ON A PERTURBED CONSERVATIVE SYSTEM OF SEMILINEAR WAVE EQUATIONS WITH PERIODIC-DIRICHLET BOUNDARY CONDITIONS

JINHAI CHEN ${ }^{\boxtimes}$ and DONAL O'REGAN

(Received 16 June 2009)

Abstract

In this paper, some existence and uniqueness results for generalized solutions to a periodic-Dirichlet problem for semilinear wave equations are given, using a global inverse function theorem. These results extend those known in the literature.

2000 Mathematics subject classification: primary 35B10, 35D05, 35L05, 35L20; secondary 35P05, 47F05.

Keywords and phrases: wave equation, periodic-Dirichlet problem, generalized solution, unique existence, global inverse function theorem.

1. Introduction

Let $\mathcal{J}=[0,2 \pi] \times[0, \pi]$, let $n \geq 1$ be an integer, let \mathbb{N}^{*} be the set of nonnegative integers, and let $F: \mathcal{J} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a function of class C^{2}. Suppose that V : $\mathcal{J} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function of class C^{2} whose gradient and Hessian matrix with respect to u are denoted by V^{\prime} and $V^{\prime \prime}$, respectively. Let $h \in \mathcal{H}$ with $\mathcal{H}=\left(L^{2}(\mathcal{J})\right)^{n}$ be given, with the usual inner product $\langle\cdot, \cdot\rangle$ and corresponding norm $\|\cdot\|$. We consider the system of semilinear wave equations

$$
\begin{equation*}
u_{t t}-u_{x x}-V^{\prime}(t, x, u)+F(t, x, u)=h(t, x) \tag{1.1}
\end{equation*}
$$

where subscripts denote the partial derivative, and where $F(t, x, u)$ is called a perturbing term. By a generalized solution of the periodic-Dirichlet problem on \mathcal{J} for (1.1) (or GPDS on \mathcal{J} for short) we mean an element $u \in \mathcal{H}$ such that

$$
\left\langle u, v_{t t}-v_{x x}\right\rangle-\left\langle v, V^{\prime}(t, x, u)\right\rangle+\langle v, F(t, x, u)\rangle=\langle h(t, x), v\rangle,
$$

for all $v \in\left(C^{2}(\mathcal{J})\right)^{n}$ satisfying

$$
\begin{gathered}
v(t, 0)=v(t, \pi)=0, \quad \forall t \in[0,2 \pi] ; \\
v(0, x)=v(2 \pi, x), \quad v_{t}(0, x)=v_{t}(2 \pi, x), \quad \forall x \in[0, \pi] .
\end{gathered}
$$

[^0]When the perturbing term $F(t, x, u)$ is 0 , it is easy to see that the conservative system

$$
\begin{equation*}
u_{t t}-u_{x x}-V^{\prime}(u)=h(t, x) \tag{1.2}
\end{equation*}
$$

is included in the system (1.1). In [6], Mawhin obtained the following existence and uniqueness theorem for the GPDS of (1.2) on \mathcal{J} using a Galerkin type argument similar to that in Bates and Castro [2] and a global inverse function theorem.
Theorem 1.1. Let $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function of class C^{2} and let $\mathcal{J}=[0,2 \pi] \times$ $[0, \pi]$. Assume that there exist two $n \times n$ symmetric matrices A and B, with respective eigenvalues $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{n}$ and $\beta_{1} \leq \beta_{2} \leq \cdots \leq \beta_{n}$, such that

$$
\begin{equation*}
A \leq V^{\prime \prime}(u) \leq B \tag{1.3}
\end{equation*}
$$

for every $u \in \mathbb{R}^{n}$ and

$$
\begin{equation*}
\bigcup_{k=1}^{n}\left[\alpha_{k}, \beta_{k}\right] \cap\left\{m^{2}-l^{2} \mid l \in \mathbb{Z}, m \in \mathbb{N}^{*}\right\}=\varnothing \tag{1.4}
\end{equation*}
$$

Then (1.2) with the periodic-Dirichlet boundary conditions on \mathcal{J} has a unique generalized solution $u \in\left(L^{2}(\mathcal{J})\right)^{n}$ for every $h \in\left(L^{2}(\mathcal{J})\right)^{n}$.

