
BULL. AUSTRAL. MATH. SOC. 20C15, 20C25

VOL. 69 (2004) [161-171]

ON TENSOR FACTORISATION
FOR REPRESENTATIONS OF FINITE GROUPS

EMANUELE PACIFICI

We prove that, given a quasi-primitive complex representation D for a finite group
G, the possible ways of decomposing D as an inner tensor product of two projective
representations of G are parametrised in terms of the group structure of G. More
explicitly, we construct a bijection between the set of such decompositions and a
particular interval in the lattice of normal subgroups of G.

INTRODUCTION

Throughout the whole paper, all the groups generically denoted by G (or H) are
meant to be finite, and all the representations will be finite dimensional representations
over the complex field, although C can be safely replaced with any algebraically closed
field of characteristic zero.

It is well known that, given an irreducible representation D for a group G, a good
understanding of D is achieved if it is possible to find (and describe) a subgroup H and
a representation T for it, such that D is induced by T from H. An effective method for
recognising such a pair is provided by Clifford's Theorem ([1, 11.1]), iterated applications
of which yield a pair (H, T) such that D is induced by T from H, and T is a quasi-
primitive representation of H (recall that an irreducible representation of a finite group
is called quasi-primitive if its restriction to any normal subgroup has pairwise equivalent
irreducible constituents). In view of that, understanding the structure of quasi-primitive
representations appears as a crucial issue in Representation Theory.

Now, let D be a faithful quasi-primitive representation for G. Although such a
representation can still be induced from a proper subgroup of G (but a result due to
Berger excludes this possibility if G is solvable (see [7, 11.33]), there seems to be no
general method to exploit further the additive structure of D, and it appears natural
to investigate D from the point of view of its 'multiplicative' structure. In particular,
our aim in this paper is to control and parametrise, in terms of the group structure of
G, all the possible ways of decomposing D as an inner tensor product of two projective
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representations of G. With the further hypothesis that the restriction of D to the Fitting
subgroup F of G is irreducible, the main result of this paper (Corollary 2.8, which follows
from the more general Theorem 2.6) shows essentially that there is an explicit bisection
between the set of two-factors decompositions of D and the set of normal subgroups of
G lying between the centre Z and F. The assumption of faithfulness for D was added
only for ease of statements in this Introduction, but the hypothesis of irreducibility on
the restriction D\.F is serious: it excludes from consideration all (nonabelian) groups in
which the Fitting subgroup is central (in particular, it excludes all nonabelian simple
groups, for which the problem has an entirely different character that is beyond the
present discussion). Of course, when F is central, one cannot expect it to contain much
information about factorisations of representations which map it to scalars. If F is
noncentral and DlF is reducible, a well known result (stated here as Lemma 2.1) gives
a tensor factorisation for D such that one factor represents F irreducibly and the other
just by scalars.

Since Corollary 2.8 describes how the projective-equivalence class' of D factorises,
it can be conveniently translated into the language of characters, and this is done in
Theorem 3.2. Finally, the example in Section 4 shows that the hypothesis of irreducibility
for Dip can not be dropped (nor weakened along one particular line) even if D is assumed
primitive instead of quasi-primitive.

Tensor factorisation of quasi-primitive representations has been extensively studied,
from the point of view of characters, in [3] (which in turn generalises some results from
[4] and [8]); in that paper the authors prove that, given a quasi-primitive character \ of
a group G, there exists an essentially unique 'admissible set of prime characters' which
provides a factorisation for x- It is worth stressing that the aim of such a result is different
from ours, as the problem of describing all factorisations is not considered; indeed, in
some cases (even when the group is solvable) a 'prime character' could be factorised, but
no factorisation is yelded by those methods. At any rate, taking in account that a prime
character fits the hypotheses of Theorem 3.2 (at least in a solvable context), the present
approach reveals some interactions with previous works on this subject.

1. PROJECTIVE REPRESENTATIONS

In this section we recall some basic definitions and results concerning projective
(complex) representations, and we establish some notations and conventions.

