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^-DEGENERATE GRAPHS 

DON R. LICK AND ARTHUR T. W H I T E 

1. Introduction. Graphs possessing a certain property are often charac­
terized in terms of a type of configuration or subgraph which they cannot 
possess. For example, a graph is totally disconnected (or, has chromatic 
number one) if and only if it contains no lines; a graph is a forest (or, has 
point-arboricity one) if and only if it contains no cycles. Chartrand, Geller, 
and Hedetniemi [2] defined a graph to have property Fn if it contains no 
subgraph homeomorphic from the complete graph Kn+i or the complete 
bipartite graph 

4*±i], f±4). 
For the first four natural numbers n, the graphs with property Pn are exactly 
the totally disconnected graphs, forests, outerplanar and planar graphs, 
respectively. This unification suggested the extension of many results known 
to hold for one of the above four classes of graphs to one or more of the re­
maining classes. Chartrand, Geller, and Hedetniemi were very successful in 
this approach, but the methods of proof employed for values of n less than 
five generally do not extend for larger values. 

In this paper we adopt a different viewpoint. Instead of studying graphs 
with property Pw, we consider the class Uk of all ^-degenerate graphs, for k a 
non-negative integer. The classes n0 and III are exactly the classes of totally 
disconnected graphs and of forests, respectively; the classes n2 and n 5 properly 
contain all outerplanar and planar graphs, respectively. The advantage of this 
viewpoint is that many of the known results for chromatic number and 
point-arboricity (corresponding to the cases k = 0 and k = 1, respectively) 
have natural extensions, for all larger values of k. In several cases, the methods 
of proof wrere suggested by techniques employed by Chartrand, Geller, and 
Hedetniemi. 

In § 2 we give basic definitions and establish some elementary properties for 
^-degenerate graphs. In § 3 the point-partition numbers pk are defined. These 
concepts generalize the chromatic number (fe = 0) and point-arboricity 
(k = 1) of a graph. The point-partition numbers of the complete ^-partite 
graphs are developed in § 4. Section 5 treats graphs wmich are ^-critical, 
n-durable, w-minimal, or ^-permanent with respect to the parameter pk. 
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Section 6 provides bounds for the point-partition numbers of an arbitrary 
graph. In § 7 it is shown that if a graph is a counter-example to the four-colour 
conjecture, then it must be 5-degenerate but not 4-degenerate. 

2. Definitions and elementary properties. Those definitions not given 
in this section may be found in [8]. The graphs under consideration here are 
ordinary graphs; i.e. finite undirected graphs with neither loops nor multiple 
lines. The point set of a graph G is denoted by V(G), while the line set is 
denoted by E(G). The degree d(v), of a point v of G is the number of lines 
incident with v. The smallest degree among the points of G is called the 
minimum degree of G and is denoted by ô(G). Similarly, the maximum degree 
of G is denoted by A(G). 

A subgraph H of a graph G consists of a subset of the point set of G and a 
subset of the line set of G which together form a graph. The notation H ^ G 
will be employed to indicate that H is a subgraph of G. An important type of 
subgraph is the following: the subgraph induced by a set U of points of 67, 
denoted by (U), has U as its point set and contains all lines of G incident with 
two points of U. Two subgraphs are said to be disjoint if they have no points 
in common. 

The complete n-partite graph K(pi, . . . , pn) has its point set V partitioned 
into subsets Vu with | Vf\ = pt, i = 1, . . . , n; two points u and v are adjacent 
if and only if u £ Vj, and v £ Vhj where j 9e h. If pt = 1, i = 1, . . . , n, the 
graph is the complete graph on n points, and is denoted by Kn. 

A graph G is said to be k-degenerate, for k a non-negative integer, if for each 
induced subgraph H of G, ô(H) ^ k. We use the symbol II& to denote the 
class of all ^-degenerate graphs. The graph G illustrated in Figure 1 is a 
2-degenerate graph which is not 1-degenerate. 

O — O 

O — ^ 

FIGURE 1 

A totally disconnected graph is one which has no lines. It is evident that a 
graph is totally disconnected if and only if it is 0-degenerate. A forest is a 
graph without cycles, and these graphs are exactly the 1-degenerate graphs. 
An outerplanar graph is a graph which can be embedded in the plane so that 
each of its points lies in the boundary of the exterior region. Since every 
outerplanar graph has a point of degree at most two, and each subgraph of 
an outerplanar graph is outerplanar, every outerplanar graph is 2-degenerate. 
The graph G of Figure 1, however, is a 2-degenerate graph which is not outer­
planar, so that the class of all outerplanar graphs is a proper subset of n2 . A 
planar graph is one which can be embedded in the plane. Every planar graph 
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has a point of degree at most five, and each subgraph of a planar graph is 
planar. It follows that a planar graph must be 5-degenerate. The complete 
graph K5 is a 5-degenerate graph which is not planar, so that the class of all 
planar graphs is a proper subset of the class II5. 