For more results on the existence of GPDS on \mathcal{J} of (1.1), we refer the reader to $[1,4,5,7]$ and the references therein.

In this paper, we establish some new sufficient conditions for the existence of a unique GPDS on \mathcal{J} of (1.1). Our proof is different from those mentioned above, and we use a new global inverse function theorem. Our results extend those in [1, 2, 4-7].

Throughout this paper we use the following assumption.
(A1). The eigenvalues $\lambda_{i}\left(V^{\prime \prime}(t, x, u)\right), i=1, \ldots, n$, of $V^{\prime \prime}(t, x, u)$ satisfy

$$
\alpha_{i}+\phi_{i}(t, x,\|u\|) \leq \lambda_{i}\left(V^{\prime \prime}\right) \leq \beta_{i}-\varphi_{i}(t, x,\|u\|)
$$

on $\mathcal{J} \times \mathbb{R}^{n}$, where $\alpha_{i}, \beta_{i} \in\left\{m^{2}-l^{2} \mid l \in \mathbb{Z}, m \in \mathbb{N}^{*}\right\}, i=1, \ldots, n$, are consecutive, $\phi_{i}(t, x, s)$ and $\varphi_{i}(t, x, s), i=1, \ldots, n$, are continuous functions defined from $\mathcal{J} \times$ $[0, \infty)$ to $(0, \infty)$, they are nonincreasing with respect to s, and

$$
\begin{equation*}
\int_{0}^{+\infty} \min _{1 \leq i \leq n,(t, x) \in \mathcal{J}}\left\{\phi_{i}(t, x, s), \varphi_{i}(t, x, s)\right\} d s=+\infty \tag{1.5}
\end{equation*}
$$

Here we say that $\alpha_{i}, \beta_{i} \in\left\{m^{2}-l^{2} \mid l \in \mathbb{Z}, m \in \mathbb{N}^{*}\right\}$ are consecutive, for $i=1, \ldots, n$, if

$$
\bigcup_{j=1}^{n}\left(\alpha_{i}, \beta_{i}\right) \cap\left\{m^{2}-l^{2} \mid l \in \mathbb{Z}, m \in \mathbb{N}^{*}\right\}=\emptyset
$$

and $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{n}, \beta_{1} \leq \beta_{2} \leq \cdots \leq \beta_{n}, \alpha_{i}<\beta_{i}$ for each i.

2. Abstract reformulation

If $\left\{c_{k} \mid 1 \leq k \leq n\right\}$ denotes an orthonormal basis in \mathbb{R}^{n} and if we set

$$
v_{l m}(t, x)=\exp (i l t) \sin m x, \quad l \in \mathbb{Z}, m \in \mathbb{N}^{*}
$$

then every $u \in \mathcal{H}$ has a Fourier series

$$
\begin{equation*}
u=\sum_{k=1}^{n} \sum_{(l, m) \in \mathbb{Z} \times \mathbb{N}^{*}} u_{k l m} v_{l m} c_{k} \tag{2.1}
\end{equation*}
$$

where the $u_{k l m}$ satisfy $u_{k l m}=\overline{u_{k,-l, m}}$ to make the series real. If we define

$$
\begin{equation*}
\operatorname{dom} \mathcal{L}=\{u \in \mathcal{H}: u \text { is given by }(2.1)\} \tag{2.2}
\end{equation*}
$$

with

$$
\sum_{k=1}^{n} \sum_{(l, m) \in \mathbb{Z} \times \mathbb{N}^{*}}\left(m^{2}-l^{2}\right)^{2}\left|u_{k l m}\right|^{2}<+\infty
$$

and

$$
\begin{equation*}
\mathcal{L}: \operatorname{dom} \mathcal{L} \subset \mathcal{H} \rightarrow \mathcal{H}, \quad u \mapsto \sum_{k=1}^{n} \sum_{(l, m) \in \mathbb{Z} \times \mathbb{N}^{*}}\left(m^{2}-l^{2}\right) u_{k l m} v_{l m} c_{k} \tag{2.3}
\end{equation*}
$$

