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Speech and Translation Technologies
Explanations

mark seligman

1.1 Introduction

The need for cross-language communication in healthcare is clear: Every day
and everywhere, thousands of conversations take place between patients and
caregivers – not only doctors and nurses, but administrators, volunteers, and
others – whose native languages don’t match. The circumstances vary widely,
and the requirements for translation differ along with them. Some patients are
literate, and some are not; some speak the caregivers’ language sufficiently for
effective communication concerning care, and some do not. Some patients are
able to visit caregivers in person – or vice versa – while some must communi-
cate remotely by phone, dedicated video, or internet audio and video.

Technology promising to assist this communication is developing explo-
sively. The major linguistic technologies – machine translation (MT) of text,
automatic speech recognition (ASR), text-to-speech (TTS) – have all improved
dramatically in the era of neural networks, and so have the enabling elements
of infrastructure – wireless communication, cloud computing, and mobile
devices. By now, one would expect various forms of automatic translation
and speech-enabled systems to have taken the healthcare world by storm, but
adoption has in fact been sluggish. We’ll examine the reasons for the speed
bumps in Chapter 2, along with possible measures to surmount them.

One key factor in the lagging adoption, however, is the difficulty of under-
standing the relevant technologies, and thus the natural hesitation to trust them.
Accordingly, this chapter aims to promote informed use by bridging the
understanding gap for healthcare workers.

We begin with speech – its recognition (Section 1.2), its synthesis
(Section 1.3), and related issues. Moving on to MT (Section 1.4), we’ll first
note the availability of systems covering only pretranslated phrases. We’ll then
go on to examine the major types of MT with broader coverage – “full MT,”
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whether rule-based, statistical, or neural. As a bonus, we’ll add extended
discussion of transformer-based neural processing at the current state of the
art. We’ll conclude with some requisite cautions, and with a send-off to
Chapter 2 shifting focus to practical applications of these technologies in the
healthcare context.

1.2 Automatic Speech Recognition

1.2.1 Classical Automatic Speech Recognition

Automatic speech recognition has made dramatic progress in the last two
decades. Throughout the 2000s, speaker-dependent ASR remained dominant:
To achieve acceptable accuracy using commercially available ASR, each
speaker had to provide speech samples, initially twenty minutes or more. In
most systems, the speech signal to be converted into text was sliced into short
segments, so that the system could estimate the probability of certain text
sequences given a sequence of sound slices, generally using hidden Markov
models (HMMs).1 These estimates yielded possible words or word fragments
and their probability rankings; and one could go on to estimate which word
sequences were most likely, using compilations of word sequence probabilities
called languagemodels.2 The search through the associated set of possibilities –
the associated space of possible words and word sequences – was usually
managed through some variant of Viterbi search techniques.3

By means of these techniques, and with sufficient speaker-specific and
domain-specific recordings and accurate transcripts as training material, accur-
acies well above 90 percent became feasible in favorable environments.
Necessary recording time dropped in a few years from twenty-plus minutes
to less than a minute as processing power steadily increased according to
Moore’s law – the observation that computers’ processing power doubles
every two years or so4 – and as usable recording databases became much
larger. As a result, speaker-independent training had finally arrived by the
early 2010s: That is, training time per new speaker had dropped to zero!

1 “Hidden Markov Model.” Wikipedia, Wikimedia Foundation, July 18, 2022, at 05: 21(UTC),
https://en.wikipedia.org/wiki/Hidden_Markov_model.

2 “Language Model.”Wikipedia, Wikimedia Foundation, August 5, 2022, at 09: 29(UTC), https://
en.wikipedia.org/wiki/Language_model.

3 “Viterbi Algorithm.”Wikipedia, Wikimedia Foundation, 12March 2022, at 20: 26(UTC), https://
en.wikipedia.org/wiki/Viterbi_algorithm.

4 “Moore’s law.” Wikipedia, Wikimedia Foundation, July 30, 2022, at 18: 02(UTC), https://en
.wikipedia.org/wiki/Moore%27s_law.
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1.2.2 Neural Automatic Speech Recognition

Then neural speech recognition appeared on the scene: By the late 2010s,
deep neural networks (DNNs) had essentially replaced HMM-based systems.
Neural network models are fundamentally learners of input-to-output func-
tions: When given certain patterns as input, they learn to yield certain patterns
as output. (We’ll look further into the details in Section 1.4.2.3.) And so, for
ASR, when given suitably preprocessed speech signals, they can learn to
deliver the most probable text transcripts. However, since speech recognition
involves mediating between sequential patterns for both input (sequences of
sounds) and output (sequences of graphemes – that is, letters or characters –
and words), neural architectures specialized for sequences are essential.
Until recently, recurrent and convolutional architectures were preferred –
the first designed, when computing sound-to-text probabilities for the next
step along a sequence in progress, to accumulate the output of all prior steps
and include these as input, and the second designed to exploit a window
moving across the sequence. These have now made room for transformer-
based neural setups. These exploit a method called attention to focus upon the
elements in a segment that will provide the most meaningful context to enable
prediction of new sequences. (Transformers and attention are further dis-
cussed in Section 1.4.2.3.)

1.2.3 Automatic Speech Recognition Issues and Directions

1.2.3.1 Automatic Speech Recognition Issues
Numerous problems remain. Much speech, whether collected in real time or
from recordings, is spontaneous rather than based upon written materials and
consequently contains hesitations, stutters, repetitions, fragments, and other
features unfriendly to recognition. Speech often occurs in noisy environ-
ments. It often involves multiparty conversations, with several voices that
tend to overlap. The voices may be speaking different dialects and may even
mix languages.

To address these and other issues, ASR development is continually in
progress beyond neural network techniques themselves. Numerous possible
architectural variations and component interactions can be tried according to
the use case. For example, several varieties of noise reduction modules can
deliver cleaner audio input (Li et al., 2014).

Integration of knowledge sources will also be a fruitful ongoing research
direction. Presently, ASR still usually lacks any attempt to understand the
objects and relationships in the speech situation.
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1.2.3.2 Automatic Speech Recognition Directions
Considerations of understanding raise the question of future use cases for ASR.
As one example, consider self-driving cars equipped with noise-resistant
speech recognition: A car will “know” about its dynamic environment, having
acquired from “experience” (multiple instances) visual “concepts” like car,
truck, and street, and their spatial and causative relations. And so, when
recognizing user questions or commands concerning cars, trucks, streets, and
so on, the car will be able to use knowledge about the referents – and not only
the audio – to raise or lower probabilities of currently recognized text in
context. And a car’s concepts could include not only visual percepts but also
sounds, vibrations, and lidar or radar data – a wide range of sensor data. In
coming years, this incorporation of perceptually grounded knowledge is likely
to transform all areas of artificial intelligence, speech recognition not least. The
results will affect speech translation; transcription of all audio and video (real-
time and otherwise); and, in fact, every use case demanding ASR – roughly,
every use case involving speech.

To enable an informal impression of current speech recognition accuracy, we
supply, in Appendix 1.1, healthcare-oriented ASR examples for English, using
two current commercially available systems.

1.3 Speech Synthesis (Text-to-Speech)

Synthetic speech reached an acceptable quality level – understandable if
colorless and unmistakably artificial – in the nineties. The problem was con-
sidered largely solved; and, partly for that reason, text-to-speech remained
relatively static while speech recognition was rapidly and noticeably improv-
ing. We’ll look at “classical” text-to-speech first, then move on to the current
neural era.

1.3.1 Classical Text-to-Speech

1.3.1.1 Concatenative Text-to-Speech
The most widely used classical technology – still in use for some purposes –
was concatenative: short, recorded audio segments associated with speech
sounds (phonemes like /t/ or /o/ and their subparts or groupings) were stitched
together (concatenated) to compose words and larger units.5

5 “Speech Synthesis#Concatenation Synthesis.” Wikipedia, Wikimedia Foundation, August 12,
2022, at 14: 44(UTC), https://en.wikipedia.org/wiki/Speech_synthesis#Concatenation_synthesis.
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The segments in question were collected from large databases of recorded
speech. Utterances were segmented into individual phones, syllables,
words, and so on, usually employing a special-purpose speech recognition
system yielding an alignment between sound elements and those linguistic
units. An index of the units was compiled, based on the segmentation and
on acoustic parameters (factors) including pitch, duration, and position
among other units. And then, to build a target utterance given a text, the
best chain of candidate units was selected, typically using a decision tree
(sequence of program-based “questions”) while extending the chain. Good
results could be achieved, but maximum naturalness required large record-
ing databases, up to dozens of hours. (Alternatives to such concatenative
text-to-speech could synthesize utterances from scratch by artificially gen-
erating waveforms – the graphic representations of waves, describing them
in terms of frequency and amplitude, which can be converted into actual
sound. The resulting speech was less natural, but waveform methods had
advantages, for example, in size, so that they lent themselves to implemen-
tations in small devices, even toys.)