Let G be a group, n a positive integer, and P a map from G to GL(n, C). If there
exists a map a, from G x G to Cx, such that P(gi)P(g2) = a(ffi, g2)P{g\9i) holds for all
<7i, 52 in G, then P is called a projective representation of degree n for G. The map a is
the factor set of P, and it is uniquely determined by P. It is clear that any representation
is a projective representation; sometimes, for the sake of emphasis, a representation in
the classical sense will be called (following [9]) a genuine representation.
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If Pi and P2 are projective representations of degree n for G, then we say that they
are equivalent if there exist a matrix A in GL(n,C), and a map /? : G —>• C x , such that
•^2(5) = 0{9)-^~1Pi{9)^ f° r all 9 m G. This defines an equivalence relation on the set
of projective representations of G, and we shall denote by [P] the class of a projective
representation P modulo this equivalence relation.

Let P be a projective representation of degree n for G, and V an n-dimensional
vector space over C. We say that P is irreducible if the only subspaces of V invariant
under the action of the set of matrices P(G) are the zero space and V itself.

R E M A R K 1.1. If P is the composite of a projective representation P of degree n for
G with the natural homomorphism TT which maps GL(n, C) onto PGL(n , C), then P
is a homomorphism from G to PGL(n,C). Conversely, if r : G —> PGL(n,<C) is a
homomorphism, a projective representation of degree n for G arises in a natural way (as
soon as we choose a transversal for Z(GL(n, C)) in the full preimage under TT of T ( G ) ;
such a choice is however not relevant up to equivalence).

It is also useful to introduce a concept of equivalence for homomorphisms to projec-
tive general linear groups: let TJ and T2 be homomorphisms of G to PGL(n,C); we say
that T\ and r2 are equivalent if there exists A in GL(n, C) such that T2(g) = T^g)*^ for
all g in G (and, when we write the symbol '~ ' between two such homomorphisms, we
refer to this kind of equivalence). If we choose now two projective representations Px and
P2 of G with Pi = Ti and P2 = t2, it is clear that rx and T2 are equivalent if and only if
Pi and P2 are so.

Projective representations play a fundamental role in the present context because it
is possible to construct inner tensor products with them, and such a product may yield
a genuine representation: if Pi, P2 are projective representations for the group G, with
factor sets ax, a2 and degrees n, m respectively, then the map Px ® P2 : G —• GL(nm, C)
defined by (Pi <g> P2){g) := P\{g) ® ^2(5) for all g in G, is a projective representation of
G whose factor set is the pointwise product of a i and a2 (the symbol '®' between two
matrices denotes the usual Kronecker product); this projective representation is called
the inner tensor product of Pi and P2.

We can now introduce some more notations.

DEFINITION 1.2: Let G be a group, and Pi, P2 projective representations of G; we
denote by P! ® P2 the homomorphism P\® P2.

To avoid any confusion arising from the fact that two different concepts of equiv-
alence are floating around for genuine representations (depending on whether they are
regarded as genuine or as projective representations), we shall emphasise the distinction,
when needed, saying that two representations are genuine-equivalent if they are equiv-
alent in the classical sense, whereas we shall call them projective-equivalent if they are
equivalent only (in principle) as projective representations. It is clear that two genuine
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representations D\ and D2 of G are projective-equivalent if and only if there exists a
" -dimensional representation A of G such that Dx and A <g> D2 are genuine-equivalent.1

2. FACTORISATION OF REPRESENTATIONS

The main result of the paper, which is 2.8, follows as a corollary of Theorem 2.6.
Before proving it we need to prepare the setting with some lemmas; the first of them is
a well known result, and here it is only stated (see [6, 21.1(a) and 21.2] for a proof). As
the last remark about notations, in what follows we shall denote by Ie (e being a posi-
tive integer) the trivial complex representation of degree e, as well as the e-dimensional
identity matrix over C.

LEMMA 2 . 1 . Let G be a group, N a normal subgroup of G, T an irreducible
representation of N, and D an irreducible representation of G such that DIN= Ie <g> T.
Then there exist projective representations P\ and P2 ofG such that

(a) D{g) = PY[g) <g> P2(g) for all g in G,

(c) Pi(x) = Ie and P2(x) = T{x) for all x in N,

(c) T{x)p^) = T{x') for all x in N and g in G.

