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A GENERALISATION OF KRAMER'S THEOREM
AND ITS APPLICATIONS

YANMING WANG, HUAQUAN WEI AND YANGMING LI

The main purpose of this paper is to generalise a supersolvability theorem of O.
U. Kramer to a saturated formation containing the class of supersolvable groups.
As applications, we generalise some results recently obtained by some scholars.

1. INTRODUCTION

As two dual concepts of a finite group, the maximal subgroups and the minimal
subgroups have been studied by many scholars in determining the structure of a finite
group. For instance, B. Huppert's well known theorem shows that a finite group G is
supersolvable if and only if every maximal subgroup of G has prime index in G ([3]).
A theorem of O. U. Kramer shows that a finite solvable group G is supersolvable if and
only if, for every maximal subgroup M of G, either M > F(G), the Fitting subgroup
of G, or M(lF(G) is a maximal subgroup of F(G) (see [4, Theorem 1.3.3]). Buckley in
[2] proved that a finite group G of odd order is supersolvable if all minimal subgroups
of G are normal in G. The main purpose of this paper is to generalise this theorem of
Kramer to a saturated formation containing the class of supersolvable groups. Ballester
Bolinches, Wang and Guo introduced the concept of c-supplementation of a finite group
in [1], which is weaker than c-normality or suplementation. They generalised Buck-
ley's theorem by replacing normality with c-supplementation. More recently, Li and
Guo in [6] obtained two supersolvability theorems on complemented subgroups of finite
groups. By using the theory of formations, Wei in [9] obtained two results with respect
to c-normal subgroups of finite groups. As applications of our main result, we gener-

. alise the above theorems to a saturated formation containing the class of supersolvable
groups by minimising the number of c-supplemented minimal subgroups or replacing
complementation and c-normality with c-supplementation.
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Let T be a class of finite groups. We call T a formation provided:

(1) If G 6 T and N < G, then G/N^T;

(2) If NUN2«G such that G/NUG/N2 € T, then G/{NX n N2) € T.

A formation T is said to be saturated if G/$(G) € .F implies that G € .F(refer to [7]).

All groups considered in this paper are finite; U and n(G) denote, respectively,

the class of all supersolvable groups and the set of prime divisors of \G\.

2. PRELIMINARIES

DEFINITION 2.1: ([1]) A subgroup if of a group G is said to be c-supplemented
in G if there exists a subgroup N of G such that G = HN and H D N ^ HQ

= Corea (H). We say that JV is a c-supplement of H in G.

Recall that a subgroup H of G is c-normal in G if there exists a normal subgroup

N of G such that G = HN and H n N ^ HG ([8]). Also a subgroup H of G

is complemented in G if there exists a subgroup N of G such that G = HN and

H(1N= 1.

A c-normal or complemented subgroup must be a c-supplemented subgroup. But

examples in [1] showed that the converses are not true.

LEMMA 2 . 2 . ([1, Lemma 2.1]) Let G be a group. Then

(1) If H is c-supplemented in G,H < M < G, then H is c- supplemented

in M.

(2) Let K <G and K ^. H. Then H is c-supplemented in G if and only if

H/K is c-supplemented in G/K.

(3) Let w be a set of primes, Han subgroup of G and K a normal

n' subgroup of G. If H is c-supplemented in G, then HK/K is c-

supplemented in G/K. If furthermore K normalises H, then the con-

verse also holds.

(4) Let H ^ G and L ^ $(#)• If L is c-supplemented in G, then L<G

and L

LEMMA 2 . 3 . (Gaschutz, refer to [3].) Let G be a group. Suppose that H and

D are normal subgroups of G, and also D ^ H,D ^ $(G). Then H/D is nilpotent if

and only if H is nilpotent.

LEMMA 2 . 4 . ([5, Lemma 2.3].) Let H be a non-identity solvable normal sub-

group of G. If every minimal normal subgroup of G which is contained in H is not

contained in <J>(G), then the Fitting subgroup F{H) of H is the direct product of

minimal normal subgroups of G which are contained in H.

LEMMA 2 . 5 . Let p be a prime, x a p-element of G and m an integer. If

https://doi.org/10.1017/S0004972700020517 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700020517


[3] A generalisation of Kramer's theorem 469

(xpm) is c-supplemented in G, then (a;*"™) is normal in G. In particular, if (xpm) is
complemented in G, then xp = 1.