1.3.1.2 General Text-to-Speech Issues
Concatenative or otherwise, any speech synthesis system confronts several
issues.

Allophones and Coarticulation Phonemes are generally pronounced differ-
ently (as allophones, or phoneme variants) according to their place in words or
phrases. For instance, in US English, phoneme /t/ may be pronounced with or
without a puff of air (called aspiration, present in top but absent in pot).
Moreover, even those variants – and all other speech sounds – will vary further
in context according to the neighboring sounds (i.e., to coarticulation effects):
For instance, the puffed /t/ sounds different before different vowels. (For this
reason, diphones, or pairs of phonemes, are frequently used as speech sound
groupings.) Coarticulation changes arising from some sound sequences can be
dramatic in certain styles or registers, as when /t/+/y/ in don’t you becomes the
/ʧ/ of doncha. If classical TTS handled such cases – they usually didn’t – it was
through indicative spellings (“doncha”) or through programs implementing
handwritten combinatory rules.

Disambiguation Another problem is posed by text sequences that can be
pronounced entirely differently according to their use in a sentence, like
“record” in “For the record, . . . ” versus “We need to record this meeting.”
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Some analysis of sentences is needed to select the appropriate variant and
resolve the ambiguity – that is, to perform disambiguation. In classical TTS,
this need was often met by symbolic (handwritten) programs for sentence
analysis.

Normalization Yet another challenge is presented by text elements whose
pronunciation isn’t specified in text at all but is instead left to the knowledge of
the reader-out-loud. Numbers and dates are typical examples: 7/2/21 might be
pronounced as “July second, twenty twenty-one” in the US – though variants
are many, even leaving aside thematter of European writing conventions. Some
ways must be found to convert such elements to pronounceable text – to
normalize the input.

Pronunciation problems Foreign or unfamiliar words (“Just hang a U-ie on
El Camino”) present obvious difficulties for text-to-speech. They’re normally
addressed either through compilation of specialized or custom dictionaries or
through use of a guesser – a program that uses rules (then) or machine learning
(now) to guess the most likely pronunciation.

Prosody Some treatment is needed of prosody –movement of pitch (melody),
duration (rhythm), and volume (loudness). In the classical era, the prosody of
a sentence was superimposed on speech units via various digital signal pro-
cessing techniques. For instance, via the Pitch Synchronous Overlap and Add
(PSOLA) technique, the speech waveform is divided into small overlapping
segments that can be moved further apart to decrease the pitch, or closer
together to increase it. Segments could be repeated multiple times to increase
the duration of a section or eliminated to decrease it. The final segments were
combined by overlapping them and smoothing the overlap. The means of
predicting the appropriate prosody were relatively simple – for example, by
reference to punctuation – so the results were often repetitive and lacking in
expression.

Extraprosodic speech features Extraprosodic speech features like breathi-
ness, vocal tension, creakiness, and so on were only occasionally treated in
research, for example, by simulating the physics of the voice tract. Using
models of vocal frequency jitter and tremor and of airflow noise and laryngeal
asymmetries, one system was engineered to mimic the timbre of vocally
challenged speakers, giving controlled levels of roughness, breathiness, and
strain (Englert et al., 2016).
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1.3.2 Neural Text-to-Speech

As mentioned, neural technology learns input-to-output functions – usually
from corpora of input-output examples. For neural speech synthesis, the syn-
thesis job can be understood as two input-to-output problems or stages:

1. Given text (perhaps revised or augmented with markup), what should be the
corresponding acoustic features (numbers indicating factors like segment
pitch, duration, etc.)?

* The acoustic features are represented as spectrograms, which show
frequency changes over time: In an X/Y graph, the vertical (Y) axis
shows frequency, and the horizontal (X) axis shows time. (These days,
a modified frequency scale is often substituted for raw frequency: themel
frequency scale – mel for “melody” – which takes account of human
perception.)

2. Given acoustic features, what actual sound should be generated? This is the
function of a vocoder.6

However, the stages can be combined to yield an end-to-end neural text-to-
speech solution.

The prerequisites for neural text-to-speech began as recently as 2016, when
DeepMind demonstrated networks able to perform the second stage by gener-
ating speech from acoustic features.7 In 2017, the technology was used by
others (Sotelo et al., 2017) to produce an initial end-to-end solution – generat-
ing speech directly from text. At the same time, Google and Facebook offered
Tacotron and VoiceLoop, which could perform the first stage – that is, generate
acoustic features, as opposed to sound, from input text. Completing the R&D
pathway, Google proposed Tacotron2 as a more mature end-to-end solution,
combining a revised acoustic feature generator (the first stage) with the
WaveNet vocoder (the second stage).8

Now that current end-to-end systems can generate speech whose color
(timbre) and overall resemblance approaches that of humans, this methodology
has been widely adopted (Tan et al., 2021). Good models for given speakers or
languages can be created with little engineering. They’re robust, since there are
no components that can fail. And unlike classical concatenative models, they
require no large databases at run time.

6 “Vocoder.” Wikipedia, Wikimedia Foundation, 7 August 2022, at 18: 38(UTC), https://en
.wikipedia.org/wiki/Vocoder.

7 “WaveNet.” Wikipedia, Wikimedia Foundation, 18 July 2022, at 17: 07(UTC), https://en
.wikipedia.org/wiki/WaveNet.

8 “Deep Learning Speech Synthesis.” Wikipedia, Wikimedia Foundation, June 6, 2022, at 17: 58
(UTC), https://en.wikipedia.org/wiki/Deep_learning_speech_synthesis.
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1.3.2.1 Neural Text-to-Speech Issues
But, of course, challenges remain:

• Learning of models takes much time and computation. Resolution efforts
have emphasized architectural variation: Transformer-based architecture
(Section 1.4.2.3.1) can replace older methods, with several advantages,
including efficiency.

• If training data is insufficient or low in quality, speech quality suffers. The
quality problem is related to failures of alignment between text and speech
sounds, so focus has been on improving alignment by leveraging the known
relations between these elements.

• Control points are absent: What you hear is what you get. Research has
stressed methods of learning representations of certain speech features as
embeddings, or points in multidimensional (vector) space (Section 1.4.2.2).
The points can represent emotions (like anger or sadness) as expressed
through speech features like pitch or rhythm. Because that representation
remains separate from, for example, the pronunciation, many combinations
and blends are possible.

• Prosody and pronunciation tend to be flat, since they’re averaged over large
collections of training data. At or after synthesis time, users can interactively
post-tune preliminary flat (emotionless, bland, boring) renderings via suit-
able user interfaces. In addition, TTSmodels can bemade to generate speech
with various speaker styles and characteristics by utilizing embeddings
representing speakers and speaking styles.

1.3.2.2 Neural Vocoders
We mentioned that neural speech synthesis involves two stages, where
the second is sound generation, as performed by a vocoder. That vocoder can
exploit neural networks, as do the popular WaveNet (“WaveNet”) and HiFi-
GAN (Kong et al., 2021) vocoders.

1.4 Machine Translation

We now shift focus to MT. We’ll glance at translation based on fixed phrases,
postponing most discussion for Chapter 2, before shifting attention to various
techniques for full (wide-ranging, relatively unrestricted) translation: rule-based,
statistical, and neural. As an optional coda for AI-curious readers, we’ll examine
state-of-the-art neural translation techniques involving transformers – neural
networks for sequence prediction that handle context in a powerful new way.
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As we’ve seen, transformers can be applied advantageously to speech recogni-
tion and speech synthesis as well.