Observe that, if V is a representation of N which is genuine-equivalent to T, and
P , P' are projective representations of G which satisfy condition (c) of 2.1 for T and 7"
respectively, then (by Schur's Lemma) P and P' are projective-equivalent.

Assume now that the group G is a central product of the subgroups A and B,

that is, G — AB with [A, B] = 1. In this case G can be identified with a quotient of the
(external) direct product A x B and, by inflation, each representation of G may be viewed
as a representation of A x B. In particular, by [5, 3.7.1], each irreducible representation
of G may be viewed as an outer tensor product R # 5 of some irreducible representation
R of A and some irreducible representation S of B, such that R\-AnB= £ ® hegR and
S-IAHB= £®AiegS f°r a suitable 1-dimensional representation £ of ACiB (recall that i ? # 5
maps, by definition, an element (a, b) of A x B to the matrix R(d) <g> S(b)). Conversely,
if R and 5 are irreducible representations of A and B satisfying this condition for some
f, then R# S may be viewed as an (irreducible) representation of G.

LEMMA 2 . 2 . Let the group G be a central product of the subgroups A and B.

Then the following properties hold:

(a) if R is an irreducible genuine representation for one of the central fac-

tors, say A, then there exists a unique homomorphism g, from G to

PGL{degR,C), such that giA- R~ and B < kerp,

(b) let R and S be irreducible genuine representations, for A and B respectively,

such that R # 5 is a representation for G. If Q and a are homomorphisms

as in (a) for R and S, then we have R # 5 = Q ® a.
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P R O O F O F (a): For each element g of G, consider an element a in A and an element
b in B such that g = ab, and define g(g) to be R(a). It is routine to check that g is well
defined and satisfies the required conditions. D

P R O O F O F (b): Let X and Y be projective representations of G such that X = g

and Y = a (see Remark 1.1); following Definition 1.2, g®a is the homomorphism X ® Y.

Now, given an element g in G, let a and 6 be elements of A and 2? respectively, such that
g = a&; since we get X(#) = g(g) = R(a), and F(#) = a{g) — 5(6), claim (b) follows
simply by applying the definitions. D

It will be convenient to have a temporary name for a class of groups which will play
an important role in our proofs (but will not appear in our conclusions).

D E F I N I T I O N 2.3: Let F b e a finite group; we say that F is a good group if Z(F)
is cyclic and F/Z{F) is Abelian of squarefree exponent.

The reason these groups are so important here is the following lemma; for a proof,
see [3, 1.4].

LEMMA 2 . 4 . Let G be a group with Fitting subgroup F and centre Z. If G
has a faithful quasi-primitive representation, then F/Z is an Abelian group of squarefree
exponent.

The relevant properties of good groups will be outlined next.

LEMMA 2 . 5 . Let F be a good group, and let Z denote its centre; then the fol-
lowing properties hold:

(a) if K is a subgroup of F such that Z(K) = Z, then F is the (central)

product of K and CF(K);

(b) if P is an irreducible projective representation of F with Z ^ ker P, then

we have (degP)2 = \F : kerP|;

(c) if D is a faithful irreducible representation of F, and D ~ Pj <g> P2 where

Pi and P2 are projective representations of F (here equivalence is in the

sense of Remark l . l j , then we have F = ker Pi • kerP2;

(d) with the same assumptions as in (c), if K is the kernel of Pi, then Z(K)

coincides with Z; moreover, denoting by L the kernel of P 2 , we have L

- CF(K);

(e) with the same assumptions as in (c), there exist genuine representations R

and S, of K := ker Pi and L :— kerP2 = CF{K) respectively, such that

R#S is a representation ofF which is genuine-equivalent to D. Moreover,

we have P\= a and P2 = g, where g and a are the homomorphisms linked

to R and S which were constructed in 2.2(a), so that we have Pi li— S

and P 2 - | - K = R- This implies that Pi \.i is a genuine representation of L up

to multiplying it by a suitable map from L to C x , and P2 behaves similarly

with respect to K.
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PROOF OF (a): Let Q be a (nontrivial) Sylow subgroup of F, say for the prime q.
We claim first that Z(Q) = Z(K n Q). To see this, note that Z{Q) ^ Z because F is
nilpbtent; as Z ^ K, this proves that 2^(Q) is contained in K n Q, and then of course
Z(Q) ^ Z(K n Q). Conversely, Z{K D Q) lies in Z(A") = Z because K is nilpotent and
if n Q is the Sylow g-subgroup of K, and hence Z(K C\Q) ^ Z(Q).

