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ON THE ORDERED SET OF REFLECTIVE SUBCATEGORIES

G.M. KELLY

Given a category A , we consider the (often large) set Ref A of

its reflective (full, replete) subcategories, ordered by inclusion.

It is known that, even when A is complete and cocomplete,

wellpowered and cowellpowered, the intersection of two reflective

subcategories need not be reflective. Supposing that A admits

(i) small limits and (ii) arbitrary (even large) intersections of

strong subobjects, we prove that an infimum A- C. in Ref A must

necessarily be the intersection n. C. . Accordingly Ref A is not

in general, even for good A , a complete lattice. We show, however,

under the same conditions on A , that RefA does admit small

suprema V• C. , given by the closure in A of the union u. C.

under the limits of types (i) and (ii) above.

1. Strongly complete categories

We suppose an inaccessible cardinal °° chosen once for all, and call

a set email if its cardinal is less than °° . The morphisms of any

category A form a set, and A is small if this set is small; while A
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is locally small if each hom-set A(A,B) is small. We use large to mean

not small- Although a category is said to be complete when it admits all

small limits, an ordered set is called a complete lattice only when it

admits all suprema and infima - even large ones if it is a large set.

We refer to [7] for the definition and properties of strong

monomorphisms. We call a category strongly complete if, besides admitting

small limits, it admits the fibred product Cor intersection) of any family

(f : A -*• B) of strong monomorphisms; in other words, it admits all

intersections of strong svbobjects. Of course a category is strongly

complete if it is complete and wellpowered, or even weakly wellpowered -

in the sense that each object has but a small set of strong subobjects.

In a strongly-complete category, the epimorphisms and the strong

monomorphisms form a factorization system: given f: A •*• B we take for

i: C -> B the intersection of those strong subobjects of B through which

f factorizes then f = ip , and p is epimorphic by Lemma 4.4 of [7].

We use subcategory to mean full replete subcategory. A subcategory

B of the strongly-complete A is said to be closed in A under strong

limits if the limit in A of a diagram in B lies in B , whenever the

diagram is either small or else of the form (f : A -*• B) where the maps

f in B are strong monomorphisms in A . Clearly the intersection of

subcategories closed under strong limits is itself so closed. Given any

subcategory V of A , there is accordingly a smallest subcategory V*

containing V which is closed in A under strong limits; we call V*

the strong-limit closure of V in A .

PROPOSITION 1. If B is closed in the strongly-complete A under

strong limits, every strong monomorphism f:C-*-B in B is a strong

monomorphism in A . Accordingly B is itself strongly complete, and

the inclusion B -*• A preserves small limits and arbitrary intersections

of strong monomorphisms.

Proof. Consider the totality of those maps j: E . -*• B through

which f factorizes and which are strong monomorphisms in A with

E.eB. Then their intersection k: E -> B in A is a strong
7
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monomorphism in A , and E e B since B is closed in A under strong

limits. Let the factorization of f through k be f = kp ; we show

that p is invertible, so that f like k is a strong monomorphism in

A . Since f is by hypothesis a strong monomorphism in B , so is p ;

thus it suffices to show that p is epimorphic in B . Let x,y: E -*• F

in B satisfy xp — yp , and let z: G •*• E be the equalizer in A of

x and y . Since B is closed in A under small limits, we have

G e. B ; and f factorizes through kz , which is a strong monomorphism

in A . By the definition of k , therefore, z is invertible and

x = y . D

2. Strong cogenerators

The definition in [7] of strong monomorphism admits an evident

generalization to a definition of a strongly monomorphic family

(f : A •*• Bal , in such a way that, if the product US exists, the family

is strongly monomorphic if and only if the corresponding map A -* W
a

is so.

A small set G of objects of A is said to be a strong cogenerator

if, for each A e A , the family (h: A •*• GjJ of all maps with codomain

in G is strongly monomorphic. When A is complete and locally small,

this is to say that the canonical map n..* A •*• II_ ~{A(,A,G) f)i G] (where
A Geb

X \ G denotes the product of X copies of G ) is a strong monomorphism.

