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MORE ON THE WAITING TIME 
TILL EACH OF SOME GIVEN PATTERNS 

OCCURS AS A RUN 

TAMÂS F. MORI 

1. Introduction. Let H be a finite set; we can suppose H = { 1,2,..., d). 
Consider //", the set of length n words over the alphabet H. For every A G / / " 
define the waiting time for A as the number of experiments needed till A appears 
as a connected sub-sequence of random elements of//. Formally, let X\, X2, •.. be 
i. i. d. random variables, P(X\ — i) — d~l, 1 < / < d; then 

T(A) = inf { m: (Xm_„+iXw_n+2 . . . Xm) = A} . 

A great number of papers have been devoted to problems connected with these 
waiting times, especially waiting times for pure runs (= elements of the diagonal 
of//*). 

An interesting problem that involves all the waiting times T(A), A e Hn, is to 
investigate the limit behaviour of the maximum waiting time 

Wn = max{r(A):A G Hn} 

as the length of the words tends to infinity. In [1] two-sided estimations are given 
for the expected number of coin tossings till each head-and-tail sequence of length 
n is observed as a run. In [7] it is proved that 

E(Wn) = dn(\ogdn + 0(l)). 

In a recent paper [9] the limit distribution of the maximum waiting time is derived, 
in a generalized setting. Given an arbitrary subset Hn C //" one can define 

(1) W(Hn) = max{T(A):AeHn}. 

The main result of [9] asserts that for every real y 

(2) lim P(d-nW(Hn) - \og\Hn\ < y) - e~e~\ 
n—>oo 
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916 TAMAS F. MORI 

provided 

lim \Hn\ = +oo. 
n—+00 

In the same paper a heuristic method called the independence principle is intro

duced which says that in some cases the limit distribution of certain functionals 

of the waiting times T(A) can be calculated as if they were independent exponen

tially distributed random variabled with common expectation dn. The mathemati

cal background of this observation is provided by [6], where large deviation type 

estimations are derived for the joint distribution of the waiting times. However, 

the exact scope of the independence principle remains to be determined. 

The aim of the present paper is to continue the investigation of the maximum 

waiting times (1). First, the rate of convergence in the limit relation (2) is esti

mated, which makes it possible to extend (2) to large deviations. These improved 

results are then used for describing the a. s. behaviour of maximum waiting times 

and related quantities. Results are formulated in Section 2, while proofs are con

tained in Sections 3 and 4. 

2. Results. As in the Introduction, let Hn C Hn and W(Hn) = max{ T(A):A G 

//„} . Denote by Y(Hn) the normalized maximum waiting time, i.e. 

Y(Hn) = d-nW(Hn)-log\Hn\. 

Finally, let F(y) = e~~e v. 

THEOREM 1. Suppose l i n v ^ \Hn\ — +00. Then 

(3) lim \Hn\i™ sup\P(Y(Hn) <y) - F(y)\ = 0, 

and this holds uniformly in \Hn\. 

As will be seen from the proof, the exponent of | Hn \ could increased in (3); with 

considerable additional effort our method of proof will yield the best possible ex

ponent. Our result is sufficient for the case of most interest, namely, when | Hn \ 

grows exponentially, for Theorem 1 then implies an exponential rate of conver

gence. 

As an immediate consequence of Theorem 1 we can extend (2) to large devia

tions. 

COROLLARY 1. Suppose \Hn\ —• 00 and let yn be such that 

F(yn)>\Hn\-^ and 

\-F{yn)>\Hn\-*™. 
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Then 

P{Y(Hn) < y) 

Fiyn) 

P(Y(Hn) > y) 

1 - F(yn) 

1 and 

0 0 . 

The following theorem deals with the a. s. behaviour of the sequence Y(Hn), 
imposing a slight condition on the growth of | Hn \. 

THEOREM 2. Suppose 

(4) liminflog|#n | / logrc > 6 
d+\ 

Then 

and 

lim inf Y(Hn)/ log log n 

lim sup Y(Hn)/ log n 

with probability 1. 

Condition (4) is rather weak compared to the exponential bound \Hn\ <dn\'\t is, 
however, far from being necessary. The assertion itself can also be strengthened. 
For instance, concerning the lower bound we in fact prove a little more than stated, 
namely 

lim inf Y(Hn) + log log n = 0 w. p. 1 
n—+oo 

(see also the remark after the proof in Section 4). 
In the remainder of this section we confine our attention to the case Wn = 

W(Hn). 
Let Mk = max{ n: Wn < k}, then Mk>n iff Wn < k. 