It follows that (KnQ)n CQ(K nQ) = Z(Q), hence the product of {K n Q)/Z(Q)
and CQ(.K" D Q)/Z(Q) is a direct product. We want to show next that this is all of
Q/Z(Q). Suppose that \{K D Q)/Z(Q)\ = 9

n so ( # n Q)/Z(Q) is an n-dimensional
vector space over GF(q), and choose a basis {Z(<2)a:i,... ,Z(Q)xn} for it. We have

n
CQ{K D Q) = p) Cg(a;i). Using that F/Z is Abelian of squarefree exponent, it is easy

i=l

to see that each map at : Q -+ Z defined by at(x) = [xi,x] is a homomorphism whose
kernel is C Q ^ ) and whose image has exponent dividing q. Since Z is cyclic, we conclude
that \Q : CQ(xi)\ ^ q, thus \Q/CQ(K (1 Q)\ ^ qn. Thus the dimension of (K n Q)/Z{Q)
x CQ(K n Q)/Z(Q) (as a vector space over GF(q)) is at least the dimension of Q/Z(Q),
and our claim follows.

Finally, let {<5i, • • •, Qh} be the set of (nontrivial) Sylow subgroups of F: we have

F = {KnQl)CQl{KnQ1)---(KnQh)CQh{KnQh) =

as desired. D

P R O O F OF (b): Since P is an irreducible projective representation such that kerP
contains Z, we have that P(F) is an irreducible Abelian subgroup of PGL(deg P, C)
(which is of course isomorphic to F/ ker P) ; if M is the preimage of P{F) in GL(deg P, C)
under the natural homomorphism, we have Z(GL(degP, C)) ^ Z(M) but, since M
is irreducible, equality holds. Moreover, M is nilpotent of class 2, so that (degP)2

= \M/Z(M)\ = \P(F)\ (this is not hard to prove; see for example [2, 4.3]) and our claim
follows. D

P R O O F OF (C): Since D is faithful, we have kerPx n kerP2 = Z (this is easily
seen,, as the Kronecker product of two matrices is a scalar matrix if and only if the
factors are scalar matrices), so that ker P\/Z • ker P2/Z = ker P\/Z x ker P2/Z; this is a
subgroup of the Abelian group with squarefree exponent F/Z, hence it suffices to show
that /(ker P i / Z ) + /(ker P 2 /Z) = 1{F/Z), where l(G) denotes the composition length of
a given group G.

Since we have /(ker Pi /Z) = 1{F/Z) ~ 1{F/ ker Pj), what we want to show is l(F/Z)

= / ( F / k e r P ! ) + / ( F / k e r P 2 ) . Let H be the set l(F1{x),P^(x)) : x G F\, which is indeed

a subgroup of the (external) direct product Pi(F) x PiiF), and let

V? : H -> PGL(degD,C) be the map defined by y(CPx{x),T~2(x))\ := Pl{x)®P2(x). It

is easily seen that (p is a monomorphism, and therefore H ~ <p{H) ~ D(F) holds; but
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now, by part (b), we have

\D(F)\ = (degD)2 = (degP1)2(degP2)2 = \Pi(F)\\P2(F)\,

thus D(F) ~ Pi(F) x T2(F), and the claim is proved (as F/Z ~ D(F) and

D
P R O O F O F (d): By part (c) we have F = KL. Let us now prove that [K, L\ = 1.