PROOF: By Definition 2.1, there is a subgroup N of G with G = {xpm)N and
(xpm) n N < (xpm)G- Then x = (xpm)ny, that is, x1-*™71 = y, for some integer
n and some element y in N. Furthermore, (x*™) < (a;) — (x1~pmn) ^ JV. Hence

D
LEMMA 2 . 6 . A group G is 2-nilpotent if every cyclic subgroup of order 2 or 4

of G is c-supplemented in G.

PROOF: Suppose that G is not 2-nilpotent, so that G contains a minimal non-
2-nilpotent subgroup H. Then by a theorem of Ito ([3, IV, 5.4 Satz]), every proper
subgroup of H is nilpotent and H = [H2]HP with H2 € Syl2(H) and Hp e Sylp{H)
( p ^ 2 ) , and the exponent of H2 is at most 4. Let x be an element of H2; then o(x) = 2
or 4. Since (x) is c-supplemented in H by Lemma 2.2(1), there is a subgroup N of H
with H = (x)N and (x)C\N < (x)H by Definition 2.1. Again, by Lemma 2.5, (x2)<iH,
so (x2) s$ (x)H and (x2)N is a group. If (x2)N = H, then (a;) = (x2)((x)nN) ^ (x)H,
that is, (a;) = (X)H <H. In this case, if (x)Hp = H, then (x) = H2 is cyclic, H is
certainly 2-nilpotent, which is contrary to the above hypothesis of H. If (x)Hp < H,
then {x)Hp is nilpotent, which implies that H2 normalises Hp by the arbitrariness of x
in H2. Furthermore, Hp<H and so H is nilpotent, a contradiction. Hence {x2)N < H
and (x2)N is nilpotent. Note that \H : (x2)N\ = 2, so (x2)N<H. Then Hp char
{x2)N as is easy to see, so Hp <H and H is nilpotent, a final contradiction. D

LEMMA 2 . 7 . ([2, Theorem 1].) Let G be a PN-group (that is, a finite group
in which every minimal subgroup is normal) of exponent pn with p an odd prime. Let
1 ^ k ^ n. Then

(1) G/Qk(G) is a PN-group of exponent pn~k;

(2) Qk(G) = x e G \ xpk = 1;
(3) 1 ^ fti(G) ^ Q2(G) < • • • s* fin(G) = G is a central series and hence

class of G < n;

(4) {xyfn~l = a ^ ' V " " 1 for all x,y in G.

LEMMA 2 . 8 . Let M be a maximal subgroup of G,P a normal p- subgroup of
G such that G = PM, where p a prime. Then

(1) P n M is a normal subgroup of G.
(2) If p > 2 and all minimal subgroups of P are normal in G, then M has

index p in G.

PROOF: (1) Clearly, PnM < P. Let Pi be a subgroup of P such that POM
is a maximal subgroup of Pi. Then Pi g M, otherwise P n M < P i s % P n M , a
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contradiction. Now that P n M is normal in both Px and M , we have M < (Pi, M) ^

NG(P n M). By the maximality of M in G, NG(P r\M) = G, that is, P n M o G as

desired.

(2) By Lemma 2.7(2), fix(P) = a: G P | xp = 1. So fi^P) is normal in G. We

consider the following two cases:

C A S E 1: Qi(P) % M. In this case, there exists an element x in Oi(P) such that x is
not in M . By hypothesis, (a;) is normal in G and so G = (x)M with (x) n M = 1,
which implies that |G : M | = \{x) = p.

C A S E 2: f2i(P) ^ M . We shall show that G/Q,i(P) satisfies the hypothesis of the

Lemma. Obviously, G/Q^P) = (P / f i 1 (P ) ) (M/Q 1 (P) ) , where P / f i i (P) normal and

M/fli(P) maximal in G / Q i ( P ) . Now, let (a;)Qi(P)/Q1(P) be a minimal subgroup

of P / Q i ( P ) , where x is an element of P ; then xp G fii(P). Furthermore, xv =

1 and so (xp) is normal in G by hypothesis. Let 5 be an element of G. Then

(x9f = (x p ) s = (xf? = (x1)1" for some integer t. Since both a;" and x* lie in Q2(i: '),

it follows that {xSx^f = (x9)p(x-t)p = 1 by Lemma 2.7(4), which implies that

xOx-* lies in f2i(P). Set ̂ x " 4 = it € fii(P). Then x» = ux* G (a;>J71(P) and so

(x) > Q1(P)/n1(P)<G/Q1(P). By induction, |G/fi i (P) : M / « i ( P ) | - p , that is,

|G : M\ = p. The proof of Lemma 2.8 is complete.