COROLLARY 2. Let e > 0 arbitrary. Then the event that 

'•I 
1 n i i i / log l o g / ^ 

(log k — log log k — e -log d 

<Mk 

< 
[logd 

log/c 

log/: — loglog& + (l +£) 
log log k^ 

log/c , 
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holds for every large enough k, is of probability 1. 

The two sides of this inequality coincide in most cases; if not, then they are 
neighbouring integers. Corollary 2 asserts that the sequence Mk is asymptotically 
quasi-deterministic (AQD) in the sense of [12]. Clearly, M* is not AD; otherwise 
so would be Wn. 

It is well-known that pure runs need the longest time to occur: let A G diag Hn 

and fi/A, then E(T(B)) < E(T(A)) and also P(T(B)) < 7(A)) > 1/2. This 
makes it likely that pure runs are more often the last to occur than any other words: 
P(Wn = T(A)) > P(Wn = T(B)). An interesting open problem is to determine the 
probabilities pA = P(Wn = T(A)), AG//" , i.e. the distribution of the last word to 
appear. 

Comparing the maximum waiting time with the waiting time for a pure run, we 
can say the former is less random. Let 

Vn = min{7(A):A E diag//"}, 

the waiting time for a pure run of length n, and let 

Nk = max{ n: Vn < k} 

the length of the longest pure run observed during the first k experiments. Though 
\imMb/ Nk = 1 a.s., it is well known that the sequence Nk is not AQD (cf. [2]): 

(log k - log log log k) - 2 - s j 
log d 

<Nk 

1 
< 

[\ogd 
(log k + log log k + (1 + E) log log log k) 

for large enough k, with probability 1. This is because the stopping times Wn are 
essentially independent and of small dispersion around their mean, while V '̂s are 
not, their joint distribution is approximately of Marshall-Olkin type. (Let us nor
malize the stopping times Vn, Vn+\,..., Vn+k by E(Vn) ~ ~-^, then the asymp
totic distribution of {(d — l)d~nVn+i, 0 < i < k} is equal to the distribution of 
{ min(£;, ...,£*)> 0 < / < £, where £o> £i> • • • > £*-i, & are independent, exponen
tially distributed random variables with expectation ^ y , j - ^ , . . . , j-\,dk, resp.) 

3. Proof of Theorem 1. The proof follows the line of reasoning worked out in 
[91 with suitable modifications and two-sided bounds instead of asymptotic rela
tions. The successive steps of the proof will be formulated in a sequence of lem
mas, numbered correspondingly to [9]. Lemmas taken over without alteration will 
not be proved here. In order to reduce duplication, explanations will be kept to the 
minimum necessary for lucidity. 

First we need some preliminary notions and results. Our main tool is the follow
ing estimation. 
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LEMMA 1[6]. LetAuA2, ...,AreHn,Z= min 7XA/) andb = 2nd'n. Then for 
every y > 0 

exp(-(l + rb)y) < P(Z > E(Z)y) < txp(rb - y), 

provided that rb < 1/5. 

The expectation E(Z) needed for the application of Lemma 1 can be calcu
lated on the basis of [5]. In order to do that let us introduce a certain measure 
of overlapping between two words. The leading number of A = (a\a2 . . . an) over 
B = (b\b2...bn) is defined as A * B = £JLj t[dl where £/ = 1 if the words 
(an-i+\ ...an) and (b\b2 . . . bt) are identical, and E-t — 0 otherwise. 

LEMMA 2 [5]. Let A\,A2,... ,Ar and Z be as above and let pt = P(T(A[) — 
Z). Then p\,p2,. • • ,pr

 and E(Z) are the solution of the following system of linear 
equations: 

J2piAi*Aj = E(Z), y= l,2,...,r, 
/=i 

ipi = i. 
/=i 

In particular, E(T(A)^J = A * A. 

In the sequel denote log \Hn\ by m and suppose that m is large enough, say 
m > 1000 log J. Let q = q(d) = min(|, ^ ^ f ) and let y be bounded by the 
relations 

| t f n | * < F ( y ) a n d | # n r « < l - F ( ) 0 . 

