ(0) = 0. Because ϕ is a contraction with respect to d we

have rankϕ(X) < n for every singular X ∈ Hn. We have d(0,A − P) = d(A, P) = n,

and by Lemma 2.8 we have n = d(0, ϕ(A − P)) = d(φ(A), φ(P)).

Now we prove that for A,B ∈ Hn, d(A,B) = n implies d(φ(A), φ(B)) = n. We

can find C ∈ Hn such that d(P,C) = d(C,A) = d(A,B) = n. Applying the previous

step we first see that d(φ(P), φ(C)) = n, and applying it two more times we arrive at

the desired conclusion d(φ(A), φ(B)) = n.

Finally we prove that d(A,B) = d(φ(A), φ(B)) for all A,B ∈ Hn. If d(A,B) = n,

then d(φ(A), φ(B)) = n from above. Suppose d(A,B) < n. Then there is a point C

such that d(A,B) + d(B,C) = d(A,C) = n. This implies

n = d(A,C) = d(A,B) + d(B,C)

≥ d(φ(A), φ(B)) + d(φ(B), φ(C)) ≥ d(φ(A), φ(C))

= n.

Hence d(A,B) = d(φ(A), φ(B)).

Lemma 2.10 Let m, n be integers with m ≥ n ≥ 2. Let A,B,C ∈ Hm with

B =

[

B1 0

0 0

]

and C =

[

C1 0

0 0

]

,

where B1 and C1 are n × n hermitian matrices, B1 6= C1. Assume that A and B are

adjacent and A and C are adjacent. Then A is of the form

A =

[

∗ 0

0 0

]

,

where ∗ stands for an n × n hermitian matrix.

Proof After replacing A,B,C by A − B, B − B, C − B, respectively, we may assume

that B = 0. Thus, A is of rank one. Hence, C is either of rank one, or of rank two.

In the first case we complete the proof using Lemma 2.2, while in the second case we

have C = A + (C −A) and rank C = rank A + rank(C −A). We already know that the

rank additivity condition implies that Im A ⊂ Im C . This completes the proof.

Lemma 2.11 Let m, n be positive integers with n ≥ 2. Assume that φ : Hn → Hm is

an adjacency preserving map with φ(0) = 0. Suppose also that

φ(I) =

[

X 0

0 0

]

,

where X ∈ Hn is of rank n and the zero matrices are of appropriate sizes. Then for all

A ∈ Hn

(2.1) φ(A) =

[

∗ 0

0 0

]

,

where ∗ stands for some n × n hermitian matrix.
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Proof We first prove the special case when A is a projection of rank one. In this case

we have d(0,A) = 1 and d(A, I) = n−1, and consequently, φ(A) is a rank one matrix

with d(φ(A), φ(I)) ≤ n − 1. From n = d(φ(I), 0) ≤ d(0, φ(A)) + d(φ(A), φ(I)) ≤ n

we conclude that rankφ(I) = rankφ(A) + rank(φ(I) − φ(A)), which yields that

Imφ(A) ⊂ Imφ(I), and thus, φ(A) is of the form (2.1). If A = tP for some rank one

projection P and some real number t 6= 0, 1, thenφ(A) is adjacent to both 0 andφ(P),

and by Lemma 2.10, φ(A) must be of the form (2.1). Thus, we have proved (2.1) for

all hermitian matrices of rank one. Every matrix A ∈ Hn of rank k, 2 ≤ k ≤ n, is

adjacent to more than one hermitian matrix of rank k − 1. Note that by Lemma 2.9

φ is injective. So, we can complete the proof using Lemma 2.10 and induction.

3 The Special Case H2

Let n ≥ 3 be an integer. Minkowski space Mn can be described as R
n together with

the indefinite inner product ( · , · ) of the form

(x, y) := x1 y1 + · · · + xn−1 yn−1 − xn yn,

where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n. A theorem of A. D. Alexandrov [1]

states that any bijective transformation f : R
n → R

n which preserves the Lorentz

distance 0 between pairs of points in both directions, i.e.,

(3.1) (x − y, x − y) = 0 ⇔
(

f (x) − f (y), f (x) − f (y)
)

= 0

for all x, y ∈ R
n, is the product of a Lorentz transformation and a dilation.