1.4.1 Machine Translation Based on Fixed Phrases

Several healthcare-oriented speech translation systems have been designed
to handle pretranslated phrases only, rather than to attempt full MT of
wide-ranging input. This design decision enhances reliability because it
depends on (usually professional) translation in advance; and it aids
customization per use case in that relevant phrases can be brought into
the system as needed.

Speech translation systems of this type include a set of fixed and
pretranslated phrases, each supplied with a prepared target-language trans-
lation. Within such a set, the task of speech recognition is to find the best
match for the incoming source-language phrase so as to enable transmis-
sion of its prepared translation via text or text-to-speech. (Matches will
often be inexact, so techniques for finding near misses will be required.)
The translation may be augmented with, or even substituted by, audiovis-
ual elements – images, videos, or audio clips. Chapter 2 offers further
discussion of phrase-only speech translation systems, with description of
sample systems.

1.4.2 Full Machine Translation: Beyond Fixed Phrases

We now survey development of MT from its beginnings in the 1950s to the
current state of the art. Conveniently enough, progress in the field can be
divided into three eras or paradigms:9 those of rule-based, statistical, and neural
MT. We’ll devote a subsection to each paradigm. Each can be usefully viewed
in terms of its treatment of meaning, or semantics: Rule-based methods have
generally emphasized handmade semantic symbols; statistical methods have
generally avoided semantic treatment or employed vector-based semantics, as
will be explained; and neural methods have until now handled meaning as
implicit within networks.

We aren’t undertaking a full history of MT research and development. For
that purpose, see instead for example Hutchins (2010). We postpone discussion
of speech translation until Chapter 2.

9 The word paradigm, when referring to a consensus among researchers about the legitimate
concepts and procedures for a scientific enterprise, was introduced by (Kuhn, 1996). Here the
progression of paradigms or eras tracks the shift from one way of handling machine translation to
another.
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1.4.2.1 Rule-Based Machine Translation
We begin our survey of MT with a review of rule-based approaches. These
employ handwritten rules relating to grammar and word composition (morph-
ology), side by side with handwritten programs, so that the style might instead
have been termed handmade MT.

Handmade approaches are rare in current MT development, where neural
approaches (Section 1.4.2.3) are now overwhelmingly favored. Still, legacy
MT systems continue to employ them10; and examination of them is conceptu-
ally helpful in understanding neural approaches, which would otherwise appear
as oracles – as “black boxes” whose inner workings are invisible and mysteri-
ous, into which one language enters and from which another language miracu-
lously emerges.

Within the rule-based paradigm, then, three subapproaches can be distin-
guished: direct, transfer-based, and interlingua-based.

Throughout, we’ll be referring to the source language (SL, the language
we’re translating from) and the target language (TL, the language we’re
translating to).

Intermediate Structures: Syntactic versus Semantic In comparing the three
rule-based approaches, one important question is whether the approaches do or
don’t automatically derive steppingstones between the SL and TL. We’ll call
these intermediate structures.

Another significant consideration is the composition of any such go-between
structures: Do they represent syntactic or semantic features of an utterance, or
some mixture? Figure 1.1 illustrates this distinction.

Consider first the analysis of the Japanese phrase on the left. In their original
order, the English glosses of the relevant Japanese words would be “car, (object
marker), driving, do, person” – that is, “car-driving person,” “person who
drives/is driving a car.” The analysis shows that we are dealing with a noun
phrase; that it is composed of a verb phrase on the left and a noun on the right;
that the verb phrase in turn contains a certain sort of phrase; and so on. This is
strictly a part-to-whole analysis – a syntactic analysis, where syntax refers to
the analysis of the parts of a speech segment (for example, a sentence) and their
relation to the whole segment. It says nothing explicit about themeaning of the
phrase.

By contrast, on the right, we do see an attempt to capture the meaning of this
phrase. person is this time shown as a semantic (meaning-related) object,
presumably one which could be related within a graph relating classes,

10 “Word Magic.” URL: https://word-magic-translator-home-edition.software.informer.com/.
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subclasses, and instances – called an ontology – to other semantic objects such
as animals, living-things, and so on. The person in question is modified –
a semantic rather than syntactic relationship – by the action drive, and that
modifying action has an agent (the same person, though the identity is not
shown) and an object, car.

In practice, such intermediate structures often mix syntactic (part-to-whole)
and semantic (meaning-related) features, as we will see.

Vauquois Triangle We’re ready now to contrast the three main approaches
within the rule-based MT paradigm. For orientation, we refer to an often-used
diagram of the relationships between direct, transfer-based, and interlingua-
based methods (Figure tech.1.2), the Vauquois Triangle (Boitet, 2000).

NP person

Semantic structureSyntactic structure

person

drive

car

objagt

modVP

P VN V N

V

N

_driving _do _person

PP

_car _obj

Figure 1.1 Contrasting syntactic and semantic intermediate structures

Interlingual

generation

TLSL

direct

Syntactic transfer

Semantic transfer

analysis

Figure 1.2 The Vauquois Triangle
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The diagram depicts various paths for departing from the SL (at lower left)
and arriving at the TL (at lower right).

Direct Translation We’ve drawn attention to this question for rule-based MT
systems: are intermediate structures derived as go-betweens or steppingstones
between SL and TL? The distinguishing feature of direct translation methods is
precisely the absence of such midway points.

As a first step, surface elements of the SL – that is, the words and expressions
in the input text –will undergo lookup to discover TL elements that can serve as
their respective translations. (Several candidates might be found per element.)
Programs will then be invoked to “massage” the target elements to compose
a complete translation based upon them: to choose among translation candi-
dates; to order the selected target elements properly; and to make necessary
adjustments for TL morphology (word-building) and syntax (grouping and
related modifications), for example, by handling agreement (making plural
adjectives agree with plural nouns, for instance), adding function words or
word parts (morphemes), and so on.

For such direct translation approaches, the diagram depicts a horizontal line
between SL and TL which remains low in the triangle – low because, as
mentioned, translation methods higher in the diagram use steppingstones
(intermediate structures) on the way to a final translation, whereas direct
methods do without them.

We’ve already seen examples of such steppingstones: the sample syntactic
and semantic structures above. These intermediate structures are considered
more abstract than the surface (text) elements; and height in the diagram is
interpreted as degree of abstraction. (We’ll say more about the interpretation of
“abstraction” in a moment.) The intermediate structures include those derived
through programs which perform analysis of the SL input (shown by the
ascending line on the left): The structures produced by analysis should indicate
the construction and meaning of the original SL input in ways not obvious from
the surface language.

Transfer-Based Translation Above the horizontal line labeled “direct” is
a line labeled “syntactic transfer.” Transfer-based translation methods use
two main intermediate structures. The first is the output of source-language
analysis, as just described. The second intermediate structure should represent
the construction and meaning of the input structure’s translation into the TL. As
such, it is intended to serve as the starting point for generation (construction) of
the TL text (shown by the descending line on the right) and is derived from the
analysis output through the transfer process for which transfer-based methods
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are named. Transfer processes are somewhat analogous to the processes of
direct translation in that they, too, begin by selecting TL elements that will
translate source elements, and then go on to “massage” by reordering, adding,
or subtracting, and so on. However, instead of massaging surface language
elements, they massage the associated analysis output structure, for example by
replacing one substructure with another to account for structural differences
between source and target. (For example, the English structure <x> like<y>

might be replaced by <y> please <x> in Spanish – in translating “Carlos likes
books” to yield “A Carlos le gustan los libros,” literally, “To Carlos, books
please him.”)

We said that intermediate structures are intended to be increasingly abstract
in the following special sense: The more abstract an intermediate structure, the
greater the number of SL utterances which may have given rise to it during
analysis or the greater the number of target utterances which might result
during generation.11

Interlingua-Based Translation If the tendency toward abstraction is taken to
its extreme, analysis aims to produce a maximally meaning-oriented (semantic)
result – one which could in principle result from any source utterance having an
equivalent meaning, regardless of sentence or word structure. The result should
then be an interlingua representation, one intended to represent the semantics
for both SL and TL, and ideally for many, or even all, additional languages.
Once this degree of abstraction has been reached, intermediate structures on
the source and target side are no longer distinct, so there will be no need of
a transfer process to mediate between them. For this reason, interlingua-based
translation methods are shown at the apex of the Vauquois Triangle, where
horizontal transfer lines will no longer fit.