Denoting by x an element of K and by y an element of L, there exist A in GL(deg D, C)
and A, \i in C x such that

P2(x) and A~1D(y)A = Pi{y)

it is now clear that [D(K), D(L)] = 1, and the faithfulness of D yields what we wanted.
Of course now we have Z(K) — Z and, since the conditions F — KL, L < CF{K) and
KC\L = KnCF(K) = Z hold, we conclude that L = CF(K). D

P R O O F OF (e): By assumption, there exist an element A in GL(degD,C) and a
map A from F to Cx such that \{f)A-lD{f)A = Px{f) <g> P2(/) holds for all / in F.
Now, for all k in K, we get \{k)A~lD{k)A = fj.(k)IdegPl ® P2{k), where /i is a map from
K to C x ; denning i?(fc) as A(fc)-1 fi(k)P2(k) we get ^-X£>(A;)^ = / ^ g ^ ® i?(A;), so that
R is a genuine representation of K. Similarly, a genuine representation S for L can be
defined so that, for all I in L, we have A~lD(l)A = S(l)<S)Idegp2. Now, for every element
/ in F, we can choose k in K and / in L such that / = kl, obtaining

A~lD{f)A= (A-1D{k)A)(A-1D(l)A)

= (S#R)(f),

so that D is genuine-equivalent to R # S (swapping the factors does not change the
equivalence type), and both of R and S are irreducible. Finally, recalling that a is
defined by <?(/) := S(l), and observing that we have S(l) — Pi(l) = Pi(f), we conclude
that a — Pi; in an entirely similar way we also get g = P2. D

We are now in a position to prove the main results of the paper.

THEOREM 2 . 6 . Let H be a group, and let F be a good group such that F is a
normal subgroup of H and CH{F) is contained in F. Let D be a faithful representation

ofH such that Dip is irreducible. Then there exists a bijection between the set of all the

pairs ([P1MP2]), where Pi, P2 are projective representations of H such that D ~ Pi®P2,
and the set of normal subgroups K of H such that K ^ F and Z(K) = Z(H) hold. In

particular, such a bijection can be constructed by mapping ([Pi], [P2]) to K := k e r ^ \.F)

and, K being so defined, we also have ker(P24_F) = CF(K).
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P R O O F : We shall denote by Z the centre of H; also, we shall denote by To the
set of all the pairs ([Pi], [P2]), where Pi, P2 are projective representations of H such
that D ~ Pi <g> P2, and by S the set of normal subgroups K of H such that K lies in
F and Z(K) = Z. Next we observe that, since D is faithful and its restriction to F is
irreducible, we have Z(F) ^ Z; but F contains its own centraliser in H, therefore Z(F)
coincides with Z.

Now, as the first step in the proof, we shall construct a map a from TD to 5: consider
an element ([Pi],[P2]) in To and define a n [Pi], [P2])) as the kernel of P i 4-F- Since
equivalent projective representations yield homomorphisms (to the relevant projective
general linear group) which have the same kernel, the 'value' a( ([Pi], [P2])) does not
depend on the choice of representatives for the classes [Pi] and [P2]; moreover, denoting
by K the kernel of P i 4-F, Lemma 2.5(d) tells us that Z{K) = Z, and certainly we have
K ^ F and K < H. The discussion above shows that a is actually a map from TD to S.

Also, again by Lemma 2.5(d), we get Cp{K) = ker(P24-F)-

As the second step we shall show that, given an element K of <S, there exists a unique
element ([Pi], [P2]) in TD such that ker(PiJ.F) = K; this will prove that a is a bijection.
So, let us start from an element K in <S; by Lemma 2.5(a) we get F = KCp{K). If we
denote by x the character afforded by D, we have XIF= <P for some <p in Irr F\ now K is
a normal subgroup of F and, if T? is an irreducible constituent of <plK, then the inertia
subgroup / F ( $ ) is all of F. We conclude that XIK— e#, where e is a positive integer, hence
we can assume D\.K— Ie<3)T where T is an irreducible representation of K affording the
character d. We are now in a position to apply Lemma 2.1, which ensures the existence
of an element ([Pi], [P2]) in To with the properties that K is contained in ker(Pi 4-F),
degP2 = degT and T(xh) = T{x)p^h) for all x in K and h in H. We want now to prove
that K coincides with ker(Pi4-F)- Let x be in k e ^ P ^ F ) , and let k, c be elements, of K

and Cp(K) respectively, such that x = kc (again we are using Lemma 2.5(a)). Since K

is contained in ker(Pi 4-F), C l i e s m ker(Pi 4-F) as well, so that we have D(c) = /i/e®P2(c)
for some n in C x ; moreover, c is in CF(K), hence T(y)Pi^ = T(yc) = T{y) holds for all
y in K, so that P2(c) is a scalar matrix, say vldegT for some v in C x . We conclude that
D(c) is given by the Kronecker product of two scalar matrices, therefore c lies in Z (by
the faithfulness of D) and the claim follows.