Thus e~y < qm and y < qm. 
Let the words of Hn be numbered as A/, 1 < / < \Hn\, and let C; denote the 

event { T(At) > dn(m + y)} ,\<i<\Hn\. Then 

P(Y(Hn)<y)=P( H G). 

For estimating the right-hand side we shall use the graph-sieve of Rényi (see [3], 
Theorem 1.4.2). A word A G Hn is said to be bad if 

A*A> (\+e-4qm)d\ 

otherwise good; further, the ordered pair (A, B), where A, B £ //n,A ^ 5, is said 
to be bad if 

A * B > 2e~2qmdn 
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(these bounds slightly differ from those of [9]). 
Let the exceptional set En be defined as 

En = {(iJ):l <iJ<\Hn\, 

not all of Ah Aj, (A,-, Ay), (Aj, At) are good }. 

Let S*0 = 1 and for r > 1 let S*r = £* P(Ch n--n C,v), where Y?r denotes that 
the summation runs over all r-tuples of indices 1 < i\ < • • • < ir < \Hn\, which 
do not contain any pair from En. Further, let S*r* = E** P{Cix Pi • • • Pi Q.), where 
E** indicates summation over r-tuples containing exactly one pair from En. Note 
that the event Q, Pi • • • n Cir means 

min{ T(Ah ) , . . . , T{Air)} > dn(m + y\ 

which is just what Lemma 1 is about. 
Finally, let t = [m] where [.] stands for integer part. Then the graph-sieve for

mula implies 

(5) P{ n Q)-u-\ys; 
i<\H„\ r=0 r=2 

Let us estimate the terms S* and 5** in (5). 

LEMMA 3. 

(a) The number of bad words in less than 4e4qm. 
(b) For any given A G Hn the number of words Bfor which the pair (A, B) (resp. 
(B,A)) is bad, is less than 2e2qm. 
(c) If both (A, B) and (B,A) are bad, then A and B are also bad. 

Proof (a) Suppose the maximum overlapping of A with itself is the length I 
(apart form the fact that A is identical with itself, which can be interpreted as 
overlapping of length n), and let k be the minimum of I as A runs over the bad 
words. Then 

dn(\+e-Aqm)< A*A 

<dn+dk + dk~l +---+d 

< dn + 2d\ 

from which dn~k < 2eAqm. The number of words A G ET that overlap themselves 
in length I is dn~l, thus the number of bad words is not greater than 

<f-* + £ f -*+•+. . .+</< 2dn-k 

< 4e4qm. 
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(b) Similarly, let k be the minimum of the longest overlapping between A and 
B (resp. B and A) as B varies in such a way that (A, B) (resp. (B, A)) is bad. Then 
2e~2qmdn < 2dk. The number of words that overlap A in length £ is dn~l again 
and the proof can be completed in the same way as above. 

(c) A has to overlap B and conversely, at least in length k where 2e~2qmdn < 2dk. 
This implies that A overlaps itself in length not less than 2k — n, consequently 
A * A - dn > d2k~n > e~4qmdn. 

LEMMA 4. Let \ YTr \ and | £** | denote the number of terms of the corresponding 
sum. Then 

(a) -erm{l_Arle~m(\-Aq)) < . £**, < J^™ [f f > ^ 

r! r! 

(b) \ET\ < -2?em{r~Mq) ifr > 2 
r\ 

Proof (a) If we disregard the increasing order of indices i\,...,ir, this will give 
us a multiplier r\. Now the upper bound \Hn\

r = erm is obvious. For the lower 
bound choose the words Aix,... Air successively. Atj should not be chosen (i) from 
bad words, (ii) from words already chosen, (iii) from words that form a bad pair 
together with a word already chosen. Thus A{j is to be chosen from a set of size 
not less than 

\Hn\ - 4e4qm - (j - 1)(1 + 4e2qm) > em - 4re4qm. 

Hence 

|£*| >-(em-4reAqm)r 

r\ 

>-erm(l-4r2e-m{l-4q)). 

(b) Again, r-tuples in account cannot contain any bad words or else they would 
contain more than one pairs from En. By Lemma 3(b) there are at most 2em{U2q) 

bad pairs to choose while for the other r — 2 indices we have at most (^ j ) ^ 
^r2^m(r_2) choices. 

The following assertion, which is a simple consequence of Lemma 2, is adopted 
from [9] without modification. 