It is easy to see that the complete graph Kp+2 is (p + 1)-degenerate, but 
not ^-degenerate. Hence Uk is a proper subset of ÏI^+i, for each non-negative k. 
We note also that, for any graph G, U2 contains a graph H homeomorphic from 
G. (For instance, form H by replacing every line uv of G with a point w and 
the two lines ww and wv.) In particular, n2 contains a graph H homeomorphic 
from each of the "forbidden subgraphs" of Chartrand, Geller, and Hedetniemi. 

We now make some elementary observations about ^-degenerate graphs. 

PROPOSITION 1. A graph G is in Hk if and only if the point set V(G) can be 
ordered, say Vi, . . . ,vp, such that d(vi) ^ k and, in the induced subgraph 
( K , • • • , vP} ) of G, d(vn) S k, for each n = 1, . . . , p. 

In other words, G can be reduced to the degenerate {i.e. trivial) graph Ki by a 
sequence of removal of points of degree less than or equal to k. 

PROPOSITION 2. (1) If G is in Uk, then G is in Un, for each n ^ k. 
(ii) For each graph G there is a minimal non-negative integer k such that G is 

in nfc. Furthermore, k ^ A(£). 
(iii) A graph G is in Hk if and only if each component of G is in Hk. 
(iv) / / the graph G is in TLk, then each subgraph of G is also in VLk. 

One might expect that a graph G belongs to Hk if and only if each block of 
G is in II*;. Each block of the graph G of Figure 2, however, is 2-degenerate, 
even though the graph G itself is not 2-degenerate. 

•KXBI 
FIGURE 2 

PROPOSITION 3. Let G belong to Uk and let G have p points, p ^ k. Then G has 
at most kp — Cf1) lines. 

The proof follows in a routine manner by induction on the order of G. 

Let G denote the complement of G. If G is in 11 ,̂ but G + e is not in n^ for 
every line e in E(G), then G is said to be a maximal k-degenerate graph. Note 
that Kp is maximal ^-degenerate, for p ^ k + 1. 

PROPOSITION 4. Let G be a maximal k-degenerate graph with p points, 
p ^ k + 1. Then 5(G) = k. 

Proof. If G has p = k + 1 points, then G = Kk+1 and 8(G) = k. If G has 
p = k + 2 points, then G = Kk+2 — e, where e is a line of Kk+2, and 8(G) = k. 
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Thus we assume that G has p points, p > k + 2, and that there is a point v of 
G with d(v) < k. Let u be any point of G — v not adjacent to v in G. Let H 
be any induced subgraph of G + m>. If z> (? F(iJ) , then i J is an induced sub­
graph of G and so 0(H) ^ jfe. If v Ç F (if), since d(v) < k in G, 3 (if) < &. In 
either case, 5 (if) ^ & and thus G + uv is in 11 .̂ This contradicts the fact that 
G is a maximal ^-degenerate graph. Therefore 8(G) = k. 

PROPOSITION 5. Let G be a maximal k-degenerate graph with p points, 
P è k + 1. Let v be a point of degree k. Then G — v is a maximal k-degenerate 
graph. 

Proof. Assume that v is a point of G with d(v) = k and that G — v is not a 
maximal ^-degenerate graph. Hence there is a line e of G — v, the complement 
of G — y, such that G — v + eis also a ^-degenerate graph. But since d(v) = k 
and e is not incident with v, G + e is also a ^-degenerate graph. This con­
tradicts the fact that G is a maximal ^-degenerate graph. 

COROLLARY 1. Let G be a maximal k-degenerate graph with p points, p §: k. 
Then G has kp — Ct1) lines. 

The inductive proof is routine, using Propositions 4 and 5. 

If G is a maximal 1-degenerate graph with p points, by Corollary 1, G must 
have p — 1 lines; that is, G is a tree and is therefore connected. This observa­
tion can be extended to maximal ^-degenerate graphs. A graph G is said to be 
n-connected if the removal of any m points from G, 0 ^ m < n, results in 
neither a disconnected graph nor the trivial graph consisting of a single point. 
The 1-connected graphs are simply the connected graphs. 

THEOREM 1. Let G be a maximal k-degenerate graph with p points, p ^ k + 1-
Then G is k-connected. 