3. MAIN RESULT

THEOREM 3 . 1 . Let T be a saturated formation containing U,G a group with

a solvable normal subgroup H such that G/H € T. If for any maximal subgroup M

of G, either F(H) ^ M or F(H) D M is a maximal subgroup of F(H), then G € F.

The converse also holds, in the case where T — U.

PROOF: Suppose that the "if part is false and let G be a counterexample of

minimal order. Then we have

(1) J fn*(G) = l .

If not, then 1 ̂  H n $(G) < G. Let it be a minimal normal subgroup of G that
is contained in H n $(£?) • Then R is an elementary Abelian p-group for some prime
p and hence R ^ F(H). We shall show G/R satisfies the hypothesis of the theorem:

(1.1) (G/R)/{H/R) s G/H G T.

(1.2) For any maximal subgroup M/R of G/R, either F(H/R) ^ M//J or
F(H/R) D (M/i?) is maximal in F(H/R).

By Lemma 2.3, F(H/R) = F(H)/R. If F(/f/iZ) 2 M / # , then F{H) g M.
Since M is maximal in G,F(H) n M is maximal in F(H) by hypothesis. Therefore
F(H/R) n (M/R) = (F(H) n Af)/Ji is maximal in F(H/R). By the minimality of
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G,G/R £ T. Since G/$(G) ^ {G/R)/{§{G)/R) G T and T is a saturated formation,
it follows that G e f , a contradiction.

(2) F(H) = i?i x • • • x Rjn, where all Ri normal in G of prime order.

From (1) and Lemma 2.4, F(H) — R\ x • • • x R^, where ilj(i = 1 , . . . , m) are
minimal normal subgroups of G. Now that H n $(G) = 1, for each i,i = 1,2,... ,m,

there is a maximal subgroup Mi of G with G — RiMi and Ri D M; = 1. Moreover,
-F(.ff) = Ri(F(H) DMi) as is easy to see. By hypothesis, F(H) n Mi is maximal in
F{H) and, since F(H) is nilpotent, F(H) H Mj has prime index in F{H). Note that
iZi D Mj = 1, so Ri has prime order for i = 1,2,... , m .

(3) G/F(/f) € ^ .

Because G/CG{Ri) is isomorphic to a subgroup of Aut(i?j), G/CG(Ri) is cyclic and

so it lies in U for each i. This implies that G/( f) CG(-Rj)) € W. Again, GG(F(if)) =

f]CG(Ri), so we have G/CG(F(H)) e t f C F . Since both G/CG(F(H)) and G/tf
i = l

lie in T, so does G/(if n GG(F(i?))) = G/CH(F{H)). Since JF (# ) is Abelian,

F(H) ^ CH(F(H)). On the other hand, CH{F{H)) ^ F(H) as H is solvable. Thus

F(H) = Cf l(F(5)j and so G/F(H) e J".

(4) m = 1, that is, F(H) = i?x.

For each i, G/Ri satisfies the hypothesis of the theorem:

(4.1) From (3), (G/Ri)/(F(H)/Ri) S* G/F(H) € T.

(4.2) For any maximal subgroup M/Ri of G/Ri, (F(H)/Ri)n(M/Ri) is maximal

in F{H)/Ri if F(H)/Ri % M/Ri.

In fact, M is maximal in G and F(#) £ M, so F(H)f)M is maximal in F(i?) by
hypothesis. Hence {F{H)/Ri) n (M/i^) = (F(H) D Af)/i^ is maximal in F{H)/Ri.

By the minimality of G,G/Ri e J7. Hence G/(f] Ri) £ F. This implies that
i=l

G S - F i f m ^ l j a contradiction. (4) is true.

(5) Final contradiction.

First, we shall show that R\ is the only minimal normal subgroup of G. Suppose

that N ^ R\ is another minimal normal subgroup of G and we consider G/N. Then

RiN/N is a normal subgroup of G/N and (G/N)/(RiN/N) is isomorphic to G/RiN,

which is in T because G/Ri is in T by (3) and (4). For any maximal subgroup M/N of

G/N not containing RXN/N, since RXN/N S iij has prime order, {RiN/N)n(M/N)

is an identity group, which is certainly maximal in RXN/N. By the minimal choice of G,

G/N G T, so G € J", a contradiction. Hence i?i is the unique minimal normal subgroup

of G. By (1), $(G) = 1. Let M be a maximal subgroup of G such that R\ % M. Then

G = .RiM and Rx D M = 1. If i?i < GG(J?i), then 1 < CG{R\) C\M< RiM = G. By
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the unique minimal normality of i ? t , Rx < CG(R\) D M ^ M, a contradiction. Hence
i?i = C G ( i l i ) . Thus G/Ri = G/CG(Ri) is cyclic of order dividing |i?x| - 1 and so
G 6 W C F, a final contradiction.