Having outlined rule-based or handmade translation methods – direct,
transfer-based, or interlingua-based – we can comment on their treatment of
semantics.

Semantics in Rule-Based Machine Translation Of course, no translation
could take place without at least implicit consideration of meaning. In purely
direct rule-based MT, the meaning of an expression is shown implicitly only by

11 In many linguistic discussions, “abstraction” is discussed in terms of “depth,” as in “deep
structure.” This terminology can be confusing, and not only because elements higher in the
Vauquois triangle would be described as “deeper.” Several metaphors are in competition:
“deeper” may mean “dominant in a phrase structure,” as a verb phrase symbol may dominate
a verb and its object; “superordinate in an ontology,” as a class like aircraft may be
superordinate to its subclasses like helicopters; “earlier in a derivation sequence,” as analysis
of a source utterance precedes TL generation; and so on.
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its translations: One could say that the translations are the meanings. There are
typically several possible translations for any given expression, and examin-
ation can reveal semantic relations like SL polysemy (an expression has
multiple meanings: one or more SLs map to several groupings of synonymous
TLs) and SL synonymy (several expressions mean the same: when several SLs
map to one grouping of synonymous TLs).

However, for direct translation systems or any others, we can go on to
examine the role, if any, of explicit semantic methods. And we can observe
that, while direct MT methods do concentrate upon the surface (text) elements
of SL and TL, explicit information concerning the meanings of words and
phrases can still be useful, for example to aid in the selection of the correct
word meaning, and thus the correct translation, for ambiguous expressions, or
expressions (like English bank) with multiple meanings – that is, for lexical
disambiguation. As is widely known, ambiguity has long plagued the MT
enterprise. The difficulty of avoiding the meaning “writing instrument” when
translating “The pig is in the pen” prompted an influential early misjudgment
that automatic translation would prove a dead end.12

An example appeared in the direct MTsystem ofWordMagic for English-to-
and-from-Spanish, in which translation lexicons listed not only surface
expressions but word-senses, for example, bank1 (“financial institution”),
bank2 (“shore”), bank3 (“row, e.g. of switches”), and so on, where each listed
word-sense pointed to a set of synonymous Spanish translations, in which
one member was the default translation. During analysis, the appropriate
word-sense – that is, meaning – for the current translation segment was chosen
according to handwritten rules taking account of the context. For maximum
generality, the disambiguation rules referred to semantic classes (e.g.,
vehicles) rather than individual semantic instances (e.g., car.1); and those
classes were collected and arranged in an ontology (categorization graph).
Among direct rule-based approaches, this treatment is typical (Hutchins, 2005).

However, within the rule-based MT paradigm, while some direct systems
have used semantic symbols to good advantage, such elements are most
associated with transfer-based and interlingua-based methodologies.

The ASURA system for English, German, and Japanese, an early speech
translation system, included a transfer-based MT component intended to oper-
ate at the semantic level, in order to better bridge the gap between the disparate
languages involved. Consider Figure 1.3, a structure produced by the transfer
process during translation of “Could you make the hotel arrangements?” into

12 “History of Machine Translation#The 1960s, the ALPAC report and the seventies.”Wikipedia,
Wikimedia Foundation, July 9, 2022, at 18: 01(UTC), https://en.wikipedia.org/wiki/
History_of_machine_translation#The_1960s,_theALPAC_report_and_the_seventies.
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German (Seligman, 1993). The structure contains the semantic symbols
request and polite alongside syntactic symbols like machen-v (“to make,”
a verb) and hotelbuchung-n (“hotel booking,” a noun).

As might be expected, the most extensive use of explicit symbolic semantic
tokens has been in interlingua-based MT. Here a mature example is the ATLAS
system for English and Japanese, developed at Fujitsu under the direction of
Hiroshi Uchida (1986). Uchida is also the founder of the most extensive
multilingual and multipartner interlingua-based research effort, the Universal
Networking Language (UNL) project.13 Its foundation is a rich set of word
senses, originally based upon that of a complete English dictionary. These can
be combined, via special relational symbols like cause, to enable construction
of UNL representations for phrases, sentences, and so on. Figure 1.4, for
instance, shows the combination representing the following sentence and its

Figure 1.3 A hybrid intermediate structure from the ASURA system

13 “UNL project.” URL: www.undlfoundation.org/undlfoundation/.
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many paraphrases and translations: “Long ago, in Babylon, the people began to
build an enormous tower, which seemed to reach the sky.”

Interlingua-based structures have been useful in speech translation research.
See (Seligman and Waibel, 2018) and (Levin et al., 1998) regarding the
Interchange Format (IF) structures used by the C-STAR consortium (Figure 1.5
shows three examples) and concerning a separate interlingua used in IBM’s
MASTOR project (Gao et al., 2006).

1.4.2.2 Statistical Machine Translation
A dramatic rise of statistical machine translation (SMT) (Koehn, 2009)
erupted in the 1990s.

In initial implementations, statistical information was treated as a supple-
ment or add-on to the existing rules and programs of rule-based MT (Brown
et al., 1990, 1993). However, the new paradigm soon gravitated toward

long ago

agt agt

obj obj

aoj

aojobj

obj

gol

plc

mod

tim

city

begun build

people huge

tower

seemedreach

heavenBabylon

Figure 1.4 A sentence representation in the UNL interlingua

We have single, and twins and also Japanese rooms available on the eleventh.
a:give–information+availability+room (room–type=(single&twin&Japanese_style), time=md11)

I’d like a twin room, please.
c:accept+features+room(room–type=twin)

a:give–information+price+room(room–type=twin, price=(currency=yen, quantity=14000))
A twin room is fourteen thousand yen.

Figure 1.5 Sentence representations in the IF interlingua
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methods that in some respects recalled those of direct rule-based MT. Rather
than manipulate abstract structures like those of transfer-based methods –
structures representing some mixture of compositional and semantic common-
alities among surface structures – statistical methods returned to operations
upon the surface structures themselves. As in direct rule-based methods, the
first step is to determine which TL surface segments might serve as translations
for SL surface segments; and later steps relate to the ordering of target
elements, possible additions or subtractions from them, possible grammatical
adjustments, and so on. But while in rule-based methods these steps depend on
rules and programs created by hand, in SMT they depend upon probabilities
discovered in parallel corpora of human translations (for example, a large
collection of English parliamentary transcripts in which each utterance is
aligned with its French translation). The goal in SMT is to produce the most
probable translation of a source segment given that training set (corpus), so
actual production of a translation (decoding) becomes an optimization process –
a search for the best solution among many candidates, often visualized as hill
climbing: the probabilities of alternative translations are iteratively compared,
and with each matchup, the better alternative is chosen as a step uphill. The
goal is to arrive at the highest probability “peak” (and avoid getting stuck on
a lower one).

In most SMT, the translations of words and phrases are their meanings (just
as they are in “pure” or unadorned direct rule-based MT). SMT’s translations
are indicated in a system’s phrase table, a listing of SL-to-TL correspondences
(e.g., English cool to French frais), each with a probability determined during
training (Figure 1.6). The rows in a table can be examined to discover semantic
relations like polysemy (one expression, many meanings) and synonymy
(many expressions sharing a meaning).

Vector-based semantics. Throughout its decade-long reign, mainstream
SMTexploited explicit semantic symbols only rarely. In compensation, vector-
based semantic treatments gradually became influential.

Target language
expression

ProbabilitySource language
expression

cool

cool

man

frais .34

.21

.88

.68

frais

homme

chouette

nippy

Figure 1.6 Part of a phrase table for statistical machine translation
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Vector-based semantic research aims to leverage the statistical relationships
among text segments (words, phrases, etc.) to place the segments in an abstract
space, within which closeness represents similarity of meaning (Turney and
Pantel, 2010).

“Abstract space” sounds impressive but intimidating; however, everyday
comparisons can reduce the fear factor. For example, any spreadsheet with
several rows (representing, e.g., available flavors of an ice cream order) and
several columns (available sizes of an order) exemplifies a “space” with two
dimensions – up-down and right-left – in which the cell entry in row 2, column
3 (“strawberry, large”) indicates a specific combination, seen as a “location” or
“point” within that “space” (set of choices). We could stack such spreadsheets
vertically to make room for a third dimension (perhaps available containers, as
in cone vs. cup); and so on, in theory, to any number of dimensions or factors.