Proof. If p = k + 1, then G = Kk+i and G is ^-connected. If p = k + 2, 
then G = Kk+2 — e, where e is a line of Kk+i, and again G is ^-connected. 
We assume that any maximal ^-degenerate graph with p points, k + 1 ^ p ^n, 
is ^-connected. Let G be a maximal ^-degenerate graph with n + 1 points. 
Then Proposition 4 states that there is a point v of G with d(v) = k. 
Proposition 5 now states that G — v is also a maximal ^-degenerate graph, 
having n points. By the inductive assumption, then, G — v is ^-connected. 
Assume that G is not ^-connected. Then there is a (k — l)-cutset 5 of G. If 
v G S, then S — {v} is a (k — 2)-cutset of G — v, which contradicts the fact 
that G — v is ^-connected. Let C be the component of G — 6* containing v. 
If there is a vertex u 9^ v in C, then 5 is a (fe — 1)-cutset of G — z;. This is 
also a contradiction. Thus C = {v}. But in this case, v is adjacent only to 
points of S and so d(v) ^ k — 1. Again we have a contradiction, since d(y) = k. 
Therefore G is ^-connected. By induction the result follows for all p ^ k + 1. 
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We now prove another result dealing with the degrees of maximal k-
degenerate graphs. 

PROPOSITION 6. Let G be a maximal k-degenerate graph with p points, 
P ^ k + 1 ^ 2. Then G has at least k + 1 points whose degrees do not exceed 
2k - 1. 

Proof, Since G is a maximal ^-degenerate graph with p points, G has 
kp — Cf1) lines. Thus the sum of the degrees of the points of G is 
2kp — k(k + 1). If all the points of G had degree 2k, then the sum of the 
degrees of the points of G would be 2kp. Hence there must be enough points 
whose degrees are less than 2k so that the number of 2kp is reduced by 
k(k + 1). However, every point of G has degree at least k, and thus the degree 
of no one point of G can reduce the number 2kp by more than k. Therefore, 
there must be at least k + 1 points whose degrees do not exceed 2fe — 1. 

COROLLARY 2. If G is in Uk and if G has p points, p ^ k + 1 ^ 2, then G 
has at least k + 1 points whose degrees do not exceed 2k — 1. 

We now show that the bound of Proposition 6 is the best possible, by 
constructing a graph with exactly k + 1 points of degree not exceeding 
2& — 1. Let the points of Kk+1 be denoted by vlt . . . , vk+i, and let Gk+i be 
the totally disconnected graph with points u\, . . . , uk+i. Let Hk+i be the 
union of the graphs Kk+1 and Gk+\ with all additional lines utVj, for i ^ j . 
Then the graph Hk+i has k + 1 points of degree k and k + 1 points of degree 
2k. It is easy to see that Hk+1 is ^-degenerate. See Figure 3 for the graph H4. 

ÎI2 tii 

FIGURE 3 

3. The point partition numbers. As mentioned in Proposition 2, for any 
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graph G there is a non-negative integer k such t h a t G is ^-degenerate. For a 
given graph G and a given non-negative integer k, the graph G m a y not be 
^-degenerate, bu t i t is clear t h a t some subgraphs of G are ^-degenerate. This 
observation leads to the following problem. For a given graph G and a given 
non-negative integer k, find the smallest number of disjoint induced subgraphs 
in to which G can be divided so t h a t each subgraph is ^-degenerate. 

T h e point partition number pk(G), k ^ 0, is the minimum number of sets 
in to which the point set V(G) can be part i t ioned so t ha t each set induces a 
^-degenerate subgraph of G. 

T h e point part i t ion number po(G) is the extensively studied chromatic 
number of G, while the point part i t ion number pi(G) is the more recently 
investigated point-arboricity of G. For values of k ^ 2, no special name has 
ye t been given to the parameter pk (G) and these concepts have not ye t been 
considered as a topic of research. Each of the parameters pk(G) may be thought 
of as a colouring number , since it gives the minimum number of colours in 
any colouring of the points of G so t h a t each colour induces a ^-degenerate 
subgraph of G. 

I t is helpful, in determining the numbers pk(G), to note t h a t we may restrict 
ourselves to connected graphs (see Proposition 2 (iii)). 

P R O P O S I T I O N 7. The value of pk(G) is the maximum of the values of pk(Ct) 
for the components d of G. 

Since pk{G) ^ 1 for each graph G and each non-negative integer k, and 
pn(G) ^ Pm(G) for n ^ m, we make the following elementary observation. 