Let D be a domain of R
n, i.e., an open and connected subset of R

n. We are now

interested in mappings f : D → R
n, which satisfy (3.1) for all x, y ∈ D. Any dilation

x 7→ kx + t where k ∈ R \ {0} and t ∈ R
n satisfies (3.1). Also any Lorentz transfor-

mation x 7→ xL + t where L is a Lorentz matrix and t ∈ R
n satisfies (3.1). Finally, if

D does not intersect the cone {x ∈ Mn : (x, x) = 0}, then the conformal inversion

f : x 7→ x/(x, x) satisfies (3.1). We call a mapping a conformal mapping if it is the

product of mappings of these three types. So any conformal mapping f : D → R
n

satisfies (3.1).

The following was proved independently by A. D. Alexandrov [2] (see also [9]),

and the result was generalized by I. Popovici and D. C. Rǎdulescu [11].

Theorem 3.1 Let D be a domain of R
n, n ≥ 3. Let f : D → R

n be a mapping such

that (3.1) holds for all x, y ∈ D. Then f is a conformal mapping.

Any conformal mapping f : R
n → R

n is the product of a dilation and a Lorentz

transformation. So we obtain the following corollary.

Corollary 3.2 Let n ≥ 3. Any mapping f : R
n → R

n which satisfies (3.1) for all

x, y ∈ R
n is the product of a dilation and a Lorentz transformation.

From now on we consider the case n = 4. The mapping R
4 → H2,

(x1, x2, x3, x4) 7→

(

x4 + x1 x2 + ix3

x2 − ix3 x4 − x1

)

,
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takes points x 6= y ∈ R
4 with (x − y, x − y) = 0 to adjacent matrices and vice versa

(see [7]). In the language of hermitian complex 2 × 2 matrices, Corollary 3.2 reads

as follows.

Corollary 3.3 Let φ : H2 → H2 be a mapping such that A,B are adjacent if and only

if φ(A), φ(B) are adjacent, A,B ∈ H2. Then there exist c ∈ {−1, 1}, an invertible 2×2

complex matrix T, and S ∈ H2 such that either

φ(A) = cTAT∗ + S, A ∈ H2,

or

φ(A) = cTAT∗ + S, A ∈ H2.

Theorem 3.4 Let φ : H2 → H2 be a mapping which preserves adjacency. Let there

exist matrices P,Q ∈ H2 such that φ(P) 6= φ(Q) are not adjacent. Then there exist

c ∈ {−1, 1}, an invertible 2 × 2 complex matrix T, and S ∈ H2 such that either

φ(A) = cTAT∗ + S, A ∈ H2,

or

φ(A) = cTAT∗ + S, A ∈ H2.

Proof Let P,Q ∈ H2 be matrices such that φ(P) 6= φ(Q) are not adjacent. Then by

Lemma 2.9, we have d(φ(A), φ(B)) = d(A,B) for all A,B ∈ H2. In particular, A,B are

adjacent if and only if φ(A), φ(B) are adjacent for all A,B ∈ H2. Applying Corollary

3.3, we obtain the theorem.

4 Proof of the Main Result

We will prove our main theorem in several steps.

Claim 4.1 Theorem 1.2 holds true in the special case when n = 2.

Proof There is nothing to prove if m = 1. So, assume from now on that m ≥ 2. By

Lemma 2.9, we have that either φ(H2) is contained in a line {λR : λ ∈ R} for some

rank one matrix R ∈ Hm, or rankφ(A) = rank A for every A ∈ H2. In the second

case we can find a standard transformation, which maps φ(I) to
[

A 0
0 0

]

, for some 2×2

invertible hermitian matrix A. By Lemma 2.11 we may consider φ as a map from H2

to H2 which preserves the adjacency in both directions. We complete the proof using

Theorem 3.4.