LEMMA 5. LetAu. ...Ar^lT^Z^ minr(A/). 
(a) Suppose Ai * At < ( 1 + 8 )dn for 1 < / < r and Ai * Aj <6 dn for i ̂  j . Then 

-dn <E(Z)<(-+6)dn. 
r r 
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(b) Suppose the conditions of (a) are met with the only exception A^ * A/ < cdn, 

c > 6. Then 

1 + r8 „ 
E(Z) < dn. 

r — c 

(c) Suppose the conditions of (a) are met with the only exception A* * A* < 

(1 +c)dn,c> 8. Then 

E(Z)< 8 + ( r -
c - i 

) 
+ c 

d\ 

LEMMA 6. Suppose m > 1000 log d. Then 

(a)\S\-e~y\ <m2e~qm, 

(b)forl <r<t,\S;- ^e~n\ < ^ " ^ m V 2 ^ . 

Proof (a) Using Lemma 1 then Lemma 3 we have 

(5) S\ = £ P{T(A)> d"(m + y)) 
AeHn 

< ]T exp(b-dn(m+y)/A*À) 
A£Hn 

d-
< £ exp(b-(m+y)(\+e-4n ' ) + £ exp(/> - (m + > < ) — - ) 

A good A bad " 

<\Hn\ exp(b -(m + y)(\- e~4qm)) + 4e4qm exp(b - (m + y)d-—^) 

= e~y exp(b + e~4qm(m + y)) + 4 e x p ( y — m( 4q)) 
v ' v d d ' 

In the first term of (5) m + y < | m and b = 2nd~n < 3me~m < 3me~4qm. 

Hence b + e-Aqm(m + y) < 5me~4qm < 1, from which exp(fc + e-^m(m + y)) < 

1 +2(/? + ^ 4 c / m (m + ^ ) ) < 1 + 1 0 m ^ m < 1 + me~qm. 

In the second term of (5) eb <\, exp(— ̂ f-y) < \m and ^ — Aq > q, hence 

the second term is less than me~qm. Thus 

S\ <e~y(\ + me~qm) + me~ 

1 9 
< £ -v + - m e qm +me 

6 
qm 
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On the other hand, by Lemma 1 

S\> £ P(T(A)>dn(m + y)) 
AeHn 

> \Hn\exp(-(\+b)dn(m + y)/A*A) 

> exp(m — (1 + b)(m + _y)) 

> e~yexp(—b(m + >>)) 

>e~y(l -b(m + y)) 

> e'y - (\m)Ome-Aqm)(-m) 
6 6 

> e~y - m\-Aqm 

> e~y - m2e-qm. 

(b) Putting 8 — 2e~2qm and combining Lemma 1 with Lemmas 4(a) and 5(a) 
we have 

S* < - exp(rm + rb - r(m + v)(l + 2re-2qmfl) 

< -exp(r(b + m-(m+y)(l-2re~2gm))\ 

< - ^ exp(rfo + 2^e_2,?m(m + y)). 

Here r<t<m,m + y< \m, rb < 3m2e~m < mie~2qm, hence 

S* <-e-
ryexp(4m3e-2'"n) 

r] 

<-e-ry(l + 8mie-2qm). 

Further, 

S* > ~e-
m(l -4r 2 e- m ( l ' 4 « ) )exp(- ( l +rb)r(m + y)) 

= -^^(l-^e-^-^expi-^bim + y)) 

> i « - " ( l - 4 ^ - m < 1 - 4 < ? ) -P-b(m + y)) 

> -e'^l - Am2e-2qm - 3mV m • lm) 
r\ 6 

> -e'^il - %m\-2'"n). 
r\ 
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LEMMA 7. Suppose m > 1000 log d. Then 
(a)S*2* < ±e-2y6m2e-qmF(y) + ?>m2e-qm

} 

(b)forKr < t, S*r* < ^e^^e-^Fiy). 

Proof, (b) Every r-tuple of indices, corresponding to the summands of 5**, con
tains exactly one pair from En, say (ij). Then both At,Aj have to be good; fur
thermore, by Lemma 3(c) (A/,A7) and (Aj,At) cannot be bad at the same time. 
Now let us apply Lemmas 1, 4(b) and 5(b) with 8 = 2e~2qm. We shall sepa
rately treat the summands whose bad pair (At.Aj) is of maximal leading number 
dn~x +dn~2 + • • • + d. There are at most d3 of them, because in these pairs the same 
letter has to stand at every position but the first in A,- and the last in Aj. For these 
pairs thus c — j - ^ in Lemma 5(b). All the other pairs have leading number 

A/*Aj <dn~l + dn~3 + dn'5 + • • • 

<£? 

which gives c = -^ in Lemma 5(b). 