From the form of the Special Adjoint Functor Theorem given by Borger

et al. in Corollary 1.10 of [3], it follows that:

PROPOSITION 2. Let the strongly-complete and locally-small A have

a strong cogenerator, and let B be locally small. Then a functor

U: A -»• B has a left adjoint if and only if it preserves small limits

(and hence monomorphisms), and sends an intersection of strong

monomorphisms to an intersection of monomorphisms. 0

If G is a strong cogenerator, the set-valued functors K(-,G)

for G e G jointly reflect isomorphisms. Taking for simplicity the case

of a locally-small complete A , suppose /.' A •*• B to be such that each

KCf,G) is invertible. The naturality of r\ gives wn. = H D / where u
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is the invertible map nff{A(f,G) ft G) ; since unA is a strong

monomorphism, so is f . On the other hand, G being a fortiori a

cogenerator since the n. are a fortiori monomorphic, the k(-,G) are

jointly faithful and hence jointly reflect epimorphisms, so that f is

epimorphic and hence invertible.

Suppose conversely that the small set G is such that the k(-,G)

jointly reflect isomorphims. Then if n. factorizes through an

epimorphism f: A + B , this f is invertible. For to say that n.

factorizes through f is to say that every h: A •*• G with G e G

factorizes through f , or that each k(f,G) is surjective; but k(f,G)

is injective since f is epimorphic.

If A is such that g; A -> C is a strong monomorphism whenever

g factorizes through no non-trivial epimorphism f: A -v B (which is the

case whenever A admits finite colimits, or whenever epimorphisms and

strong monomorphisms constitute a factorization system on A ) , a small set

G is a strong cogenerator exactly when the k(-,G) for G e G jointly

reflect isomorphisms; this is really a special case of Proposition 4.3

of Im and Kelly [6]. Since we have seen that epimorphisms and strong

monomorphisms do form a factorization system when A is strongly complete,

we have:

PROPOSITION 3. A small set G of objects of a locally-small and

strongly-complete A form a strong cogenerator if and only if a map f

is invertible whenever k(f,G) is so for each G e. G . •

PROPOSITION 4. Let V be a small subcategory of the locally-small

and strongly-complete A ., and let V* be the strong-limit closure of V

in A • Then V is a strong cogenerator for V* (which is itself

strongly complete by Proposition 1.)

Proof. By Proposition 3, we have to show that a map / in V is

invertible if k(f}Dl is so for each D e V . Consider the subcategory

B of A given by all those objects B of A for which k(f,B) is

invertible. If any diagram in 8 admits a limit in A , this limit lies

https://doi.org/10.1017/S0004972700026381 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700026381


141
Reflective subcategories

in 8 ,- for Af/jlim B.) = iim K(f,B.) . So B is closed in A under

strong limits; therefore, since it contains £> , it contains V* • Thus

/ is invertible since it is a map in V* with K(f3B) invertible for

each Bed*. D

Propositions 1, 2, and 4 now give:

PROPOSITION 5. If V is a smaZZ subcategory of the ZocaZZy-smaZZ
and strongZy-aompZete A and V* is the strong-Zimit eZosure of V in
A j then V* is reflective in A . D

3. Infima of reflective subcategories

We write Ref A for the set of reflective subcategories of A ,

ordered by inclusion. We use V an<3 A to denote suprema and infima

in Ref A , so far as they exist, retaining U and n for union and

intersection.

Remark 6. Even when A is locally small, complete and cocomplete,

wellpowered and cowellpowered, and has a generator and a strong

cogenerator, the intersection of two reflective subcategories need not be

reflective. The following simple counter-example is contained in a forth-

coming article [J] by Adamek and Rosicky. An object of A is a set

with two topologies, a first and a second; and a map f: A -*• B is a

function continuous both for the first topology and for the second. The

subcategory C, [respectively C,] consists of those objects for which the

first [respectively second] topology is compact Hausdorff. A reflexion

of A e A into CL is given by taking its Stone-Cech compactification

r: A •*• B with respect to the first topology, and giving to B as its

second topology the final one with respect to r ; similarly for the

reflexion into C_ . Yet Ĉ  n Cg is not reflective; the formal proof

is in [I], but the intuition is clear enough - if we take the reflexion

of A into Cj , and then the reflexion of this into Cg , and then the

reflexion of this last into CL , and so on alternately, the cardinal of

the successive reflexions increases unboundedly. {The author knows of no
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such counter-example for a well-behaved A with a strong generator.}

This counter-example does not of i tse l f show that Ref A for such
an A may lack binary infima; but i t does so when combined with the
following:

THEOREM 7. Let A be locally small and strongly complete. If a
subset {C.} of Ref A admits an infimm AC. , this must be the

intersection n C. .
•v

Proof. If any diagram in a reflective C. admits a limit in A ,

th is l imit l ies in C. ; hence each C. i s closed in A under strong

l imi ts . Thus if D e n C. and if {D} denotes the subcategory of A

consisting of D alone, i t s strong-limit closure {£>}* i s contained
in n C. . Since {D}* i s reflective in A by Proposition 5, we have
{D}* <= A C. . Since this is true for every D e C\ C• and since