Claim 4.2 Let m, n be positive integers with n ≥ 2. Assume that φ : Hn → Hm is an

adjacency preserving map such that φ(0) = 0. Suppose also that

φ(I) =

[

I 0

0 0

]

,
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where I on the right-hand side stands for the n×n identity matrix and the zeroes denote

the zero matrices of the appropriate sizes. Then there exists an n × n unitary matrix U

such that either

φ(A) =

[

UAU ∗ 0

0 0

]

, A ∈ Hn,

or

φ(A) =

[

U AU ∗ 0

0 0

]

, A ∈ Hn.

Proof We will prove this statement by induction on n. We already know that it holds

true in the case when n = 2. So assume it holds for n − 1 and we want to prove it

for n. If P ∈ Hn is a projection of rank n− 1, then by Lemma 2.9 the matrix φ(P) has

rank n − 1 and is adjacent to φ(I). Thus, φ(I) = φ(P) + R, where R is of rank one.

Applying Lemma 2.3 we see that

φ(P) =

[

Q 0

0 0

]

,

where Q is a projection of rank n − 1. The set PHnP can be identified with Hn−1 and

φ(P) is unitarily similar to E11 + · · · + En−1,n−1. Thus, we can apply the induction

hypothesis for the restriction of φ to the subset PHnP. In particular, we conclude that

(because P was an arbitrary projection of rank n − 1) φ maps rank one projections

into rank one projections. Moreover, if two rank one projections are orthogonal,

then their φ-images are orthogonal as well. Thus, after replacing φ by the map

X 7→

[

V 0

0 0

]

φ(X)

[

V ∗ 0

0 0

]

,

where V is an appropriate unitary n × n matrix, we may assume that φ(Eii) = Eii ,

i = 1, . . . , n. Here, of course, Eii appearing on the left-hand side is an n × n matrix,

while Eii on the right-hand side is of the size m × m.

Let i, j ∈ {1, . . . , n}, i 6= j. Applying Claim 4.1 together with φ(Eii) = Eii and

φ(E j j) = E j j we see that either

φ(tEii + αEi j + αE ji + sE j j) = tEii + wi jαEi j + wi jαE ji + sE j j ,

or

φ(tEii + αEi j + αE ji + sE j j) = tEii + wi jαEi j + wi jαE ji + sE j j

for some complex number wi j with |wi j | = 1.

Let A and B be two hermitian n×n matrices of rank one. Then we can find a rank

two projection Q such that A,B ∈ QHnQ. Applying Claim 4.1 for the restriction of

φ to QHnQ together with the fact that φ preserves projections and orthogonality of

rank one projections we see that φ(ABA) = φ(A)φ(B)φ(A).

Now let B be any rank one matrix and A any rank one matrix of the form

tE11 +αE12 +αE21 +sE22. We know that either φ(A) = tE11 +w12αE12 +w12αE21 +sE22,

or φ(A) = tE11 + w12αE12 + w12αE21 + sE22. Let us consider only the first case. Then
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since ABA is a matrix having nonzero entries only in the upper-left 2 × 2 corner, we

have

φ(ABA) = diag(1,w12, 0, . . . , 0) ABA diag(1,w12, 0, . . . , 0) = φ(A)φ(B)φ(A).

It is now straightforward to verify that we obtain the upper-left 2 × 2 corner of φ(B)

by multiplying the upper-left 2 × 2 corner of B by diag(1,w12) on the left and by

diag(1,w12) on the right.

In the preceding arguments we can replace E11, E12, E21, E22 by Eii, Ei j , E ji, E j j ,

i 6= j. In this way we show that for every [ai j] ∈ Hn of rank one we have φ([ai j]) =

[wi j fi j(ai j)], where wii = 1, i = 1, . . . , n, wi j are complex numbers of modulus 1

with wi j = w ji , 1 ≤ i, j ≤ n, i 6= j, fii = id, i = 1, . . . , n, and every function

fi j = f ji : C → C is either the identity or the complex conjugation, for 1 ≤ i, j ≤ n,

i 6= j. Now, for every [ai j] ∈ Hn of rank one, the matrix [wi j fi j(ai j)] has rank one.