it is easy to check that \mathcal{L} is a self-adjoint operator such that
$\operatorname{ker} \mathcal{L}=\operatorname{span}\left\{\cos m t \sin m x c_{k}, \sin m t \sin m x c_{k} \mid m \in \mathbb{N}^{*}, 1 \leq k \leq n\right\}$,

$$
\begin{gathered}
\operatorname{im} \mathcal{L}=(\operatorname{ker} \mathcal{L})^{\perp} \\
\text { spectrum } \sigma(\mathcal{L})=\left\{m^{2}-l^{2} \mid l \in \mathbb{Z}, m \in \mathbb{N}^{*}\right\} .
\end{gathered}
$$

Moreover, for every $h \in \mathcal{H}, u$ is a GPDS on \mathcal{J} of the system

$$
u_{t t}-u_{x x}=h
$$

if and only if $u \in \operatorname{dom} \mathcal{L}$ and $\mathcal{L} u=h$ (see [6] and references therein). Therefore, if we assume the existence of a constant $C \geq 0$ such that, for all $u \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\left\|V^{\prime \prime}(t, x, u)\right\| \leq C \tag{2.4}
\end{equation*}
$$

it is well known that the mapping N defined on \mathcal{H} by

$$
\begin{equation*}
(N(u))(t, x)=-V^{\prime}(t, x, u), \quad \text { a.e. on } \mathcal{J}, \tag{2.5}
\end{equation*}
$$

continuously maps \mathcal{H} into itself, and so the existence of GPDS on \mathcal{J} for (1.1) is equivalent to the existence of a solution $u \in \operatorname{dom} \mathcal{L}$ for the equation

$$
\begin{equation*}
\mathcal{L} u+N(u)+F(u)=h \tag{2.6}
\end{equation*}
$$

in \mathcal{H}, where the perturbing term $F: \operatorname{dom} \mathcal{L} \rightarrow \mathcal{H}$ is defined by

$$
(F(u))(t, x)=F(t, x, u), \quad \forall(t, x) \in \mathcal{J}
$$

In the sequel, \mathcal{B} will be the set of all continuous and nondecreasing mappings ω that satisfy

$$
\begin{equation*}
\omega: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}, \omega(t)>0, t>0, \quad \int_{0}^{\infty} \frac{1}{\omega(t)} d t=\infty \tag{2.7}
\end{equation*}
$$

Lemma 2.1 (see $[8,9])$. Assume that \mathcal{H} is a Hilbert space. Let $\mathcal{T} \in C^{1}(\mathcal{H}, \mathcal{H})$, and assume that $\mathcal{T}^{\prime}(u)$ is everywhere invertible for all $u \in \mathcal{H}$. Then \mathcal{T} is a global diffeomorphism onto \mathcal{H} if there exists $\omega \in \mathcal{B}$ satisfying $\left\|\mathcal{T}^{\prime}(u)^{-1}\right\| \leq \omega(\|u\|)$.

3. Existence and uniqueness

Consider the boundary value problem (1.1). As shown in Section 2, if (2.4) holds, then (1.1) is equivalent to the operator equation

$$
\mathcal{L} u+N(u)+F(u)=h, \quad u \in \operatorname{dom} \mathcal{L} .
$$

Let $Q(u)=\left(V^{\prime \prime}(t, x, u)\right)$. Then

$$
\left(N^{\prime}(u) v\right)(t, x)=-\left(V^{\prime \prime}(t, x, u)\right) v(t, x)=-Q(t, x, u) v(t, x), \quad u, v \in \operatorname{dom}, L
$$

and $\mathcal{L}+N^{\prime}(u)=\mathcal{L}-Q(t, x, u)$, where $Q(u)$ is a symmetric matrix.
Let $b_{1}(t, x, u), \ldots, b_{n}(t, x, u)$ be eigenvalues of $Q(t, x, u)$, and for all $u \in$ $\operatorname{dom} L$,

$$
\begin{equation*}
\alpha_{i}<b_{i}(t, x, u)<\beta_{i}, \quad i=1, \ldots, n, \tag{3.1}
\end{equation*}
$$

which shows that (2.4) holds, that is, there exists a constant C such that $\left\|N^{\prime}(u) v\right\| \leq$ $C\|v\|$, for all $u, v \in \operatorname{dom} \mathcal{L}$.