Hence 

ST <<?—^—|//„r-2eXpU-(m + ̂ ) ( r - - i - ) ( l + 2 r e - 2 n ') 
(r — 2)! v d — 1 ' 

+ —Ir2 exp(m(r — 1 + 2d) + rb — (m + y) 
r\ v 

d+\ ' 

Let us examine the exponents. Let c denote either ^ or ^ . Then 

-{m + y)(r - c)(l + 2rér2*m)~l 

< -{m + y)(r - c)(l - 2r<r2<?m) 

< (m + y)r + mc — e~y + (cy + e~y) + -mre~2qm. 
6 

Since the function y t— ĉy + e y is decreasing in the given domain of y, 

cy + e~y < qm — clog(qm) 

< qm 
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holds there. Now exp(rZ? + \mre 2qm) is majorized by 2, hence 

S? < ^2< / 3 m 2 F(y)exp( -m(2 - JLJ - q)) 

+ ~e~ry4m2F(y)Qxp(-m(-^ 3qj) 
r\ v d+ 1 ' 

< -e-^bnte-^Fiy). 
r\ 

(a) The sum Ysz* wiU ^e divided into four parts: 
(i) summands, where both words are good, 

(ii) summands, where one of the words is good, one is bad and the pair they 
form is good whatever be their order, 

(iii) summands, where one of the words is good, one is bad and the pair is also 
bad in one order, 

(iv) summands, where both words are bad. 
Case (i) can be treated in the same way as (b). 
In case (ii) Lemma 5(c) with c — ~y , 6 = 2e~2qm gives 

E(Z)<dn( —— +2e-2qm). y2d- 1 J 

The number of such summands is less than 4em(U4q\ By Lemma 1 this part of £2* 
is bounded by 

d ~x 

4 exp(m(l + Aq) + 2b-(m + v)(——- + 2e~2qm) ) 
0 si 1 0 si 1 

< 4exp(m(l + 4q) + 2b- (m + y)—^—(1 ^— 2e~2qm)) 
v d d ' 

O A 1 0 si 1 

< 4exp(2Z? - m(—7 1 - 4?) - y—^— + (m + y)8^2(?m). 
v d d ' 

Here e x p ( - ^ 1 y ) < {qmf and exp(26 + (m + y)%e-
2qm) < 2, hence for part (ii) 

we obtain that it is < m2 exp(—m(^ — 4g)) < m2e~qm. 
In cases (iii) and (iv) Lemma 5(a) with 6 = -^ gives 

The number of such terms is bounded by (4e4<?m)2 and 2 • 4e4qm2e2qm, resp., thus 
their constribution is less than 

3(4e4"m)2 e\p(2b - 2(m + y)^j) 

' ,. d-\ d-\ . ,v 
exp( ~ y J T T ~ miJVY ~ q)> 

< 2mV"m. 
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Our last lemma completes the proof of Theorem 1. 

LEMMA 8. Suppose m > 1000 log d. Then 

sup \P(Y(Hn) <y)- F(y)\ < 1 0 m V ^ . 

Proof. First, let y belong to the domain, where the estimations of Lemma 6 and 
7 are valid: y\ < y < y^ where F(y\) — e~qm — 1 — Fiyi)- Then 

(6) \P(Y(Hn) <y)- F(y)\ < \P(Y(Hn) < y) - £ ( " D ^ l 
r=0 

t-\ t-\ 1 
+ IE(-D%*-E(-Dr-7^I 

+i£(-Dr^">'-^0')i-

By (5), the first term is bounded by 

Applying Lemma 7 to the last sum we obtain 

J2 S*r* < 6m2e'qmF(y) £ - ^ + 3m2e 
r=2 r=2 r-

< 6m2e-qmF(y)e-e~y + 3m V « m 

< 9m2e-qm. 

The second term in the right-hand side of (6) and the first term of (7) are esti
mated by Lemma 6: They together are not greater than 

V IS; - -e'^l < m2e-qm + %m3
e-

2qm V -e^ 

< m2e-qm + Sm3e-2qmee'y 

< (m2 + Sm3)e~qm. 

The last term of (6) is well-known to be less than ^e ty. Hence 

2 
\P{Y(Hn) <y)~ F(y)\ < -e-** + (10m2 + 8m3)e~qm. 
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F(y)\ < 9m3e'qm. 