It follows easily that there exist complex numbers z1, . . . , zn of modulus 1 such that

wi j = ziz j and either fi j = id for all i 6= j, or fi j is the complex conjugation for all

i 6= j. Composing φ with a similarity transformation induced by the unitary m × m

matrix diag(z1, . . . , zn, 1, . . . , 1) and with the complex conjugation, if necessary, we

may assume that

(4.1) φ(A) =

[

A 0

0 0

]

for every A ∈ Hn of rank one.

We apply once again the induction hypothesis for the restriction of φ to PHnP,

where P is any projection of rank n − 1. We conclude that (4.1) holds true for every

A ∈ Hn of rank at most n − 1. So, it remains to prove this equation for all invertible

matrices A ∈ Hn.

So, let A ∈ Hn be invertible. Then A =

∑n
j=1 t jP j , where the P j s are pairwise

orthogonal rank one projections and the t j s are nonzero real numbers. Denote

Qi =

[

Pi 0

0 0

]

, i = 1, . . . , n.

Clearly, φ(A) is adjacent to φ(A − tiPi) =

∑

j 6=i t jQ j , i = 1, . . . , n. By Lemma 2.9,

rankφ(A) = n. We have d(φ(A), tiQi) ≤ d(A, tiPi) = n − 1, and since φ(A) is a

matrix of rank n, while tiQi has rank one, we actually have d(φ(A), tiQi) = n − 1.

Applying Lemma 2.4 we see that φ(A) =

∑n
j=1 t jQ j . Thus, (4.1) holds true for all

A ∈ Hn.

Claim 4.3 Let m, n be positive integers with n ≥ 3. Assume that φ : Hn → Hm is an

adjacency preserving map such that φ(0) = 0. Suppose also that for every projection P

of rank n − 1 there exists a nonzero vector x ∈ C
m such that φ(PHnP) ⊂ span{xx∗}.

Then φ is a degenerate adjacency preserving map.

Proof Our assumption is that for every rank n − 1 projection P ∈ Hn there exists

a rank one projection Q ∈ Hm such that φ(PHnP) is contained in the linear span
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of Q. It is rather easy to see that Q is independent of P. Indeed, let P1, P2 ∈ Hn be

projections of rank n − 1 and φ(P jHnP j) ⊂ span{Q j}, j = 1, 2. Then we can find

a rank one projection R such that R ∈ P jHnP j , j = 1, 2. Since φ(R) is adjcent to 0,

we have φ(R) = t1Q1 = t2Q2 for some nonzero t1, t2. It follows that Q1 = Q2, as

desired.

We have thus shown that there exists a rank one projection Q such that φ(A) ∈
span{Q} for every A ∈ Hn of rank at most n − 1. We may assume with no loss of

generality that Q = E11.

Since every invertible n × n hermitian matrix is adjacent to some matrix of rank

n − 1, we have rank A ≤ 2 for every A ∈ Hn.

Assume first that every invertible matrix A from Hn is sent by φ into a matrix of

rank at most one. We have to show that if φ(A) 6= 0, then φ(A) ∈ span{E11}. Assume

on the contrary that φ(
∑n

j=1 t jP j) = Q 6∈ span{E11}, where the P j s are pairwise

orthogonal rank one projections, the t j s are nonzero real numbers and Q ∈ Hm

is a rank one matrix. We know that φ(
∑n−1

j=1 t jP j) is contained in the linear span

of E11 and is adjacent to Q. Hence, φ(
∑n−1

j=1 t jP j) = 0. By Lemma 2.7 the line

{
∑n−1

j=1 t jP j + tPn : t ∈ R} is mapped by φ injectively into the linear span of Q.

Thus, there exists a real number s, s 6= tn, such that φ(
∑n−1

j=1 t jP j + sPn) = pQ with

p 6= 0. We know that both φ(
∑n−1

j=2 t jP j + tnPn) and φ(
∑n−1

j=2 t jP j + sPn) belong

to the linear span of E11. The first one is adjacent to Q and the second one to pQ.

Thus, φ(
∑n−1

j=2 t jP j + tnPn) = φ(
∑n−1

j=2 t jP j + sPn) = 0, contradicting the fact that
∑n−1

j=2 t jP j + tnPn and
∑n−1

j=2 t jP j + sPn are adjacent.