Vectors themselves, meanwhile, are just one-dimensional lists of numbers
representing combinations of factors, with one number coding each factor:
<strawberry, large, cone> might be coded as the vector <2, 1, 1>.

Closeness or similarity in such a “space” of choices can be represented as
distance between “points” in the space (comparable to locations or cells in
a spreadsheet): two ice cream orders that share several factors (flavor, size,
or container) are closer (more similar) in the sheet than those with fewer
commonalities.

This insight can enable comparison of words or expressions with respect to
their meanings. Intuitively, words that occur in similar contexts and participate
in similar relations with other words should turn out to be semantically similar.
The intuition goes back to Firth’s (1957) declaration that “You shall know
a word by the company it keeps,” and has been formalized as the distributional
hypothesis. The clustering in this similar-neighbors space yields a hierarchy
(ranking) of similarity relations, comparable to that of a handwritten ontology
(symbol categorization graph). Figure 1.7 (Mikolov et al., 2013) shows two
examples from English with corresponding examples from Spanish.

Representation of a given segment’s meaning as a location in such a vector
space can be viewed as an alternative to representation as a symbol located
within a categorization graph. The vector-based approach is much more scal-
able (more extensible to large-scale use) in that there is no need to build graphs
manually; but relations can be harder for humans to comprehend in the absence
of appropriate visualization software tools.

Historically, the vector-based approach grew out of document classification
techniques, whereby a document can be categorized according to the words in it
and their frequency. The converse was then proposed: Aword or other linguis-
tic unit can be categorized according to the documents it appears in, or more
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generally, according to surrounding or nearby text segments of any size –
minimally, just the few words surrounding it.

Vector-based semantic approaches have been used experimentally to
improve statistical MTsystems. Alkhouli et al. (2014) provide a clear example,
in which the elements located in vector space according to their respective
contexts are phrases (word groups) rather than only words. It then becomes
possible to measure distances between phrases, interpretable as similarity of
meaning; and this interpretation in turn enables enhancement of the translation
process via artificial enlargement of the relevant phrase tables – helpful because
the training set (corpus) rarely contains all the examples one would wish.

1.4.2.3 Neural Machine Translation
Neural machine translation (NMT) has proved to be a late bloomer. While early
neural experiments (Waibel, 1987; Waibel et al., 1987, 1991) garnered interest,
especially in view of potential insights into human language processing, the
computational infrastructure that would eventually make neural approaches
practical did not yet exist. Now that they do, the approach has experienced an
explosive renaissance: Google announced its first neural translation systems as
recently as 2016 (Johnson et al., 2016); Systran has since then gone fully neural
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Figure 1.7 Two vector spaces for English, with corresponding Spanish spaces
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(Senellart, 2018); and most other major MT vendors are converting at full
speed.

A conceptual introduction to neural network operation may help to explain
the methodology’s application to translation. Think first of logical rules, for
instance those of the predicate calculus:

If A and B, then C
If D and E, then F
If C and F, then G

If the premise-to-conclusion relations are depicted as lines, we obtain a tree-
like diagram (Figure 1.8).

Imagine that the lines are electric wires, and that there is a bulb at each
premise or conclusion which lights up if manually switched on, or if all
incoming wires are active; and that, when a light is illuminated, the outgoing
wire is activated. Switch on A, B, D, and E. Then C and F will be activated and
will propagate activity to G. That is, since facts A, B, D, and E have been found
to be true or in effect, fact G has been found to follow. Et voilà: a neural
network! However, several refinements are needed to complete the picture.

• First, rather than being simply on or off, each line should have a degree of
activation; and illumination of a conclusion bulb should require not full
activation of all wires, but only summed activation passing a specified
threshold.

• Second, some wires may inhibit rather than promote the conclusion – that is,
their activation may subtract from the sum.

• Third, rather than only three “rules,” there should be many thousands.
• And fourth, and perhaps most important, all of the network’s parameters

(numbers, factors) – the wires’ activation levels, thresholds, and so on –
should be learned from experience rather than set by hand. They may be

G

C

A B D E

F

Figure 1.8 Connections among rules forming a network
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learned through a supervised process, whereby a trainer provides the
expected conclusions given the switches thrown at the input, and appropriate
programs work backwards to adjust the parameters; or through an unsuper-
vised process, whereby adjustment depends on frequency of activation
during training, perhaps assisted by hints and/or rewards or punishments.

Such networks can indeed be applied to translation, since they provide
general-purpose computational mechanisms: With sufficient available wires,
“rule” layers, and so on, they can in principle learn to compute any function –
any mapping of input patterns to output patterns. Thus, they can learn to map
input bulbs coding for SL segments into patterns analogous to the human-
readable symbolic analysis results of an interlingua-based MT system – that is,
to perform operations analogous to the analysis phase of such a system. (In
NMT, the analysis phase is called encoding, and produces only human-opaque
numbers.) Likewise, the networks can also learn to map those result patterns
into the surface structures of the TL – that is, to perform operations (called
decoding) analogous to a transfer-based system’s generation phase. And they
can learn the alignment between surface elements of the source segment with
those of the target segment (that is, can learn which SL segments correspond to
which TL segments), information helpful during TL generation (Figure 1.9). In
Section 4.2.3.1, we’ll see how it’s done.

Neural networks were born to learn abstractions. The “hidden” layers in
a neural network, those which mediate between the input and output layers, are
designed to gradually form abstractions at multiple levels by determining
which combinations of input elements, andwhich combinations of combinations,

Input
Layer

Output
Layer

Hidden
Layer 1

Hidden
Layer 2

Figure 1.9 A neural network with input, output, and two hidden layers
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are most significant in determining the appropriate output. (In our conceptual
introduction above, each abstraction level was viewed as a stage in a chain of
implied “rules.” Rules close to the input layer of the network use surface
elements specific to particular inputs as their “premises” or givens, while those
further from the input use “premise” combinations taken frommany inputs.) The
more hidden layers, the more levels of abstraction become possible; and this is
why deep neural networks are better at abstracting than shallow ones. This
advantage has been evident in theory for some time; but deep networks only
became practical when computational processing capacity became sufficient to
handle multiple hidden layers.

WhereMT is concerned, this hidden learning raises the possibility of training
neural translators to develop internal meaning representations automatically
and implicitly (Woszczyna et al., 1998). A new neural-network-based approach
to meaning then suggests itself: Within a network, nodes or pathways shared
by input elements having the same translation or translations can be seen as
representing the shared meanings. Input elements sharing a translation can
originate in a single SL (when in that language the source elements are
synonyms in the current context) or in several SLs (when across the input
languages in question the source elements are synonymous in their respective
contexts). And, in fact, the shared translations, too, can be unilingual or
multilingual.

Thus, if translation is trained over several languages, semantic representa-
tions may emerge that are abstracted away from – that become relatively
independent of – the languages used in training. Taken together, they would
compose a neurally learned interlingua, a language-neutral semantic represen-
tation comparable to the handmade symbolic interlingua discussed above in
relation to rule-based systems. A successful neural interlingua could facilitate
handling of languages for which data is sparse, thus opening a path to truly
universal translation at manageable development costs. Several teams have
begun work in this direction (Le et al., 2016; Kurzweil, 2016; Firat et al., 2016),
and early results are already emerging: Google, for instance, has published on
“zero-shot” NMT, so named because the approach allows translation between
languages for which zero bilingual data was included in training corpora
(Johnson et al., 2016); and SYSTRAN, in a similar spirit, has already
announced combined translation systems for romance languages (Senellart,
2018). Not to be outdone, Meta (the company formerly known as Facebook)
has recently announced a comparable push toward universal translation
(Ramirez, 2022). Zero-shot NMT works because the encoding (analysis)
phase of translation has been generalized across all currently trained SLs,
while the decoding (generation) phrase has similarly been generalized across
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all currently trained TLs. Thus any current source can be paired with any
current target. Expectations would be low, however, if completely untrained
SLs or TLs were tried.