To complete the second step of the proof, we need to show that K determines
uniquely an element ([Pi], [P2]) of To with the property that ker(Pj 4-F) = K. For this
purpose observe that, since D ~ Pi ®p2, there exist A in GL(deg D, C) and a map A from
H to C x such that A~lD{h)A = (A(/i))"1P,(/i) ® P2(/i) holds for all h in H. Moreover,
we get A~lD(k)A — /degPi ® R{k) f°r all k in K, where R is the genuine irreducible
representation of K denned in the proof of Lemma 2.5(e). From D(kh) = D(k)D^ we
obtain now 7degPl ® R(kh) = IdezPl <g> R(k)p^h\ hence R{kh) = R(k)p^ for all h in
H and k in K. Since the genuine-equivalence type of R is uniquely determined by K
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and by the genuine-equivalence type of D, we conclude that the projective-equivalence
type of P2, that is, [P2], is uniquely determined by K and by the genuine-equivalence
type of D. Similarly, we see that [Pi] is uniquely determined by k e r ( P 2 | F ) , which is in
turn determined by K, being its centraliser in F (Lemma 2.5(d)), and by the genuine-
equivalence type of D. D

D E F I N I T I O N 2.7: Let G be a group, and D a representation of G. We define the
subgroups Z(D) and F(D) of G by Z(D)/kerD := Z{G/ ker D) and F(£>)/kerD :=
F(G/kerD).

COROLLARY 2 . 8 . Let G be a group, and D a quasi-primitive representation of
G such that DIF{D) is irreducible. There is a bijection between the set of all the pairs
([Pi], [P2])) where Fj and P2 are projective representations ofG such that D ~ Px® P2,
and the interval [Z(D), F (£>)] in the lattice of normal subgroups ofG. Such a bijection
can be constructed by mapping ([Pi], [P2]) to K :~ ker(Px 4-F(D)) and, K being so defined,
we also have ker(P2|F(D)) = {x e F(D) : [x,K] C kerD}.

PROOF: Denoting by X the kernel of D, consider the quotient group G :— G/X; if
A is the representation of G defined by A(Xg) := D{g) for all Xg in G, we have that
A is faithful and A|F(gj is irreducible, therefore CQ(F(G)) is in the centre ofG and, in
particular, it lies in F(G). This implies Z(G) — Z(F(G)) and, since A is quasi-primitive,
we conclude that F(G) is a good group (see 2.4), obviously a normal subgroup of G. Now
we are in a position to apply Theorem 2.6, obtaining that there exists a bijection between
the set TA of all the pairs ([Qi], [Q2])> where <3i and Q2 are projective representations of
G such that A ~ QY ® Q2, and the set of normal subgroups K of G such that K ^ F(G)
and Z(K) = Z(G). We also know that, if ([<2i], [Q2]) corresponds to K in the relevant
bijection, then we have K = ker(Q14-F/g0 and CF,QAK) = ker(Q24-F(G))-

Consider now a projective representation P of G such that X is contained in ker P;
we can choose a projective representation Q of G such that Q(Xg) := P(g) for all Xg
in G and, associating [P] with [Q], we can easily construct a bijection between T& and
the set of all the pairs ([Pi], [P2]), where Pi and P2 are projective representations of G
such that D ~ Pi ® P2. Also, the natural correspondence between normal subgroups of
G and normal subgroups of G containing X provides, by restriction, a bijection between
the set of normal subgroups K of G such that K ^ F(G) and Z(K) = Z(G), and the
interval [Z(D),F(D)] in the lattice of normal subgroups of G; the proof can be now
easily completed. 0

3. FACTORISATION OF CHARACTERS

We give next an interpretation of the discussion above in terms of characters.