<max{P(Y(Hn)<y),F(y)} 

<m^x{P(Y(Hn)<yl),F(yl)} 

< I0m3e-qm, 

and similarly, for y > y2 

\P{Y(Hn) <y)- F(y)\ = \P(Y(Hn) > y) - (1 - F(y))\ 

<max{P(Y(Hn)>y)A-F(y)} 

<m<xx{P(Y(Hn)>y2)A-F(y2)} 

< \p(Y(Hn) > y2)-(l - F(y2j)\ + 1 - F(y2) 

< \0m3e'qm. 

4. Proof of Theorem 2 and Corollary 2. By Corollary 1, for sufficiently small 
positive e 

P(Y(Hn) < - l o g l o g n - e ) ~ F(-loglogw - e) 

1 
< ^ ' 

(Condition (4) assures the applicability of Corollary 1.) The sum of these proba
bilities is convergent, hence the Borel-Cantelli lemma is applicable. Since e can 
be arbitrarily small, 

liminf Y(Hn)l log log n > - 1 . 
n—>oo 

Here 

2 em 

-e-v < 2—e-
t\ mm 

< 2{qe)m 

< m2e-qm 

my 

hence 

sup \P(Y(Hn) 
y\ <y<y2 

*y)-

For y <yu 

\P{Y(Hn)<y)- - F(y)\ 
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Similarly, 

P(Y(Hn) > (1 +e)log/i) - 1 - / ( ( l +e)log/i) - ^ 

Again, the Borel-Cantelli lemma gives 

Km sup Y(Hn)/ log n< 1. 
n—-»oo 

Now let a(\) — 1 and for n > 2 a(n) — [?>n\ogn\. With the notation b(n) — 
tfLin)/^0g |Ha{n)| + i0ga(n)\, let us define the set En as 

En = {Ae Ha(n): T(A) > b(n - 1)}, n>2. 

First we show that 

(8) \En\ = \Ha(n)\(l~o(—^—)) a.s. 
v log«(«) y 

In order to do that let us compute the expectation E(\En| ). By Lemma 1 

E(\En\) = E £ l(T(A)>b(n-l)) 
AeHa(n) 

= Y, P(T(A)>b(n-l)) 
A£Ha(n) 

> £ exp(-2b(n-\)/E(T(A))) 
AeHa(n) 

>\Ha(n)\exp(-2b(n-l)d-a(n)). 

Now we apply the Markov inequality to the random variable \Ha(n)\ — \En\ to 
obtain 

P(\Ha{n)\ -\En\ > \Ha{n)\/\og2a(n)) 

< log2a(n)( 1 - exp(-2£(" - l)d~a(n))\ 

= 2\og2a(n)b(n - l)d~a(n)(l + o(l)) 

< (6logd)n(\og3n)da(n-l)-a(n\l + o(l)). 

Here a(n) — a(n — 1) = 3\ogn + 3 + o(l); thus the above estimation is asymp
totically equal to 

(61ogd)d-V-31og^logV 
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Since 1—3 log d < —1, the sum of these probabilities is finite and the Borel-
Cantelli lemma leads us to (8). 

Let Jn denote the a-field generated by the first b(n) experiments, further, let the 
events Cn and Dn be defined as 

Cn = {Y{Ha{n))<-\og\oga{n)} 

= { W(Ha(n)) < da(n)(\og\Ha(n)\ - log log *(/!))}, 

Dn = {Y(Ha(n))>\oga(n)} 

= {W(Ha(n)) > b{n)}. 

Then Cn and Dn belong to %. 
In order to estimate P(Cn\ 7n-\) from below let us replace the observer after 

b{n — 1) experiments, then the new observer has only to take care of words be
longing to En. In that way we might make an error by not observing the occurence 
of runs from En during the first a(n) — 1 experiments after b(n — 1). In this case 
we wait longer than needed. Waiting times concerning the second observer are 
distinguished by ' . Then 

P(Cn\Tn-\) 