The other possibility we have to treat is that there exists an invertible A ∈ Hn

such that rankφ(A) = 2. We will complete the proof of this step by showing that

this possibility cannot occur. Indeed, if rankφ(A) = 2 for some invertible A ∈ Hn,

then by Lemma 2.8, rankφ(A) = 2 for every invertible A ∈ Hn. There exists a

matrix of rank n − 1, say
∑n

j=2 t jP j such that φ(
∑n

j=2 t jP j) = sE11 with s 6= 0.

Here, the P j s are pairwise orthogonal rank one projections and the t j s are nonzero

real numbers. Let P1 be a rank one projection orthogonal to P2, . . . , Pn. Now, both

P1 +
∑n

j=2 t jP j and 2P1 +
∑n

j=2 t jP j are adjacent to
∑n

j=2 t jP j , and they are mapped

by φ into matrices of rank two. Thus, φ(P1 +
∑n

j=2 t jP j) = sE11 + T, where T is

of rank one and d(T, E11) = 2. Now, φ(P1 +
∑n−1

j=2 t jP j) is contained in the linear

span of E11 and is adjacent to sE11 + T. Hence, φ(P1 +
∑n−1

j=2 t jP j) = sE11. Similarly,

φ(2P1 +
∑n−1

j=2 t jP j) = sE11. But P1 +
∑n−1

j=2 t jP j and 2P1 +
∑n−1

j=2 t jP j are adjacent,

and therefore, φ(P1 +
∑n−1

j=2 t j P j) 6= φ(2P1 +
∑n−1

j=2 t jP j), a contradiction.

Claim 4.4 Let m, n be positive integers with n ≥ 3. Assume that φ : Hn → Hm is

an adjacency preserving map such that φ(0) = 0. Suppose also that for every projection

P of rank n − 1 the restriction of φ to PHnP is a standard map. Then φ is a standard

adjacency preserving map.

Proof By our assumption the restriction of φ to PHnP, where P = E11 + · · · +

En−1,n−1, is a standard map. Thus, after composing φ with an appropriate congru-

ence transformation and the entrywise complex conjugation, if necessary, and after
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multiplying the map so obtained by −1, if necessary, we may assume that

(4.2) φ

([

A 0

0 0

])

=

[

A 0

0 0

]

for every (n − 1) × (n − 1) hermitian matrix A.

Our next observation is that φ(Q) ≥ 0 for every rank one projection Q. Indeed,

for every such Q we can find a rank n− 1 projection R such that E11,Q ∈ RHnR. The

restriction of φ to RHnR is of standard form. Every standard map either sends every

positive definite matrix into a positive definite matrix or sends every positive defi-

nite matrix into a negative definite matrix. Since φ(E11) = E11, we have necessarily

φ(Q) ≥ 0.

We know that φ(Enn) = sxx∗ for some norm one vector x and some positive real

number s. We will show that x is linearly independent of e1, . . . , en−1 ∈ C
m (in

particular, this shows that m ≥ n). Otherwise we would have φ(Enn) = φ(Q) for

some rank one matrix Q ∈ (E11 + · · · + En−1,n−1)Hn(E11 + · · · + En−1,n−1). Then

we would be able to find a rank n − 1 projection R such that Enn,Q ∈ RHnR. Since

φ(Enn) = φ(Q), the restriction of φ to RHnR would not be standard, a contradiction.

Thus, x has to be linearly independent of e1, . . . , en−1. Therefore there exists an

invertible m × m matrix T such that Tei = ei , i = 1, . . . , n − 1, and Tx =
1√

s
en.

Replacing φ with the map X 7→ Tφ(X)T∗ we may assume that φ(Enn) = Enn and

(4.2) hold true.

Set Ri = I − Eii ∈ Hn, i = 1, . . . , n. By the induction hypothesis the restriction

of φ to RiHnRi is linear. It follows that φ(Ri) = E − Eii ∈ Hm for every i = 1, . . . , n.

Here, E = E11 + · · · + Enn.