D e. {D}* , we have n C. c A C. ; whence n C. = A C. . D

Remark 8. Since Ref A for a strongly-complete A , or even for
an A so good as that of Remark 6, may lack binary infima, i t i s not
in general a complete l a t t i ce . Yet we show in Theorem 14 below that
Ref A admits email suprema when A i s strongly complete. I t follows
that Ref A i s a large set for the A of Remark 6. Since this A has
a strong cogenerator G = {G^jGolG7} , where each G. i s a two-element

set and the respective pairs of topologies are Cchaotic, chaotic),
(.chaotic, Sierpinski) , and (Sierpinski, chaotic), Ref A can be large
even when the locally-small strongly-complete A has a strong cogenerator.
The following result , therefore, has no converse:

PROPOSITION 9. Let A be locally small and strongly complete. If
Ref A is a small set} A has a strong cogenerator.

Proof. Since {D}* i s reflective in A for each D e A by
Proposition 5, the set of distinct {D}* i s small; l e t i t consist of
the {G}* where G runs through the small set G . Given A e A, le t
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{A}* = {5}* where H e G . By Proposition 4, H is a strong cogenerator

for {A}* , so that the canonical £•' A -»• k(A,H) h E is a strong

monomorphism in {/I}* . Here KCA,H) $ H is in the first instance the

product in {A}* ; but it is equally the product in A . Moreover C is

a strong monomorphism in A by Proposition 1. Since x, factorizes

through n.: A •*• IL, ~{A(A3G) ill G}, the latter too is a strong monomorphism

in A ; so that G is a strong cogenerator for A . D

4. Reflective factorization systems

We call a set M of maps in a category A a skein if it contains

the isomorphisms and is closed under composition. A skein M is stable

vender pullbacks if the pullback of a map in M along any map in A is

again in M . The skein M is stable under fibred products if, whenever

a family (fn: ̂ n **" ̂  °^ m a P s ^n ^ admits a fibred product h: C -*• B,

we have h e M; similarly for stability under small or finite fibred

products. (Note the distinction between stability under pullbacks and

stability under binary fibred products.) Stability under the

intersections of strong monomorphisms means stability under those fibred

products, possibly large, in which each f is a strong monomorphism.

For maps e and m in A we write e + m if, for every

commutative square ve = rnu , there is a unique "diagonal" w with

we = u and rnu = v . If M is any set of maps in A we write

N+ = {m | n + m for all n e N} and N+ = {e | e + n for all n e N).

By Proposition 2.1.1 of Freyd and Kelly [5], N is a skein, stable

under pullbacks and fibred products, such that

(.1) if fg and f axe in N , so is g .

We recall from t5] that a factorization system (E,W on A consists of

two skeins E and M such that every map f in A admits a

factorization f = me with m e M and e e E , and such that e + m

for each e e E and m e M . This last requirement may be expressed

equivalently as M c E , or as E <= M ; in fact, by Proposition 2.2.1
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of [5], every factorization system satisfies M = E and E = M , and

hence is fully determined by the knowledge of either E or M In any

factorization system E n M consists of the isomorphisms, since e + e

only for invertible e . We order factorization systems by setting

(E,MJ < (E'jM'j when M c M' ; or equivalently when E' c E .

By the dual of (1) , any factorization system (E3\k) satisfies

(2) if fg and g are in E , so is / ;

we call CE, W a reflective factorization system if it also satisfies

(3) if fg and f are in E , so is g .

It was proved by Cassidy, Hubert, and Kelly in Section 2 of [4] that,

when A is strongly finitely complete (that is, when A admits finite

limits and arbitrary intersections of strong monomorphisms), there is an

order-preserving bijection between reflective factorization systems on A

and reflective subcategories of A . We now give a modification of their

proof of that result; the new proof provides extra information on M

needed in our applications below.

PROPOSITION 10. Let C be a reflective subcategory of the strongly-

finitely-complete A j the reflexion of A into C being p.: A •*• rA .

Let $C = (E3U) where E is the set of maps inverted by r: A -*• A and

where M is the smallest skein in A containing mor C and stable

under pullbaaks and arbitrary intersections of strong monomorphisms.

Then

(4) C = E = U e A | k(e,A) is invertible for all e e E} 3

and (.ESW) is a reflective factorization system with factorizations

constructed as in (5) and (6) below.