Transformers in Neural Machine Translation For many readers, the above
account of NMTwill suffice. Still, in the spirit of dispelling the mystery, we’ll
go on to provide an optional bonus: an intermediate-level account of the inner
workings of neural translation at the state of the art, focusing on recent
excitement over the transformer architecture (i.e., learning setup) and its
advantages. We’ve repeatedly mentioned transformers as neural networks
that can exploit a powerful technique called attention to predict sequences by
analyzing their elements’ contexts. Now we’re ready to scrutinize the role of
that technique in learning large language models (LLMs) like GPT-3 – subjects
of intense research in the artificial intelligence community at the time of
writing. While few healthcare workers may participate directly in this research,
it will be helpful if those charged with selecting speech and translation
components are conversant with it. Artificial intelligence is resurgent, and
demystification should be healthy for most professionals.

Analyzing Sequences: The Role of Context As we’ve seen, all three of the
major components that concern us here involve analysis of sequences, and
more specifically, transformation of one sequence into another: For speech
recognition, we transform a sequence of sound segments into a sequence of text
elements; for speech synthesis we do the reverse, transforming a text sequence
into a sequence of sound segments; and for MT, we normally transform a text
sequence in the SL into a text sequence in the TL. (“Normally” because some
research attempts to transform sound sequences directly into sound sequences,
without passing through text on the way.) It will be convenient to focus our
exposition of forefront research on MT. However, the techniques to be exam-
ined can serve to predict sequences quite generally – single-strand sequences
(those with only one row of elements) as well as the aligned, double-strand
sequences of most immediate interest (in which two interrelated rows are in
question).

Our MT life would be sweet if we could simply replace each source word
with its unique translation at its original place in the source sequence. However,
as we’ve seen, there are several problems with this simplistic approach, all
depending heavily on the source context – the surrounding source words. First,
source words will in general be ambiguous: They may have several possible
translations, possibly including no translation. Second, the order of target
words may be different from that of the source words. Third, agreement may
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be required between certain elements of the target sequence. Finally, there will
be pronouns and other referring words whose translation will depend on
resolving the words they refer to.

How can we enable each word to be aware of its full context as we identify its
translation counterpart? Until 2017, the standard answer was to step through
the source word sequence one word at a time – for English, from left to right –
while trying to “remember” earlier words and their translations. Information on
all prior words and their translations was repeatedly fed to the process translat-
ing the current word. The setups that managed this recycling are called
recurrent neural networks (RNNs), already mentioned in passing. They han-
dled contextualization reasonably well for short sentences but less well when
tackling longer ones, for several reasons.

• Memory of earlier elements tends to fade as the sequence progresses: The
system forgets what happened early in the input as it progresses toward later
elements. Consequently, only relatively recent context can have the desired,
and crucial, influence.

• A related matter is the vanishing gradient problem. Neural networks learn by
repeatedly measuring their errors from trial to trial so that they can adjust
networks incrementally in the direction of the right outcome – up or down
ametaphorical hill, or gradient; but if the differences between trials becomes
too small and the hill flattens, such gradual adjustment becomes difficult,
and learning grinds to a halt. This flattening is too frequent with recurrent
techniques.

• Given the consecutive processing, elements later in the input can have no
influence at all on the current word’s analysis; and yet the entire sequence
may have been accessible from the outset.

• The continuous recycling makes the entire progression resource-intensive
and time-consuming.

Researchers attempting to alleviate these issues realized that not all context
is created equal. For analysis of the current word, some neighbor words
provide more significant context than others. So the relative context-
worthiness of a word’s neighbors should be estimated, and contextual influence
on translation should be granted to them proportionately. But how can this be
done?

“Attention” as Context-Worthiness We’ve already introduced the concept of
vector-based semantics, in which words are categorized as semantically
similar according to their respective contexts – their word neighbors. In
neural MT, the vectors (embeddings) representing input words are just rows
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of numbers, one number for each dimension (factor) in the abstract similarity
“space.” (These are supplied in advance, for instance by the BERT language
model.14) Each word’s vector represents its “location” in that “space”: If there
were only two dimensions, then a vector with two numbers referring to
a standard X/Y axis would suffice, and we’d see the word’s point somewhere
in the plane thus defined; but the same principle applies for any number of
dimensions. And here’s the point: It turns out to be straightforward mathem-
atically to measure the neighbor-based similarity of two words by calculating
the distance between their vectors. Accordingly, we can let this sort of
neighbor-based similarity be our measure for the context-worthiness, within
the relevant segment, of each segment-mate word with respect to the current
word. Context-worthiness, thus understood, is called attention in this tech-
nical sense; and it is in this sense that attention has captured the attention of
the AI world.

Attention was initially used to augment the operation of RNNs; but in 2017,
a seminal paper appeared: “Attention Is All You Need” (Vaswani et al., 2017).
It showed that thoroughgoing use of attention could make unnecessary the
massive recycling applied by RNNs: Instead, contextual influence could be
calculated for each word separately. And this could be done by separate
processors, and all at the same time – that is, in parallel! What’s more,
miraculous follow-on benefits were revealed: Context could become much
larger and more complete, since it now became possible to consider the
influence of segment-mate words at distances limited only by the length of
the segment, rather than considering only the words recent enough to be clearly
remembered. Then, too, similarity could be estimated not only for earlier
words, but also for words later in a long segment. Parallel operation meant
hugely faster operation than recurrent recycling; and hugely faster operation
meant that huge amounts of data could be processed – essentially, all the text on
the Internet! (And later, images and other types of data as well.) Meanwhile, the
processing power that was saved could be spent on enlarging the neural
networks themselves: They could be much wider and much deeper, with the
number of connection strengths, and so on (i.e., of network parameters) to be
learned during training reaching the billions. These fringe benefits jointly led to
far greater abstraction and predictive power. What earlier was described as
language models – we’ve encountered them earlier – had now become LLMs,
large language models. First of these is Generative Pre-trained Transformer,
version three – now famous in the field as GPT-3.

14 “BERT language model.”Wikipedia, Wikimedia Foundation, August 12, 2022, at 22: 00(UTC),
https://en.wikipedia.org/wiki/BERT_(language_model).
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Transformers can indeed be exploited for MT – we’ll elaborate presently –
but also, as we’ve seen, for speech recognition and speech synthesis.

Transformers as General-Purpose Predictors That’s not all, however. They
provide a general-purpose sequence prediction mechanism, so that any data
that can be represented sequentially can be – and has been – fed to them and
predicted by them. Images, video, audio, and action directives can all be
chunked; and, given an initial sequence of chunks, GPT-3 and its successors
(Wiggers, 2022) can predict the likely continuation (or several alternatives).
Partial images can be completed or generated from scratch starting from
a simple prompt. So can partial poems or novels, though quality is of course
debatable. The system has in effect learned myriad schemas or templates, in
which the fillers – the values of variables – are internally represented quite
abstractly. Importantly, associations among different data types can also be
learned – notably, between text and related images, so that perceptually
grounded linguistic generalizations are formed: Certain abstract categories of
images are associated with certain abstract categories of linguistic elements
(Synced, 2021).

It turns out that, with sufficient input data and parameters, a single LLM can
perform a wide range of tasks with varying degrees of measurable success.15

In view of this progress, debate among AI researchers is ongoing: Is the
general-purpose prediction ability gained by transformers the first step toward
true general intelligence? What, if anything, is missing for true reasoning and
understanding? Still, caution is warranted: Strikingly cogent predicted
sequences are often accompanied by jarringly meaningless ones. And certainly,
the appearance of understanding should not be mistaken for the real thing. On
the other hand, I’ve suggested (Seligman, 2019) that a threshold would be
crossed with the advent of perceptually grounded natural language processing,
as opposed to processing based solely on text. That advent is now upon us.
LLMs associating text and images are here, and those based on video with
audio cannot be far off. These will bring the promise of true, if limited,
intentionality – meaningful connection between linguistic elements and the
perceived world.

Remember, too, that some of the best current systems in natural language
processing – we’re still focusing on translation – have not yet incorporated
transformers at all, at least in system descriptions so far made public. For

15 “Gato (DeepMind).”Wikipedia, Wikimedia Foundation, June 25, 2022, at 21: 22(UTC), https://
en.wikipedia.org/wiki/Gato_(Deep Mind).
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example, the DeepL automatic translator,16 developed by DeepL SE of Cologne,
Germany, has achieved the impressive results displayed in Appendix II with the
convolutional neural network (CNN) architecture, a competitor to RNNs, in
which context is learned by moving a window around in the sequence under
analysis.