> p[w'(En) < da{n)(\og \Ha(n)\ - log log a(nj) - bin - Y)\E\ 

= pfy /(£:„)<iog|H f l ( I I) |-iog|£n | 

- log log a(n) - d~a{n)bin - 1)| En\ 

By Corollary 1 this latter is asymptotically 

~F(-loglogfl(n) + 4 — ! — 1 1 = ^log^)+o(1) - -^~ V \\oga(n)JJ a(n) 

with probability 1. The sum of these conditional probabilities diverges a. s., hence 
by the Levy generalization of the Borel-Cantelli lemma (see [11], Corollary 
VII. 2. 6), infinitely many of the events Cn occur a. s., thus 

liminf Y(Hn)l log log n < - 1 . 
n—>oo 

On the other hand, in order to estimate P(Dn\ J-n-x) from below let us estimate 
the conditional probability of the error we make when replacing the observer after 
b(n — 1) experiments. Obviously, 

P(error | %_x) = P(T(A)\ < b(n - 1) + a(n) and 

T(A) > b{n) - bin - 1) for some A G En\ %-\). 
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This will be majorized if the new observer gets active just after b(n — 1) + a(n) 
experiments. Denote this new waiting time by T"(A)\ it is independent of %-\ and 
of the event { T(A) < b(n - 1) + a(n)}. Hence 

P(error | %_{) < £ P{T(A) < b(n - 1) + a(n\ 
AeEn 

t'{A) > b(n) - bin - 1) - a(n)\ Jn_,) 

£ (P(T"{A) > b{n) -b{n-\)- a(n)) 
AeEn 

P(T(A)\ <b{n-\) + a(n)\%^)). 

Since E(T"(A)) < 2da(n\ Lemma 1 gives for the first term 

P{T"{A) > b(n) ~b(n-\)- a(nj) 

< 2exp(-(Z?00 -b(n-\)- ain))/'E(T''(A))) 

< 2exp(-^-d-a(n\b(n) - b(n - 1) - a(n)j) 

= 2 exp ( - - (log | #fl(yi) | + log a(n)) + o( 1 )) 

2 ̂ (Ai)|//â(n)|j 
-1/2 

while 

J ] P ( r ( A ) < * ( / i - l ) + û(/i)|iFn_i) 
Ae£„ 

< E a £ p(r(A) = fe(fi-i) + fc|!F„-i) 
Ae£„ *=i 

a(/i)-i 
X! S ^ */(A is compatible with %-\) 
*=i Ae£„ 

V
I 

II 
II 

a(n)- l 

£ <T*min{<f*, 

0(log|£„|) 

0(\og\Ha(n)\). 

\En 1} 

Under "A is compatible with ^ _ i " we mean that the last a(n) — k experiments 
before b(n — 1) should result just in the first a(n) — k letters of A. The number of 
such A G En is at most min{ dk, \En\}. After all, 

P(error|iFn-i) = o ( - — ) . xa(n)y 
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Hence 

P(Dn\ %-x) > p(wf(En) > b(n) - b{n - \)\E^\ - o(-j-) 

= p(Y\En) > \oga(n) + o(l)\En) - o(-^-). 

The principal term is ~ 1 — E(\oga{ri) + 6>(1)) ~ ^ by Corollary 1. Thus 
^2P(Dn\yn-\) — +oo a. s., which implies that infinitely many Dn occur simul
taneously, with probability 1. Hence 

lim suprt_^QY(Hn)/ logn > 1. 

This completes the proof of Theorem 2. 
Remark. Actually, the proof utilized something equivalent to the approximate 

independence of the variables Y(Ha(n)). As a matter of fact, the variables Y(Hn) 
themselves are asymptotically independent, which makes it possible to determine 
the LL, LU, UL, UU classes for them. 

We now give the proof of Corollary 2. 
For the sake of brevity let us denote the stated bounds of M^ by [a] and [b], resp. 

Then [a] <Mk< [b] is equivalent to W[a] <k< W[b]+\. 
By Theorem 2, for sufficiently large a, i. e., for sufficiently large k 

W[a] < d[a](logd[a] + (1 + e/ 2)logM) 

< da(\ogda + (l + £/2)\oga) 

k log log k 
•exp(-e——— ) log k log k 

(log* - log log* + (1 + £/2) log log* + 0(1)) 

/ log log *w log log *x 
<'exp(-£^gr)(1+£-ï^r) 
< k. 

Further, 

W[b]+l > d[h]+](\ogdm+l - loglog([*] + 1) - e) 

>/(log/-loglogfc-e) 

> * exp((l+e)^^)(logifc-(l + i)logtogifc) 
log k v l o g A: 'v 2 ' 

> k. 
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The proof is complete. 
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