Proof. If C e C and e e E , we have K(e,C) invertible since it

is conjugate to the invertible C(r(e)3C) • thus C <z E . We may always

so choose the reflexion that p • C •*• rC for C e. C is 1:C •*• C ; then

rfp.J = 1 for any .A e A . If A e E we have A(p.3A) invertible,
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since p e E ; so there is an h: rA •*• A with hp. = 1 , and now

p fop = p . gives p.h = 1: vA •*• vA ; thus p . is invertible and

A e C . This proves (4).

E is clearly a skein, and M is a skein by definition. For

C e C , we have C e c by (4); this is equally the assertion that

C -»• 1 , where 1 is the terminal object of A , lies in E . it follows

from (1) that mor C c E . Since the skein E , by the remarks

preceding (1), is stable under pullbacks and fibred products, it follows

from the definition of M that M ^ E .

Since E clearly satisfies (.3) , it remains to show that any

f: A -*• B in A has an (EjMj factorization. In the diagram

(5)

r(f)

let the square be a pullback. Since r(f) e. mor C c M , we have u e M

by the definition of M . Now let k: E •*• D be the intersection of all

those strong subobjects of D , lying in M , through which w factorizes;

then we have a factorization

(6)

where the strong monomorphism k lies in M by the definition of M .

We now show that e e E , so that / has (uk)e as its (E,M)

factorization.
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Since *((>&) = ^ • applying r to the top triangle of (5) shows

that r(w) is a coretraction; whence r(e) is a coretraction by (6) .

Let the analogue of (5) with e in place of f be

(7)

+ rA

r(e)

Since rCel , being a coretraction, is a strong monomorphism, so is i t s

pullback u' . Being a strong monomorphism in M through which g

factorizes, u' i s invertible by the definition of k ; so we may as well

take D' = E , u' = 1 , and w' = e . Applying r to the top triangle

of (7) gives r(v')r(e) = 1 , while applying r to the square in (7)

gives r(e)r(v') = 1 • So r(e) is invertible and e e E . D

PROPOSITION 11. For any factorization system (E}M) on an A with

a terminal object 1 , define a suboategory C = V(E,M) by

(8) C =
Df {A e A | A -* 1 lies in

Then C is reflective in A , the reflexion p . ; A. ->- rA being the

E-part of the fÊ M^ factorization of A -> 1 . •

THEOREM 12. For a strongly-finitely-complete A , the (clearly

order-preserving 1 functions $ and y constitute a bisection between

reflective factorization systems on A and reflective subcategories of

A .

Proof. V<bC = M/l , where M is as in Proposition 10. Since M is

E , we have M/l - E1 , which i s C by (4) ; hence V$ = 1 .
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Let V(E3M) , where (E,M) is now reflective, be C as in

Proposition 11, and let $C be CE'^W'J . Then r(f) for f: A •* B in

A is the unique map rendering commutative

Since rA •*• 1 and rB •*• 1 lie in M , we have rCf) e M by (1) . Hence

r(f) is invertible, so that f e E' , if and only if r(/V e E . since

p. e E , this is equivalent by (2) to r(f)p. e E , and hence to p j 1 e E .

Since p_ e E , this last is equivalent by (3) to f e E . So E' = E j

and ** = 1 . D

The following is contained in Borceux and Kelly [2] in the special

case in which C is a localization, in the sense that the reflexion r

is left exact:

PROPOSITION 13. Let the reflective subcategory C of the strongly-

finitely-complete A correspond as in Theorem 12 to the reflective

factorization system (E,M) . Then if gf e E and f e M , the map f

is a strong monomorphism.

Proof. Since r(gf) = r(g)r(f) is invertible, r(f) is a

coretraction and hence a strong monomorphism, whence its pullback u in

(5) is a strong monomorphism. Since k is a strong monomorphism in (6)

and e in (6) is invertible because f e M , the composite f = tike is

a strong monomorphism. D

5. Small suprema of reflective subcategories

Consider reflective subcategories C- of a strongly-finitely-

complete A and the reflective factorization systems (E-,M-) that

correspond to them by Theorem 12. If there is a factorization system

(E,M) where E = n E- , it is clearly reflective by (3), and it is
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obviously the supremum of the [E.,M-l in the set of a l l factorization

systems, and a fortiori in the set of reflective factorization systems.
Accordingly the corresponding C = W/l i s the supremura of the C. in

Is

Ref A . The following is an analogue of Theorem 3.1 of Borceux and Kelly

[2], who dealt with the simpler case of small suprema in the ordered set

Loo A of localizations of A :

THEOREM 14. Let A be strongly complete [.respectively strongly

finitely complete'] and let {C.}. T be a set of reflective svbcategories
Is If G.J.

with I small [respectively finite]. Set E = n E. , and let M be the
ts

smallest skein containing u U. which is stable under small [respectively
is

finite] fibred products and all intersections of strong monomorphisms.