In the next step we will show that φ(I) is of rank n. Indeed, since I is adjacent to

Ri , i = 1, . . . , n, the matrix φ(I) is adjacent to E − Eii , i = 1, . . . , n. Thus, rankφ(I)

is either n − 2, or n − 1, or n. We have to show that the first two possibilities cannot

occur.

Assume first that rankφ(I) = n − 2. Then E − Eii = φ(I) + T for some rank one

matrix T and since rank(E − Eii) = rankφ(I) + rank T, the image of E − Eii is the

direct sum of the image of φ(I) and the image of T. In particular, the image of φ(I)

is a subspace of the linear span of {e1, . . . , en} \ {ei}, i = 1, . . . , n. It follows that the

image of φ(I) is the zero subspace, a contradiction.

Consider now the case when rankφ(I) = n − 1. It is easy to see that if two

hermitian matrices of the same rank are adjacent, then they have the same image.

Indeed, let T =

∑r
j=1 t jx jx

∗
j , where the x jx

∗
j s are orthogonal projections and the

t j s are nonzero real numbers, and let S be a rank r hermitian matrix adjacent to T.

Then S =

∑r
j=1 t j x jx

∗
j + sy y∗ for some nonzero vector y and some nonzero real

number s. If y was linearly independent of the x j s, then S would be of rank r + 1.

Thus, y is contained in the linear span of x1, . . . , xr , and consequently, the image of

S is a subspace of the image of T. Because they have the same rank, these two images

are actually equal. Using this observation, we see that Imφ(I) = Im(E − Eii) =

span({e1, . . . , en} \ {ei}) for every i = 1, . . . , n, a contradiction.

Thus, we have proved that rankφ(I) = n. Applying Lemma 2.4 with Pi = Eii ,
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ti = 1, i = 1, . . . , n, we can easily get that

φ(I) =

[

I 0

0 0

]

.

The desired conclusion follows now directly from Claim 4.2.

Claim 4.5 Theorem 1.2 holds true in the special case when n = 3.

Proof Let P ∈ H3 be any projection of rank two. By Claim 4.1, the restriction of φ
to PH3P is either standard or degenerate. We already know that the statement holds

true if either the restriction of φ to PH3P is degenerate for every projection P of rank

two, or the restriction of φ to PH3P is standard for every projection P of rank two.

In order to complete the proof of this special case, we must show that the possibil-

ity that there exist rank two projections P and Q such that the restriction of φ to PH3P

is degenerate and the restriction of φ to QH3Q is standard cannot occur. Assume, on

the contrary, that this is true. Then m ≥ 2. Without loss of generality we may assume

that Q = E11 + E22. Then, after composing φ with a congruence transformation, and

with the entrywise complex conjugation, if necessary, and multiplying with −1, if

necessary, we may assume that

(4.3) φ

([

A 0

0 0

])

=

[

A 0

0 0

]

for every hermitian 2 × 2 matrix A. Here, of course, the zeroes on the left-hand side

stand for the 2×1 zero matrix, the 1×2 zero matrix, and the 1×1 zero matrix, while

on the right-hand side, the zeroes denote the 2× (m−2) zero matrix, the (m−2)×2

zero matrix, and the (m − 2) × (m − 2) zero matrix (in the special case when m = 2,

the zeroes on the right-hand side are absent). We will show that φ(tR) = tφ(R) for

every real number t and every hermitian matrix R of rank one. Indeed, this is true

if R ∈ QH3Q. If R 6∈ QH3Q, then we can find a projection R1 ∈ QH3Q of rank

one such that rank one matrices φ(R) and φ(R1) are linearly independent. There

exists a rank two projection R2 such that R,R1 ∈ R2H3R2. Clearly, the restriction of

φ to R2H3R2 is not degenerate. Hence, it is standard and therefore real-linear, and

consequently, φ(tR) = tφ(R), t ∈ R, in this case as well.

Let T ∈ H3 be any matrix. Define a map φT : H3 → Hm by

φT(X) = φ(T + X) − φ(T), X ∈ H3.