So attention is quite generally useful for tracking the relevance or inter-
dependency of sequence elements. That relevance can be tracked across
sequences, as when relating source sequences to target sequences to recog-
nize potential translation relations among source and target words; or within
a given sequence, for example, within the source or target sequence (in which
case one speaks of self-attention). Relevance can also be assessed for various
aspects of a task: for example, in analysis of the source sentence, with respect
to syntactic dependencies (like the relation between subjects and predicates,
or nouns and their associated adjectives), or to semantic co-reference (as
whenmy aunt’s pen and it refer to the same entity). Each sort of relevance can
be handled by a dedicated transformer head, giving rise to multi-headed
transformers.

Transformers in Neural Machine Translation Equipped with this general
understanding of attention in transformers, we can return to the NMT process
specifically. We pick up the story at the encoding phase, which aims for an
abstracted analysis of the entire input, comparable to the result of handpro-
grammed analysis in the transfer-based MT style, and fit for passing to the
decoding (TL generation) phase. Actually, several encoders are normally used,
for reasons to be explained. Since they operate one after another, they can be
pictured as a stack of encoder layers, in which (we’ll say) the highest encoder
layer is the earliest in the process, and later layers progress downward toward
decoding and eventual translated output (Figure 1.10). (N.b., Encoder layers,
and later decoder layers, shouldn’t be confused with the neuron (“bulb”) layers
within a single neural network.)

In any one of these encoder layers, multi-headed self-attention is applied to
augment each word with various sorts of contextualized information. One
essential factor in a word’s context is its actual location in the input sequence;
so that information must be added to the word’s enrichment by blending into
the word’s vector a position vector representing, via some mathematical magic,
the word’s numbered position in the sequential order. Also added for good
measure is another vector representing the current word as it emerged from any

16 “DeepL Translator.” Wikipedia, Wikimedia Foundation, August 10, 2022, at 17: 37(UTC),
https://en.wikipedia.org/wiki/DeepL_Translator)).
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earlier encoder layers in the stack, in effect preserving some memory of past
analysis.

Then, to complete an encoder layer’s operation, the self-attention result for
each word vector is run through a neural network to integrate the several
information sources. This integration network is of the sort described above,
where a row of “bulbs” representing “premises” is input and activation passes
“forward” through neural network layers until “bulbs” representing “conclu-
sions” are activated – a feed-forward neural network. These “conclusions”
represent the encoder layer’s integrated analysis of each word, performed for
each word independently, so that the system’s parallelism is never broken.

But again, there will typically be several encoder layers. Multiple encoder
layers are employed for the same reason as multiple neuron (“bulb”) layers are
used within individual neural networks: abstraction. Earlier layers tend to learn
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Figure 1.10 Encoder and decoder layers in a transformer-based MT system

Explanations 37

Published online by Cambridge University Press



concrete aspects of the relevant material, those close to the facts, while later
ones tend to progressively generalize and address more global aspects. And, in
fact, fascinating studies have confirmed this progression: Earliest encoder
layers do seem most effective at recognizing part-of-speech tags (noun, verb,
etc.), while subsequent layers – as we progress from earliest to latest – seem
most efficient for identifying constituents (noun phrases, verb phrases);
dependencies (e.g., between a verb and its direct or indirect objects); semantic
roles (actor, location, etc.); coreference (pronouns referred to what?); and still
more abstract roles. (The “probing”methods for making this determination are
themselves of great interest, in view of the pervasive and frustrating opacity of
neural networks (Tenney et al., 2019).)

The last layer in the encoder layer stack embodies the system’s final andmost
abstracted analysis of the SL input. This can be passed to the earliest decoder
layer – since decoder layers, like encoder layers, are normally stacked, again
for reasons relating to abstraction. For decoders, however, the degree of
abstraction progresses from more abstract to more concrete, culminating in
the maximally specific decoder layer embodying the TL translation output.

Attention across Languages But how do SL words become TL words? Once
again: through attention, in our technical sense.While attention in encoder layers
entailed only self-attention – the learning of context-worthiness judgments
among words within the source sequence – decoder layers also exploit such
attention judgments between source and target word sequences. They indicate,
for instance, that, when translating “rabbit” into German in “The rabbit ran
because I scared it,” we should attend to both “rabbit” and “it,” because source-
language self-attention has earlier found them to refer to the same entity. Both
words then influence selection of “Hase” in the context of “Der Hase rannte, weil
ich ihn erschreckt hatte.”17 This cross-sequence and cross-language attention is
enabled by including a double-strand encoder-decoder attention element in each
decoder layer, sandwiched between elements we’ve already encountered in
encoder layers: a single-strand self-attention element (which analyzes the TL
sequence on its own terms) and a feed-forward neural network (which integrates
the various influences on each word vector) (Figure 1.11).

The decoder layers handle not only word translation – the alignment of
source and target words, which will ultimately lead to target word selection –
but also target word ordering and agreement (e.g., of nouns and their adjec-
tives). Recall that each target word contains positional and dependency (e.g.,

17 “The Transformer Neural Network Architecture Explained. ‘Attention Is All You Need’.” AI
Coffee Break with Letitia. URL: www.youtube.com/watch?v=FWFA4DGuzSc&t=438s.
July 5, 2020.
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noun-to-adjective) information. In the full TL context, this information will
suffice to influence ordering and selection of agreeing dependent words (e.g.,
forms of an adjective that agree with the associated noun in terms of singular
vs. plural, male vs. female or neutral, etc.).

Delivery. The decoder stack’s grand finale is the delivery of a TL word
sequence. Each fully processed TL word vector, given its place in target-word
similarity “space,” yields a set of probabilities (a probability distribution), assign-
ing each word in the target dictionary a probability score18. In our example above,
“Hase” might receive a probability in the high nineties as the translation for
“rabbit,” while an unrelated word like “über” (German for English “over” or
“above”) would score very low. Once the most probable target word is selected
from each set and all target words have found their positions in the sequence

EncoderSelf-attention

Self-attention

Encoder-decoder attention

Feed-forward neural network

Feed-forward neural network

I am happy.

Decoder

Figure 1.11 Subelements of encoder and decoder layers in a transformer-based
MT system

18 As arranged by a program with a puzzling name: sofmax. Its job is to ensure that a handful of
probabilities, for example those for possible translations a given TL word, add up to 1.0. Here, if
some translation probabilities are very high, others must be low.
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according to their internal position indications, translation is complete. There you
have it! Et voilà! Bitte sehr! ¡Y ya está!で、終わり!

(Again, the transformer-based neural sequence-to-sequence processing for
speech recognition or speech synthesis will be quite comparable, though
operating on sound segments rather than on words or images.)

To give an informal impression of the text translation accuracy achievable at
the time of writing, we supply in Appendix II healthcare-oriented translation
examples for English-to-Spanish and English-to-Japanese. Each sample is
accompanied by a back-translation, enabling English-only readers to estimate
the translation accuracy. Of course, back-translation itself is subject to error;
but when the error rate is sufficiently small, such feedback remains valuable.
Chapter 2 further discusses feedback and its importance.

1.5 Conclusion

As previewed, we’ve surveyed the methods and issues of several quickly
developing technologies relevant to healthcare use cases: ASR, speech synthe-
sis or TTS, and MT. With respect to MT, after a look at systems covering only
pretranslated phrases, we went on to explain the major types of automatic
translation with broader coverage – “full MT,” whether rule-based, statistical,
or neural. And finally, as an optional bonus for readers curious about recent
developments in the artificial intelligence field, we focused attention (appro-
priately enough) on transformer-based neural processing.

Also as forecast, we’ve postponed for Chapter 2 discussion of practical
applications for healthcare of speech and translation technologies, with special
interest in their combined use for speech translation.

By dispelling the mysteries surrounding these truly epochal technologies,
we hope to promote their wider use. However, utilization must also be
responsible and cautious. Miscommunications concerning healthcare can be
consequential, even deadly. Thus reliability – not only measurable accuracy
but user confidence – will be essential. Customization per use case, too, will
be vital, as Chapter 2 will emphasize.
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Appendix I Automatic Speech Recognition (ASR) Samples

We show two ASR results, for readers’ inspection and informal evaluation:

1. iPhone XR, Software Version 15.5, native (standard) speech recognition
2. Microsoft Windows 10, native (standard) speech recognition

Both results are based upon continuous dictation of the following healthcare-related
text, copied without changes from www.cdph.ca.gov/Programs/CID/DCDC/Pages/
COVID-19/PregnantandBreastfeedingWomenGuidance.aspx as originally published
on May 18, 2021.