For each fixed point $(t, x) \in \mathcal{J}$, consider the eigenvalue problem

$$
\begin{equation*}
\mathcal{L} u-Q\left(t, x, u_{0}\right) u=\gamma u, \tag{3.2}
\end{equation*}
$$

where $u_{0} \in \operatorname{dom} \mathcal{L}$ is fixed. Since $\alpha_{i}, \beta_{i}, i=1, \ldots, n$, are consecutive and (3.1) holds, it follows that the eigenvalues of $Q\left(t, x, u_{0}\right)$ are ordered according to

$$
b_{1}\left(t, x, u_{0}\right) \leq b_{2}\left(t, x, u_{0}\right) \leq \cdots \leq b_{n}\left(t, x, u_{0}\right)
$$

and zero is not an eigenvalue of (3.2). Hence, $\mathcal{L}-Q\left(t, x, u_{0}\right)$ is invertible at u_{0} for each fixed point $(t, x) \in \mathcal{J}$, and by the spectral theorem [3, 10, 11]

$$
\begin{align*}
\left\|\left(\mathcal{L}-Q\left(t, x, u_{0}\right)\right)^{-1}\right\| & =\left\{\text { distance of } 0 \text { from the spectrum of } \mathcal{L}-Q\left(t, x, u_{0}\right)\right\}^{-1} \\
& \leq\left(\min _{1 \leq i \leq n}\left\{b_{i}\left(t, x, u_{0}\right)-\alpha_{i}, \beta_{i}-b_{i}\left(t, x, u_{0}\right)\right\}\right)^{-1} \tag{3.3}
\end{align*}
$$

Let $\delta: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+} \backslash\{0\}$ be defined by

$$
\begin{equation*}
\delta(s)=\max _{\|u\| \leq s,(t, x) \in \mathcal{J}}\left\{\left(\min _{1 \leq i \leq n}\left\{b_{i}(t, x, u)-\alpha_{i}, \beta_{i}-b_{i}(t, x, u)\right\}\right)^{-1}\right\} . \tag{3.4}
\end{equation*}
$$

Then δ is continuous and nondecreasing with respect to s. Now since u_{0} is arbitrary, we have that $\mathcal{L}+N^{\prime}(u)$ is invertible on \mathcal{J} for all $u \in D(\mathcal{L})$, and $\left\|\left(\mathcal{L}+N^{\prime}(u)\right)^{-1}\right\| \leq$ $\delta(\|u\|)$.

Lemma 3.1. Assume that there exists $\eta<1$ with

$$
\begin{equation*}
\left\|F_{u}(t, x, u)\right\| \leq \eta(\delta(\|u\|))^{-1} \tag{3.5}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|\left[\mathcal{L}+N^{\prime}(u)+F^{\prime}(u)\right]^{-1}\right\| \leq \frac{\delta(s)}{1-\eta} \tag{3.6}
\end{equation*}
$$

Proof. From $\left(F^{\prime}(u) v\right)(t, x)=\left(F_{u}\right) v(t, x)$, for all $u, v \in \operatorname{dom} \mathcal{L}$,

$$
\begin{equation*}
\left\|F^{\prime}(u) v\right\| \leq \eta(\delta(\|u\|))^{-1}\|v\| \tag{3.7}
\end{equation*}
$$

For all $y \in \mathcal{H}$, notice that

$$
\begin{equation*}
\left\|\left[\mathcal{L}+N^{\prime}(u)\right]^{-1} y\right\| \leq \delta(\|u\|)\|y\| \tag{3.8}
\end{equation*}
$$