Obviously, φT is an adjacency preserving map satisfying φT(0) = 0. We will show

that φT is of the same type as φ, that is, there exist rank two projections PT and QT

such that the restriction of φT to PTH3PT is degenerate and the restriction of φT to

QTH3QT is standard. If this were not true, then we already know that φT would be

either standard or degenerate.

If φT is standard, then

φ(Y ) = φ(T + (Y − T)) = φ(T) + φT(Y − T) = φ(T) + φT(Y ) − φT(T)

= φT(Y ) + Z, Y ∈ H3,
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where Z = φ(T) − φT(T). Applying φ(0) = φT(0) = 0, we conclude that Z = 0.

Thus, φ is standard, a contradiction.

If φT is degenerate, then

φ(Y ) = φ(T + (Y − T)) = φ(T) + φT(Y − T) = φ(T) + f (Y )xx∗, Y ∈ H3,

for some function f : H3 → R and some nonzero vector x. Applying φ(0) = 0, we

conclude that φ(T) ∈ span{xx∗}. Thus, φ is degenerate, a contradiction.

We have thus proved that φT is of the same type as φ. By the previous step,

φT(tR) = tφT(R) for every t ∈ R, every rank one matrix R, and every T ∈ H3.

Equivalently,

(4.4) φ(T + tR) = φ(T) + t(φ(T + R) − φ(T)), t ∈ R,

for every T ∈ H3 and every rank one matrix R ∈ H3.

We will next prove that φ is real-linear. It is enough to show that

φ(A1 + · · · + Ap) = φ(A1) + · · · + φ(Ap)

for every positive integer p and arbitrary rank one hermitian matrices A1, . . . ,Ap.

We will prove this by induction on p. Assume that the statement holds true for p and

we want to prove it for p + 1. Let A1, . . . ,Ap+1 ∈ H3 be any rank one matrices. Using

(4.4), we see that for every real t we have

φ(A1 + · · · + Ap + tAp+1) = φ(A1 + · · · + Ap)

+ t[φ(A1 + · · · + Ap+1) − φ(A1 + · · · + Ap)].

Applying the induction hypothesis, we get

φ(A1 + · · · + Ap + tAp+1) = φ(A1) + · · · + φ(Ap)

+ t[φ(A1 + · · · + Ap+1) − φ(A1) − · · · − φ(Ap)].

Now, for every real t the matrix φ(A1 + · · · + Ap + tAp+1) is adjacent to

φ(A2 + · · · + Ap + tAp+1) = φ(A2) + · · · + φ(Ap) + tφ(Ap+1).

Hence, the matrix

φ(A1) + · · · + φ(Ap) + t[φ(A1 + · · · + Ap+1) − φ(A1) − · · · − φ(Ap)]

− φ(A2) − · · · − φ(Ap) − tφ(Ap+1)

= φ(A1) + t[φ(A1 + · · · + Ap+1) − φ(A1) − · · · − φ(Ap) − φ(Ap+1)]

is of rank one for every real number t . It follows from Lemma 2.5 that

φ(A1 + · · · + Ap+1) − φ(A1) − · · · − φ(Ap) − φ(Ap+1) = 0,
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as desired.

We will show that our assumptions together with (4.3) yield that φ(E33) has all

nonzero entries in the upper-left 2 × 2 corner. If not, then φ(E33) = sxx∗ for some

vector x 6∈ span{e1, e2} and some nonzero real number s, which implies that φ(I) =

φ(E11 +E22)+φ(E33) = E11 +E22 +sxx∗ has rank 3. But then, because of the adjacency

preserving property, every projection Q of rank two is mapped into a matrix of rank

two, and therefore, every restriction of φ to QH3Q, where Q is any projection of rank

two, is standard, a contradiction.

Next, there exists a rank one projection R ∈ (E11 + E22)H3(E11 + E22) such that

φ(R) and φ(E33) are linearly independent. Thus, if R1 is a projection of rank two with

R1RR1 = R and R1E33R1 = E33, then the restriction of φ to R1H3R1 is standard, and

thus, φ(E33) ≥ 0. It follows that

φ(E33) =

[

cP 0

0 0

]

,

where P is a 2 × 2 projection of rank one and c a positive real number. Let U be a

2 × 2 unitary matrix such that U ∗PU = E22. Define a 3 × 3 matrix T and m × m

matrix V by

T =

[

U 0

0 1√
c

]

and V =

[

U 0

0 I

]

.