Summary
This document provides guidance for people who are pregnant and breastfeeding
during the COVID-19 pandemic. The California Department of Public Health will
update this guidance as new information becomes available.
Pregnancy: Based on what we know at this time, the Centers for Disease Control

and Prevention (CDC) state “pregnant people are at an increased risk for severe
illness from COVID-19 and death, compared to non-pregnant people. Additionally,
pregnant people with COVID-19 might be at increased risk for other adverse
outcomes, such as preterm birth (delivering the baby earlier than 37 weeks). It is
especially important for pregnant people, and those who live with them, to protect
themselves from getting COVID-19.”
Breastfeeding: The Centers for Disease Control and Prevention (CDC) and the

Academy of Pediatrics state that parents with COVID-19 can breastfeed. When
breastfeeding, precautions should be taken to reduce the risk of passing COVID-19
to their baby.
For more information, visit Breastfeeding and Caring for Newborns.
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iPhone Native ASR

Dictated to Google Keep note-taking app. Hand held 10 inches from mouth. Natural but
clear pronunciation, with some white noise from refrigerator in neighboring room.
Punctuation was dictated, for example as “period,” “comma,” or “colon,” but not
capitals or formatting, for example, for bold font.

Summary
This document provides guidance for people who are pregnant and breast-feeding
during the COVID-19 pandemic. The California Department of Public health will
update this guidance as new information becomes available.
Pregnancy: based on what we know this time, the centers for disease control and

prevention (CDC) state “pregnant people are at an increased risk for severe illness
from COVID-19 and death, compared to non-pregnant people. Additionally,
pregnant people with COVID-19 might be at increased risk for other adverse
outcomes, such as preterm birth (delivering the baby earlier than 37 weeks). It is
especially important for pregnant people, and those who live with them, to protect
themselves from getting COVID-19.”
Breast-feeding: the centers for disease control and prevention (CDC) and the

Academy of pediatrics state did parents with COVID-19 can breast-feed. When
breast-feeding, precautions should be taken to reduce the risk of passing COVID-19
to their baby.
For more information visit breast-feeding and caring for newborns.

Microsoft Word on Windows 10

Dictation used standard Microsoft ASR on a Lenovo Yoga 730-13-inch laptop, with
input via Microphone Array (Realtek High-Definition Audio (SST)) at 100 percent
volume.
Note: Dictation was paused and restarted at two points: after “pregnant and breast-

feeding” and “can breast feed.” The initial words of the immediately following sen-
tences were apparently missed as a result.

Summary
This document provides guidance for people who are pregnant and
breastfeedingWith public health will update this guidance as new information
becomes available.
Pregnancy: based on what we know at this time, the Centers for Disease control

and prevention (CDC) state “pregnant people are at an increased risk for severe
illness from COVID-19 and death, compared to non pregnant people. Additionally,
pregnant people with COVID-19 might be at increased risk for other adverse
outcomes, such as preterm birth (delivering the baby earlier than 37 weeks). It is
especially important for pregnant people, and those who live with them,to protect
themselves from getting COVID-19.”
Breastfeeding: the Centers for Disease control and prevention (CDC) and the

Academy of Pediatrics state that parents with COVID-19 can breast feed. The risk of
passing COVID-19 to their baby.
For more information, visit breast feeding and caring for newborns.
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Appendix II Translation Samples

Source Language Text to Be Translated

Our text sample for translation was the same as for the speech recognition sampling of
Appendix I, copied without changes from https://www.cdph.ca.gov/Programs/CID/
DCDC/Pages/COVID-19/PregnantandBreastfeedingWomenGuidance.aspx as originally
published on May 18, 2021.

We’ll show the following translations and back-translations, all by DeepL (DeepL
SE, Cologne, Germany), and all without editing or alterations:

1. Translation into Spanish
2. Back-translation from Spanish to English
3. Translation into Japanese
4. Back-translation from Japanese to English

1. Spanish Translation

Resumen
Este documento proporciona orientación para las personas que están embarazadas
y amamantando durante la pandemia de COVID-19. El Departamento de Salud
Pública de California actualizará esta guía a medida que se disponga de nueva
información.
Embarazo: En base a lo que sabemos en este momento, los Centros para el Control

y la Prevención de Enfermedades (CDC) afirman que “las personas embarazadas
tienen un mayor riesgo de padecer enfermedades graves por COVID-19 y de morir,
en comparación con las personas no embarazadas. Además, las personas
embarazadas con COVID-19 podrían tener unmayor riesgo de sufrir otros resultados
adversos, como el parto prematuro (dar a luz antes de las 37 semanas). Es
especialmente importante que las personas embarazadas, y quienes conviven con
ellas, se protejan de contraer COVID-19”.
Lactancia: Los Centros para el Control y la Prevención de Enfermedades (CDC)

y la Academia de Pediatría afirman que los padres con COVID-19 pueden dar el
pecho. Al amamantar, se deben tomar precauciones para reducir el riesgo de
transmitir COVID-19 a su bebé.
Para obtener más información, visite Lactancia y cuidado de los recién nacidos.

2. English Back-Translation from Spanish

Summary
This document provides guidance for persons who are pregnant and breastfeeding
during the COVID-19 pandemic. The California Department of Public Health will
update this guidance as new information becomes available.

Pregnancy: Based on what we know at this time, the Centers for Disease Control and
Prevention (CDC) states that “pregnant persons are at increased risk of severe illness
from COVID-19 and death compared to non-pregnant persons. In addition, pregnant
persons with COVID-19 may be at increased risk for other adverse outcomes, such as
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preterm labor (giving birth before 37 weeks). It is especially important for pregnant
women, and those livingwith them, to protect themselves from contracting COVID-19.”

Breastfeeding: The Centers for Disease Control and Prevention (CDC) and the
Academy of Pediatrics state that parents with COVID-19 can breastfeed. When
breastfeeding, precautions should be taken to reduce the risk of transmitting COVID-
19 to your baby.

For more information, visit Breastfeeding and Newborn Care.

3. Japanese Translation

概要

この文書は、COVID-19のパンデミック時に妊娠・授乳している人のためのガイダ
ンスを提供するものです。カリフォルニア州公衆衛生局は、新しい情報が入手可

能になり次第、このガイダンスを更新します。

妊娠中 現時点でわかっていることに基づいて、米国疾病対策予防センター
(CDC)は、「妊娠中の人は、妊娠していない人に比べて、COVID-19による重症

化や死亡のリスクが高くなる」と述べています。さらに、COVID-19に感染した妊娠

中の人は、早産 (37週より早い出産)など、他の有害事象のリスクが高まる可能性

があります。妊娠中の人と、その人と一緒に生活している人は、COVID-19に感染
しないように身を守ることが特に重要です。”

母乳育児について米国疾病対策予防センター (CDC) と小児科学会は、COVID-
19を持つ親は母乳で育てることができるとしています。授乳の際には、COVID-19
が赤ちゃんに感染するリスクを減らすための予防措置を取る必要があります。

詳細については、母乳育児と新生児の世話をご覧ください。

4. English Back-Translation from Japanese

Overview
This document provides guidance for pregnant and lactating women during
a COVID-19 pandemic. The California Department of Public Health will update this
guidance as new information becomes available.
Pregnancy Based on what is known at this time, the Centers for Disease Control

and Prevention (CDC) states that “pregnant individuals are at increased risk of
severe illness or death from COVID-19 compared to non-pregnant individuals. In
addition, pregnant women infected with COVID-19 may be at increased risk for
other adverse events, such as premature delivery (birth earlier than 37 weeks). It is
especially important for pregnant women and those living with them to protect
themselves from becoming infected with COVID-19.”
Breastfeeding The Centers for Disease Control and Prevention (CDC) and the

American Academy of Pediatrics state that parents with COVID-19 can breastfeed.
When breastfeeding, precautions should be taken to reduce the risk of COVID-19
infecting the baby.
For more information, see Breastfeeding and Caring for Your Newborn.
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