Define the mapping $P=F^{\prime}(u)\left[\mathcal{L}+N^{\prime}(u)\right]^{-1}: \mathcal{H} \rightarrow \mathcal{H}$. Then from (3.7) and (3.8), for all $y \in \mathcal{H}$,

$$
\begin{aligned}
\|P y\| & =\left\|F^{\prime}(u)\left[\mathcal{L}+N^{\prime}(u)\right]^{-1} y\right\| \\
& \leq \eta(\delta(\|u\|))^{-1}\left\|\left[\mathcal{L}+N^{\prime}(u)\right]^{-1} y\right\| \\
& \leq \eta(\delta(\|u\|))^{-1} \delta(\|u\|)\|y\|=\eta\|y\| .
\end{aligned}
$$

Then $I+P$ is invertible and $\left\|[I+P]^{-1}\right\| \leq(1-\eta)^{-1}$. Note that

$$
\begin{aligned}
\mathcal{L}+N^{\prime}(u)+F^{\prime}(u) & =\left(I+F^{\prime}(u)\left[\mathcal{L}+N^{\prime}(u)\right]^{-1}\right) \cdot\left(\mathcal{L}+N^{\prime}(u)\right) \\
& =(I+P) \cdot\left(\mathcal{L}+N^{\prime}(u)\right)
\end{aligned}
$$

Hence, it follows from the invertibility of $I+P$ that $\mathcal{L}+N^{\prime}(u)+F^{\prime}(u)$ is invertible and $\left[\mathcal{L}+N^{\prime}(u)+F^{\prime}(u)\right]^{-1}=\left[\mathcal{L}+N^{\prime}(u)\right]^{-1}(I+P)^{-1}$. This, together with (3.4), yields (3.6).

THEOREM 3.2. Assume that (A1) and (3.5) hold. Then (1.1) with the periodicDirichlet boundary conditions on \mathcal{J} has a unique generalized solution $u \in\left(L^{2}(\mathcal{J})\right)^{n}$ for every $h \in\left(L^{2}(\mathcal{J})\right)^{n}$.

Proof. From (3.4),

$$
\begin{aligned}
\delta(s) & =\max _{\|u\| \leq s,(t, x) \in \mathcal{J}}\left\{\left(\min _{1 \leq i \leq n}\left\{b_{i}(t, x, u)-\alpha_{i}, \beta_{i}-b_{i}(t, x, u)\right\}\right)^{-1}\right\} \\
& \leq \max _{\|u\| \leq s,(t, x) \in \mathcal{J}}\left\{\left(\min _{1 \leq i \leq n}\left\{\alpha_{i}+\phi_{i}(t, x,\|u\|)-\alpha_{i}, \beta_{i}-\beta_{i}+\varphi_{i}(t, x,\|u\|)\right\}\right)^{-1}\right\} \\
& =\max _{\|u\| \leq s,(t, x) \in \mathcal{J}}\left\{\left(\min _{1 \leq i \leq n}\left\{\phi_{i}(t, x,\|u\|), \varphi_{i}(t, x,\|u\|)\right\}\right)^{-1}\right\} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\int_{0}^{\infty} \frac{1}{\delta(s)} d s & \geq \int_{0}^{\infty}\left(\max _{\|u\| \leq s,(t, x) \in \mathcal{J}}\left\{\left(\min _{1 \leq i \leq n}\left\{\phi_{i}(t, x,\|u\|), \varphi_{i}(t, x,\|u\|)\right\}\right)^{-1}\right\}\right)^{-1} d s \\
& \geq \int_{0}^{\infty} \min _{1 \leq i \leq n,(t, x) \in \mathcal{J}}\left\{\phi_{i}(t, x,\|s\|), \varphi_{i}(t, x,\|s\|)\right\} d s
\end{aligned}
$$

Then, by (1.5) in assumption (A1), Lemma 2.1 (with (3.6)) and Lemma 3.1, the system (1.1) has a unique generalized solution $u \in\left(L^{2}(\mathcal{J})\right)^{n}$ for every $h \in\left(L^{2}(\mathcal{J})\right)^{n}$. The proof is complete.

