Joint Irish Section and American Society for Nutrition Meeting, 15–17 June 2011, 70th anniversary: 'Vitamins in early development and healthy ageing: impact on infectious and chronic disease'

Low dietary energy density is associated with high dietary quality in Irish adults

L. Keyes, J. Walton and A. Flynn

School of Food and Nutritional Sciences, University College Cork, Cork, Republic of Ireland

Low dietary energy density (DED) has been associated with higher dietary quality. The objective of this analysis was to examine the dietary quality of Irish adults with low, medium or high DED using data from the National Adult Nutrition Survey (NANS) (http://www.iuna.net).

Dietary intake data were analysed using WISP© (Tinuviel Software, Anglesey, UK) that contains McCance and Widdowson's *The Composition of Foods*, 6th edition⁽¹⁾. DED (kJ/g) was calculated using food only, excluding all beverages. Participants were stratified by gender and age and separated by tertile of DED into categories of low, medium and high DED. The mean daily intakes (MDI) of food, macronutrients, dietary fibre and micronutrients were examined across tertile of DED.

MDI of energy, macronutrient, dietary fibre and wt. of food consumed, by tertile of DED in Irish adults

Mean DED (kJ/g)	Low $(n = 499)$ 5.48		Medium $(n = 502)$ 7.07		High $(n = 499)$ 8.83			
	Mean	S.D.	Mean	S.D.	Mean	S.D.	p-value*	
Wt. food ex. beverages (g)	1262a	411	1038 ^b	300	887°	276	0.000	$\overline{}$
Energy (kcal)	1864 ^a	608	2028 ^b	644	2150°	686	0.000	1
Protein (%TE)	18.5 ^a	4.2	17.2 ^b	3.3	15.5°	3.0	0.000	\downarrow
Fat (%TE)	32.1 ^a	5.9	34.4 ^b	5.7	37.5°	5.9	0.000	1
Saturated fat (%TE)	11.6 ^a	3.2	12.8 ^b	3.1	14.4 ^c	3.4	0.000	1
Carbohydrate (%TE)	44.0 ^a	7.0	42.9 ^b	6.7	41.7°	6.8	0.000	\downarrow
Total sugar (%TE)	18.1 ^a	5.8	16.4 ^b	5.4	16.0 ^b	5.9	0.000	\downarrow
Dietary fibre (g/10 MJ)	27.7 ^a	8.7	23.0 ^b	6.7	19.2°	6.0	0.000	\downarrow
Vitamin A (µg/10 MJ)	1940 ^a	2067	1294 ^b	945	1023 ^c	1046	0.000	\downarrow
Vitamin D (mg/10 MJ)	8.6 ^a	13.9	5.0 ^b	5.1	4.1°	4.9	0.000	\downarrow
Vitamin E (mg/10 MJ)	22.8 ^a	58.5	12.2 ^b	13.0	10.4°	7.4	0.000	\downarrow
Thiamin (mg/10 MJ)	6.2a	17.3	2.8 ^b	5.3	2.2°	3.5	0.000	\downarrow
Riboflavin (mg/10 MJ)	6.1 ^a	16.4	3.0 ^b	5.2	2.4°	3.0	0.000	\downarrow
Niacin Equivalents (mg/10 MJ)	65.9 ^a	53.1	52.4 ^b	14.2	46.4°	14.5	0.000	\downarrow
Vitamin B6 (mg/10 MJ)	7.9 ^a	20.9	4.0 ^b	5.4	3.4°	4.5	0.000	\downarrow
Vitamin B12 (mg/10 MJ)	13.9a	59.8	7.3 ^b	6.5	6.3°	4.4	0.000	\downarrow
Folate (µg/10MJ)	567 ^a	616	475 ^b	1036	362°	176	0.000	\downarrow
Vitamin C (mg/10 MJ)	259.7 ^a	473.7	135.3 ^b	197.6	75.7°	72.6	0.000	\downarrow
Calcium (mg/10 MJ)	1266 ^a	569	1113 ^b	349	1046 ^c	353	0.000	\downarrow
Magnesium (mg/10 MJ)	410 ^a	126	342 ^b	65	301 ^c	66	0.000	\downarrow
Iron (mg/10 MJ)	22.0 ^a	30.0	16.9 ^b	18.1	14.6°	13.9	0.000	\downarrow
Sodium (mg/10 MJ)	3150	889	3171	708	3172	700	0.214	
Potassium (mg/10 MJ)	4232 ^a	983	3655 ^b	596	3209°	614	0.000	\downarrow
Zinc (mg/10 MJ)	15.7 ^a	14.9	12.0^{b}	4.3	10.4 ^c	3.3	0.000	\downarrow

Low DED was associated with higher intakes of protein, carbohydrates, dietary fibre, vitamins and minerals and lower intakes of fat and saturated fat. This analysis shows that a low energy dense diet is associated with higher dietary quality.

The project was funded by the Irish Government under the Food for Health Research Initiative 2007-2012.

1. Food Standards Agency (2002) McCance and Widdowson's The Composition of Foods 6th ed. Cambridge: Royal Society of Chemistry.