In the case where T = U, if G e .F, that is, G is supersolvable, then by Huppert's
Theorem, any maximal subgroup M of G has prime index in G. And for any normal
subgroup H of G, since F(.ff) is normal in G,G = F(H)M if F(.ff) is not contained
in M. This shows that \F(H) : F(H)C\M\ = \G : M\ is a prime and hence F(H)nM

is a maximal subgroup of F{H).

The proof of Theorem 3.1 is complete. D

4. APPLICATIONS

THEOREM 4 . 1 . Let F be a saturated formation containing U. Suppose that G

is a group with a solvable normal subgroup H such that G/H £ T. If all minimal

subgroups and all cyclic subgroups with order 4 of F(H) are c-supplemented in G,

then G G T.

PROOF: For any maximal subgroup M of G not containing F{H), we only need

to prove that F(H) n M is a maximal subgroup of F(H). First, since F{H) % M,

there exists a prime p such that OP{H) g M. Then G = OP(H)M as OP(H) is normal

in G. We consider the following two cases:

CASE 1: p > 2. If OP(H) has at least one minimal subgroup (x) non-normal in G,
then by hypothesis, (x) is c-supplemented in G, that is, there is a subgroup K with
G = (x)K and (x) n K = 1. Furthermore, if is a maximal subgroup of G and
Op(i/) n K is a normal subgroup of G by Lemma 2.8(1). Again, OP{H) = OP(H)

n (x)K = (x)(Op{H) DK). If Op(H)nK ^ M, then G = OV{H)M = (x)M with
(x) n M = 1. This deduces |F(i7) : F(H) n M | = | F ( # ) M : Af| = |G : M\ = \{x)\

= p. Hence F(H) n Af is a maximal subgroup of F ( t f ) . If OP(H) DK g M , then
G = (OP(H) n K)M, where x not in OV{H) n if. With the same argument we may
assume that all minimal subgroups of OP(H) C\K are normal in G. By Lemma 2.8(2),
|F( i f ) : F(H) n M| = \G : M\ = p, so F ( # ) n M is a maximal subgroup of F{H).

C A S E 2: p = 2. Let TT(G) = pi,P2, • • • ,PnI MPi be a Sylow pi-subgroup of M , where
i = 1, 2 , . . . , n and pi = 2. Then we know easily that O2(H)M2 = G2 is a Sylow
2-subgroup of G. Now, let Pi be a maximal subgroup of G2 containing M2 and, set
p2 = p t n O2{H). Then Pi = P2M2. Moreover, P 2 n M2 = 02{H) n M 2 , so
| O 2 ( # ) : P 2 | = |O 2 ( i / )M 2 : P 2 M 2 | = |G2 : P i | = 2. Again, for each i £ l,O2(H)Mp.

is 2-nilpotent by Lemma 2.2(1) and Lemma 2.6, so 02( i7)MP i = O2(H) x MPi. Fur-
thermore, P2MPi forms a group, where i= 1,2,... , n . Hence P2 (MP1, MP2,..., MPn)

= P2M also forms a group. Since \02{H) : P2\ = 2 and P2 n M = O2(H) n Af, it
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follows that P2M < O2(H)M = G. By the maximality of M in G,P2M = M and

hence P2 ^ M. Thus 02{H)C\M = P2C\M = P2 and \G : M\ = \02{H) : O2(H)nM\
= \O2(H) : P2\ = 2. This implies that F(H) f~l M is a maximal subgroup of F(Jf).

By Theorem 3.1, G G .F. The proof of Theorem 4.1 is complete. D

COROLLARY 4 . 2 . ([1, Theorem 4.1].) Let G be a group and 2et if be the
supersolvable residual of G. If all minimal subgroups and all cyclic subgroups with
order 4 of H are c-supplemented in G, then G is supersolvable.