We now use the following assumption.
(A2). There exist two symmetric $n \times n$ matrices A and B such that

$$
A+\phi(t, x,\|u\|) I \leq V^{\prime \prime} \leq B-\varphi(t, x,\|u\|) I
$$

on $\mathcal{J} \times \mathbb{R}^{n}$, and the eigenvalues of A and B are $\alpha_{i}, \beta_{i}, i=1, \ldots, n$, respectively, where I is the $n \times n$ identity matrix, $\phi_{i}(t, x, s)$ and $\varphi_{i}(t, x, s), i=1, \ldots, n$, are continuous functions defined from $\mathcal{J} \times[0, \infty)$ to $(0, \infty)$ that are nonincreasing with respect to s, and

$$
\begin{equation*}
\int_{0}^{+\infty} \min _{(t, x) \in \mathcal{J}}\{\phi(t, x, s), \varphi(t, x, s)\} d s=+\infty \tag{3.9}
\end{equation*}
$$

Here $\alpha_{i}, \beta_{i} \in \sigma(L), i=1, \ldots, n$, are consecutive.
Essentially the same reasoning as in Theorem 3.2 yields the following result.
THEOREM 3.3. Assume that (A2) and (3.5) hold. Then (1.1) with the periodicDirichlet boundary conditions on \mathcal{J} has a unique generalized solution $u \in\left(L^{2}(\mathcal{J})\right)^{n}$ for every $h \in\left(L^{2}(\mathcal{J})\right)^{n}$.

REMARK 3.4. Theorems 3.2 and 3.3 allow the eigenvalues of $V^{\prime \prime}(t, x, u)$, when $\|u\| \rightarrow \infty$, to interact with points of the spectral set $\left\{m^{2}-l^{2} \mid l \in \mathbb{Z}, m \in \mathbb{N}^{*}\right\}$. Consider the nonlinear semilinear-wave equation

$$
\begin{equation*}
u_{t t}-u_{x x}+V^{\prime}(t, x, u)=h(t, x), \quad \forall(t, x) \in \mathcal{J} \tag{3.10}
\end{equation*}
$$

with the periodic-Dirichlet boundary conditions on \mathcal{J}. Let

$$
V^{\prime}(t, x, u)=m u-\frac{\sin ^{2}(t)+1}{4} \ln \left(u+\sqrt{1+u^{2}}\right), \quad m \in\{1,2, \ldots\}
$$

and let $h: \mathcal{J} \rightarrow \mathbb{R}$ be in $L^{2}(\mathcal{J})$. Theorem 3.2 guarantees the existence of a unique periodic-Dirichlet solution to (3.10) since

$$
m-1+\frac{1}{2} \leq V^{\prime \prime}(t, x, u)=m-\frac{\sin ^{2}(t)+1}{4 \sqrt{1+u^{2}}} \leq m
$$

Also,

$$
\lim _{\|u\| \rightarrow \infty}\left\|V^{\prime \prime}(t, x, u)-m\right\|=0
$$

We now discuss the case where the eigenvalues of $V^{\prime \prime}(t, x, u)$ do not interact with points of the spectral set $\left\{m^{2}-l^{2} \mid l \in \mathbb{Z}, m \in \mathbb{N}^{*}\right\}$ as $\|u\| \rightarrow \infty$.

Corollary 3.5. Suppose that

$$
\begin{equation*}
A_{1} \leq V^{\prime \prime} \leq B_{1}, \quad \alpha_{i}<\mu_{i} \leq \nu_{i}<\beta_{i} \tag{3.11}
\end{equation*}
$$

where μ_{i} and ν_{i} are eigenvalues of the symmetric $n \times n$ matrices A_{1} and B_{1}, respectively, and $\alpha_{i}, \beta_{i} \in \sigma(\mathcal{L}), i=1, \ldots, n$, are consecutive. Assume that (3.5) holds. Then (1.1) with the periodic-Dirichlet boundary conditions on \mathcal{J} has a unique generalized solution $u \in\left(L^{2}(\mathcal{J})\right)^{n}$ for every $h \in\left(L^{2}(\mathcal{J})\right)^{n}$.