After replacing φ by X 7→ V ∗φ(TXT∗)V , we may assume that both (4.3) and

φ(E33) = E22 hold true. Applying Claim 4.1 first for the restriction of φ to

(E11 + E33)H3(E11 + E33), and then for the restriction of φ to (E22 + E33)H3(E22 + E33),

using the real-linearity of φ we get the existence of real numbers ϕ, a, b such that

either

φ









t1 u + iv w + iz

u − iv t2 x + i y

w − iz x − i y t3









=





t1 u + iv + (w + iz) exp(iϕ) 0

u − iv + (w − iz) exp(−iϕ) t2 + t3 + ax + by 0

0 0 0



 ,

or

φ









t1 u + iv w + iz

u − iv t2 x + i y

w − iz x − i y t3









=





t1 u + iv + (w − iz) exp(iϕ) 0

u − iv + (w + iz) exp(−iϕ) t2 + t3 + ax + by 0

0 0 0



 ,

t1, t2, t3, u, v,w, z, x, y ∈ R. We start with the first case. Since

φ









1

α
β





[

1 α β
]
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is of rank one for every pair of complex numbers α, β, the determinant of the upper-

left 2 × 2 corner of this matrix must be zero. Hence,

|α|2 + |β|2 + a Re(αβ) + b Im(αβ) − |α|2 − |β|2 − αβ exp(iϕ) − αβ exp(−iϕ) = 0

for every pair of complex numbers α, β. Setting β = 1 we see that a Reα + b Imα =

2 Re(α exp(iϕ)) for every α ∈ C. It follows that

φ









0

1

− exp(iϕ)





[

0 1 − exp(−iϕ)
]





= 0,

a contradiction.

In the second case, in the same way we get that

|α|2 + |β|2 + a Re(αβ) + b Im(αβ) − |α|2 − |β|2 − αβ exp(−iϕ) − αβ exp(iϕ) = 0

for every pair of complex numbers α, β. Replacing first α by 1, then β by 1, and then

comparing the obtained equations one can easily see that b = 0. Thus,

a Re(αβ) − 2 Re(αβ exp(iϕ)) = 0,

or equivalently, Re(α(aβ − 2β exp(iϕ))) = 0 for every pair of complex numbers

α and β. It follows that aβ = 2β exp(iϕ) for every β ∈ C. This contradiction

completes the proof.

Now we are ready to prove our main result. We will prove it by induction on n.

The cases n = 2 and n = 3 have already been proved. So, let n ≥ 4 and assume

that for every positive integer m every adjacency preserving map from Hn−2 → Hm

as well as every adjacency preserving map from Hn−1 → Hm is either standard, or

degenerate.

Let P ∈ Hn be any projection of rank n − 1. By the induction hypothesis, the

restriction of φ to PHnP is either standard, or degenerate. We will show that if such a

restriction is degenerate for one projection P of rank n − 1, then it is degenerate for

all projections P of rank n − 1. Indeed, assume that P is a projection of rank n − 1

such that φ(PHnP) is contained in the linear span of some projection of rank one and

let Q ∈ Hn be any projection of rank n − 1. Then there exists a projection R of rank

n − 2 such that RHnR ⊂ PHnP and RHnR ⊂ QHnQ. We know that the restriction of

φ to RHnR is either standard or degenerate. Since φ(PHnP) is contained in the linear

span of some projection of rank one, the restriction of φ to RHnR is degenerate, and

consequently, the restriction of φ to QHnQ cannot be standard, and therefore it has

to be degenerate.

Hence, if a restriction of φ to PHnP is degenerate for some rank n − 1 projection

P, then by Claim 4.3, φ is degenerate.

In the remaining case when the restriction of φ to PHnP is of a standard form for

every projection P of rank n − 1 we complete the proof using Claim 4.4.
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