DEFINITION 3.1: Let G be a group; we denote by (G, n) a Schur covering of G (so
that G is a Schur representation group for G; see [7], Chapter 11), and by A the kernel
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of 7T, which is a central subgroup of G; if H is a subgroup of G, we define H as TT

If x and T/> are irreducible characters of G, we say that they are equivalent (and we
write x — ^) if there exists A in IrrG such that A(l) = 1 and x = M>- It is c l e a r that,
in this way, an equivalence relation on the set Irr G is defined; we shall denote by [x] the
equivalence class of the character x modulo this equivalence relation.

Finally, we define Z(x) and F(x) in analogy with Definition 2.7; observe that, if Xinf
is the character of G obtained from x by inflation, we have F(x) — P(Xinf)-

THEOREM 3 . 2 . Let G be a group, and x a quasi-primitive character of G such

that XIF(X) J S irreducible. Then the following properties hold:

(a) if N is a normal subgroup ofG with Z(x) ^ N ^ F(x), then there exist

characters 0\ and g2 ofG such that Xinf — Q1Q2 and Z(oii^—.) = N;

(b) let Qi, Q2, £3 and g4 be irreducibie characters ofG such that x — Q1Q2

and x — 0304,' if Z{Q\ 4F(X)) J S the same as Z(g3iF(x))> then we ^ave

Q\ ^ Qz and 02 ~ g4;

(c) there is a bijection between the set of all the pairs ([01], [̂ 2])) where 0i and
02 are characters ofG such that Xinf — Q\Q2, and the interval [Z(x), F(x)}

in the lattice of normal subgroups ofG. Such a bijection can be constructed

by mapping ([01], [02]) to the subgroup N such that Z^iifr--.) = N.

P R O O F OF (a): Let D be a representation of G which affords x; D is quasi-primitive,
its restriction to F(D) = F(x) is irreducible, and N is a normal subgroup of G with
Z(D) ^ TV ^ F(D); hence Corollary 2.8 yields that there exist projective representations
Pi and P2 of G such that D ~ P x <g> P 2 and k e r ^ 4-F(D)) = N. As (G,TT) is a Schur
covering for G, we can find genuine representations Di and D2 of G, together with maps
£x and £2 from G to C x , such that ^ i (x )A( i ) = Pi(Ax) and 6(a;)-C>2(a;) = P2(^a;) for
all 2; in G (here we are identifying G with G/.A); it is now easy to see that D, viewed by
inflation as a representation of G, is projective-equivalent to D\ ® D2- We conclude that,
denoting by Qi and 02 the characters of G afforded by Di and D2, we get Xinf — Q1O2',

moreover, it is easily checked that Z(oiifr-)) coincides with N. D

.PROOF OF (b): Let D{ be a representation which affords Oi, for i in {1,2,3,4}; we
have D ~ D\ ® D2 and D ~ D3 ® DA, moreover,

= Z(OIIF(X)) = ^(^4-F(x)) = ker(D34,F(D))

holds. By Corollary 2.8 we conclude that D\ ~ D3 and D2 — D\, so that the claim

follows. D

P R O O F OF (C): This follows at once by the two previous statements. D

4. A FINAL REMARK

Let G be a group, and P, Q, R projective representations of G such that P <g> Q

~ P <8> R =: D; if D happens to be a genuine quasi-primitive representation of G whose

https://doi.org/10.1017/S0004972700034365 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034365


[11] On tensor factorisation 171

restriction to F(D) is irreducible, then it follows from Corollary 2.8 that Q and R are
equivalent (and therefore we have, under the right assuptions, a 'cancellation law').

Even this claim fails if we weaken the hypothesis of irreducibility for Z?4-F(D), assum-
ing only, for instance, that the restriction of D to F*{D) is irreducible (here F*(D) denotes
the preimage, under the natural homomorphism, of the generalised Fitting subgroup of
G/ ker D). Consider for example G — A9; if we denote by P the 8-dimensional irreducible
representation of G, by Q and R the two 21-dimensional irreducible representations of
G (which are inequivalent), and by D the 168-dimensional irreducible representation of
G, we see that D is quasi-primitive (indeed primitive) and of course irreducible when
restricted to F*(G). Moreover, D is genuine-equivalent to both of P®Q and P®R, and
therefore we have £>~P®<3~.P(8>i? . But it is clear that Q and R are not equivalent,
even in a projective sense.
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