PROOF: H is 2-nilpotent by Lemma 2.6, so it is solvable, and G is supersolvable
by Theorem 4.1. D

COROLLARY 4 . 3 . ([6, Theorem 1.1].) Suppose that G is a solvable group with
a normal subgroup H such that G/H is supersolvable. If all minimal subgroups of
F(H) are complemented in G, then G is supersolvable.

PROOF: By hypothesis and Lemma 2.5, every Sylow subgroup of F(H) is elemen-
tary Abelian. That is F(H) has not any element of order p2 for any p € ir(F(H)).
Corollary 4.3 is certainly true by Theorem 4.1. D

COROLLARY 4 . 4 . ([9, Theorem 2].) Let T be a saturated formation contain-
ing U. Suppose that G is a group with a solvable normal subgroup H such that
G/H £ T. If all minimal subgroups and all cyclic subgroups with order 4 of F(H) are
c -normal in G, then G € T.

THEOREM 4 . 5 . Let T be a saturated formation containing U. Suppose that G
is a group with a solvable normal subgroup H such that G/H £ T. If all maximal
subgroups of all Sylow subgroups of F(H) are c-supplemented in G, then G e f .

PROOF: For any maximal subgroup M of G not containing F(H), we shall show
F(H) D M is a maximal subgroup of F(H). First, since F(H) g M, there is a
prime p with OP(H) g M. Then G = OP(H)M as OP{H) is normal in G. Let Mp

be a Sylow p-subgroup of M. Then we see easily that OP(H)MP = Gp is a Sylow
p-subgroup of G. Now, let Pi be a maximal subgroup of Gp containing Mp and,
set P2 = Px n OP(H). Then Pt = P2Mp. Moreover, P2 n Mv = OP{H) f)Mp, so
\OP(H) :P2\ = \OP{H)MP : P2MP\ = \GP : Pi\ = p, that is, P2 is a maximal subgroup
of OP{H). Hence P2(OP(H) n M) is a subgroup of OP(H). By the maximality of P2

in Op{H),P2(Op(H)nM) = P2 or OP{H).
(1) If P2{OP(H) DM) = OP(H), then G = OP{H)M = P2M. Note that OP(H)

D M = P2 n M, so OP(H) = P2, a contradiction. Hence
(2) P2 = P2(OP(H) n M), that is, OP(H) n M ^ P2. By Lemma 2.8(1), OP(H)

!1M<G, so Op( i / )nM ^ (^2)0- On the other hand, since P2 is c-supplemented in G,
there exists a subgroup N of G such that G = P2N and P2HAT ^ (PZJG by Definition
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2.1. Set K = (P2)GN; then P2 n K = P2 n (P2)GiV = (P2)G(P2 D N) = (P2)G. Now,
we consider the following two cases:

CASE 1: K < G. Suppose that Ki is a maximal subgroup of G containing K. Then
OP(H) D Kx «G, which implies that {Ov(H)nKx)M is a group. If (OP{H) n tf^M
= G = OP(H)M, then Op(#)nli:i = Op(ff) because ( O p ( # ) n # i ) n M = OP(H)DM.
This implies that OP(H) < iifi and therefore G = Op(H)Ki — K\, which is contray
to the above hypothesis on Kx. Thus (OP(H) n KX)M = M,OP(H) n Kx ^ M.
Furthermore, P2 D K ^ OP(H) D K < OP(H) DM ^ (P2)G = p2 ^ K, that is,
Op(if) n K = OP(H) n M = P2 n K. This is contrary to G = P2.fi: = OP(H)K.

CASE 2: K = G. In this case, P2 <lG. By the maximality of M in G,M = P2M or
P2M = G. With the same argument in (1), we see P^M ^ G, so M — P2M, that is,
P2 ^ M. Thus OP(H) n M = P2 D M = P2 and hence |F(ff) : F(ff) n M\ = \G :
M\ = \OP(H) : OP(H) n M\ = p. This means that F(H) DM is a maximal subgruop
of F(H). By Theorem 3.1, G € F. The proof of Theorem 4.5 is complete. D

COROLLARY 4 . 6 . ([6, Theorem 1.2].) Suppose that G is a solvable group with
a normal subgroup H such that G/H is supersolvable. If all maximal subgroups of
every Sylow subgroup of F(H) are complemented in G, then G is supersolvable.

COROLLARY 4 . 7 . ([9, Theorem. 1].) Let T be a saturated formation contain-
ing U. Suppose that G is a group with a solvable normal subgroup H such that
G/H 6 T. If all maximal subgroups of all Sylow subgroups of F(H) are c-normal in
G, then G € T.
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