Then (E,AU is a reflective factorization system, so that the correspond-

ing C = M/l is the supremum of the C. in Ref A .

Proof. E is a skein since each E. is so, and M is a skein by

definition. Since M. = E. c E , and since E is a skein stable under

fibred products by the remarks preceding (.1) , we have M c E . It remains

to show that any /: A •*• B has an CE,M1 factorization. Let / = m .e.

be its ([E...M-J factorization, and form the fibred product
Is Is

n

then f = nf , where f: A •*• B' is the unique map satisfying P-f = e.

for all i . Factorize f as

A >B' = A — > E >B' ,
f e k

where k is the intersection of all those strong subobjects of B' ,
lying in M , through which f factorizes. By the definition of M ,
we have n e M and k e M ; i t remains to show that e e E , or
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equivalently that e e E. for each, i .
1s

Let e = m'.e'. be its (E..MJ factorization. Since

e. = p.f = p.ke = p .km'.e'.

and since e. and e\ belong to E. , we have '- e E. by (2) .

Because n! e M. , it follows from Proposition 13 that mi is a strong
1 % ^

monomorphism. Since e factorizes through the strong monomorphism m'-
Is

lying in M , it follows from the definition of k that m'. is
is

invertible. Thus e e. E. for each i , and hence e e E .
1s

D

The following, in i t s statement and in i t s proof, is a modification
of the result given for localizations in Theorem 3.3 of Borceux and
Kelly [ZL

THEOREM 15. In the situation of Theorem 143 C is the strong-limit
closure {.respectively strong-finite-limit closurel in A of u Ĉ  .

Proof. Write V for the closure in question of u C ; clearly

V c C since the reflective C is closed in A under all limits that

exist; and i t remains to show the converse.

Define as follows a set M of maps in A : the map f: A •*• B l ies
in W if, for every pullback

(9)

with B e 5 , we have C e V

Since the pullback along fh is the pullback along h of the

pullback along f , it is clear that N is a skein. Since the pullback

along wo is the pullback along u of the pullback along w , it is clear
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that N is stable under pullbacks. Moreover M is stable under such

fibred products as exist, and hence under small [respectively finite]

ones and all intersections of strong monomorphisms. To see this, consider

a diagram

t.

B ,

where the base of the prism is a fibred product, and where u,s constitute

the pullback of V and h . if we define W. and g • as the pullback

of V and /. , there are unique t- that complete the commutative
I* Is

diagram. Since pullback along v is a right-adjoint functor A/5 •*• A/D ,

the top of the prism is again a fibred product. Now if each /• e M and

D e V , we have each C.e.V, whence J e V because V is closed under

small [respectively finite] limits, so that h e N .

Since C. c V and V is closed under finite limits, it is clear

that mor C- c W . Because M is stable under pullbacks and fibred

products, it follows from Proposition 10 that each M. c W ; and now
Lr

Theorem 14 gives M c N .

If A e C , the unique map f: A •*• 1 is in M by Proposition 10

(since of course 1 e C) and is hence in M . Applying (9) with v the

identity map of 1 , and recalling that 1 e V , we have A e V • Thus

C <= V i as required. 0
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Remark 16. We have seen in Remark 8 above that large supreraa need

not exist in Ref A for a strongly-complete A , even under extra

hypotheses on A . We now observe that, even when a large supremum

C = V C. does exist, it need not be the strong-limit closure of U C^ .

The counter-example is contained in Example 3.7 of [2]. We take for A

the ordinal sum 1 + <°°̂  , the dual of the ordered set » + 1 consisting

of all ordinals S <*> . This A is locally small and admits all limits

and colimits, even large ones; it is trivially weakly wellpowered and

weakly cowellpowered, although neither wellpowered nor cowellpowered; and

it trivially admits a generator and a cogenerator. The reflective

subcategories C = [g "}0 "l for B e ™ , where 6 denotes the

ordinal B < °° as an element of °° , have as their supremum A itself;

but U C = °° " c A is already closed in A under small limits and all

intersections of strong monomorphisras.
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