Proof. It follows from (3.11) that the eigenvalues $\lambda_{i}, i=1, \ldots, n$, of $V^{\prime \prime}$ satisfy

$$
\alpha_{i}+\min _{1 \leq i \leq n}\left(\mu_{i}-\alpha_{i}\right) \leq \lambda_{i}\left(V^{\prime \prime}\right) \leq \beta_{i}-\min _{1 \leq i \leq n}\left(\beta_{i}-v_{i}\right)
$$

If we let $\phi_{j}(t, x, s)=\min _{1 \leq i \leq n}\left(\mu_{i}-\alpha_{i}\right), \varphi_{j}(t, x, s)=\min _{1 \leq i \leq n}\left(\beta_{i}-v_{i}\right), \quad j=$ $1, \ldots, n$, then (1.5) holds. The result follows from Theorem 3.2.

REMARK 3.6. Since $\alpha_{i}, \beta_{i} \in \sigma(\mathcal{L}), i=1, \ldots, n$, are consecutive in Corollary 3.5, the respective eigenvalues $\mu_{1} \leq \mu_{2} \cdots \leq \mu_{n}$ and $\nu_{1} \leq \nu_{2} \cdots \leq \nu_{n}$ of A_{1} and B_{1} satisfy

$$
\begin{equation*}
\bigcup_{k=1}^{n}\left[\mu_{i}, v_{i}\right] \cap\left\{m^{2}-l^{2} \mid l \in \mathbb{Z}, m \in \mathbb{N}^{*}\right\}=\varnothing \tag{3.12}
\end{equation*}
$$

Then Theorem 1.1, that is, the main result of [6], is a special case of Corollary 3.5, when the perturbing term $F(t, x, u)=0$.

References

[1] P. W. Bates, 'Solutions of nonlinear elliptic systems with meshed spectra', Nonlinear Anal. 4 (1980), 1023-1030.
[2] P. W. Bates and A. Castro, 'Existence and uniqueness for a variational hyperbolic system without resonance', Nonlinear Anal. 4 (1980), 1151-1156.
[3] N. Dunford and J. T. Schwartz, Linear Operators Part II: Spectral Theory, Self Adjoint Operators in Hilbert Space (Wiley Interscience, New York, 1988).
[4] A. C. Lazer, 'Application of a lemma on bilinear forms to a problem in nonlinear oscillations', Proc. Amer. Math. Soc. 33 (1972), 89-94.
[5] J. Mawhin, 'Contractive mappings and periodically perturbed conservative systems', Arch. Math. (Brno) 12 (1976), 67-74.
[6] J. Mawhin, 'Conservative systems of semilinear wave equations with periodic-Dirichlet boundary conditions', J. Differential Equations 42 (1981), 116-128.
[7] J. Mawhin and J. R. Ward Jr, 'Asymptotic nonuniform nonresonance conditions in the periodicDirichlet problem for semilinear wave equations', Ann. Mat. Pura Appl. 135 (1983), 85-97.
[8] R. Plastock, 'Homeomorphisms between Banach spaces', Trans. Amer. Math. Soc. 200 (1974), 169-183.
[9] M. Radulescu and S. Radulescu, 'Global inversion theorems and applications to differential equations', Nonlinear Anal. 4 (1980), 951-965.
[10] Z. H. Shen, 'On the periodic solution to the Newtonian equation of motion', Nonlinear Anal. 13 (1989), 145-149.
[11] Z. H. Shen and M. A. Wolfe, 'On the existence of periodic solutions of periodically perturbed conservative systems', J. Math. Anal. Appl. 153 (1990), 78-83.

JINHAI CHEN, Department of Mathematical and Statistical Sciences, University of Colorado Denver, Campus Box 170, PO Box 173364, Denver, CO 80217-3364, USA e-mail: cjh_maths@yahoo.com.cn

DONAL O'REGAN, Department of Mathematics, National University of Ireland, Galway, Ireland
e-mail: donal.oregan@nuigalway.ie

[^0]: (C) 2010 Australian Mathematical Publishing Association Inc. 0004-9727/2010 \$16.00