PROPOSITION 8. If G is a k-degenerate graph and m ^ k, then pm(G) = 1. 

4. The point partition numbers of the complete ^-partite graphs. 
W e now consider the point part i t ion numbers in more detail . As one would 
expect, for most graphs G and for small values of k, the numbers pk(G) are 
difficult to determine. However, for one impor tan t class of graphs, the com­
plete w-partite graphs, the numbers pk(G) are easily calculated. T h e following 
proof generalizes the approach employed by Char t rand , Kronk, and Wall [4]. 

T H E O R E M 2. The point partition number pk of the complete n-partite graph 

K(pi, • • • , Pn), 1 ^ Pi ^ • • • ^ Pn, is given by: 

pk(K(ph . . . ,pn)) = n - m a x J 7 : ] E Pi ^ (n — J)kf » 

where we define p0 = 0. 

Proof. Since p0(K(pi, . . . , pn)) = n, Proposition 2(i) implies t h a t 
pk(K(pi, . . . , pn)) ^ n. We employ induction on n. For n = 1, pk{K{p1)) = 1, 
since K(pi) is total ly disconnected. Assume t h a t the formula holds for n, 
n ^ 1, and consider the graph G = K(plf . . . , pn, pn+i) with point set V(G) 
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and subsets Vi, . . . , Vn+i as described in the definition of an (n + l)-partite 
graph. For the subgraph H = K(pu . . . , pn)} suppose that 

t 

Y<Pi^(n- t)k, 

but, 
H-l 

Z Pi > (n - (t + l))k. 
i=0 

Then, by hypothesis, pk{H) = n — t. Since H is a subgraph of G, 
PJC(H) rg pk(G). Also, since the additional set Vn+i of pn+i points used in 
forming G from H induces a totally disconnected (and thus ^-degenerate) 
graph, Pfc(G) ^ PK(H) + 1. We now consider two cases. 

Case (i). Suppose that 
t+i 

T,Pi> ((» + 1) - (' + 1))* = (n - t)k. 
i=0 

This implies that 

(n + 1) - maxj j : ]£/>, é ((* + 1) - j ) i j = (» + 1) - *. 

Thus, in this case, we must show that pk{G) = pk{H) + 1. Assume that this 
is not the case, i.e. pk(G) = pk(H). The complete (n + 1)-partite graph 
G' = K(pi, . . . ,pt, Pt+i, Pt+i, . • • , Pt+i) is a subgraph of the graph G and so 
PJC(G') ^ Pk(G) = Pk(H) = n - L Let TV, . . . , Vn+1' be the subsets of V(G') 
as in the definition of a complete (^ + 1)-partite graph. The graph G' contains 

t+i 

! > * + ( * - t)pt+i = P* 

points, which implies that in any partition of the point set V(G') into n — t 
(or fewer) subsets, at least one such subset must contain at least p*/ (n — i) 
points. By hypothesis, 

t+i 

T,pi> o* - o*, 
i=0 

and so at least one of the subsets of the partition, say Ui, contains at least 
pt+i + (k + 1) points. But any of the subsets Vi, . . . , Vn+i of V(G') can 
contain at most pt+1 points. Thus, for any v 6 V({Ui)) (say that v 6 Vi) 
there are at least k + 1 points in (£/i) — F*. Hence d(v) ^ k + 1 in (Z7i); 
i.e. 8((Ui)) > k, and (C/i) is not ^-degenerate, a contradiction. Thus 
P*(G) = Pk(H) + 1. 

Cas6 (ii). Suppose that 

Hpi^ (n- t)k-
z=0 
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Since 

it follows that 

t+2 

Y,Pi> in- {t+ l))k = ((» + 1) - (t + 2))k, 

so that 

(n + 1) - m a x | j : Ç £, g ((» + 1) - j)kf = (n + 1) - (t + 1) = n - t. 

Thus, we must prove, in this case, that pn(G) = Pk(H). Since 

t+i 

1=0 

or equivalently, 

|7 i U 72 U . . . U 7<+i | ^ ((« + 1) - (* + 2) + 1)* 

we can exhaust the set V\ VJ F2 W . . . \J Vt+i by adding at most k of its 
points to each of the sets Vt+2l . . . , Fw+i. Since, for each set Vjy t + 2 S 
j ^ n + 1, at most & points from the set V\\J V2 W . . . \J V t+i have been 
added, the resulting set induces a ^-degenerate subgraph of G. Hence 
Pk(G) S n — t. But then n — t = pk(H) S Pk(G) ^ n — t, and pk(G) = n — t. 

We now list the point partition numbers of the complete graphs and the 
complete bipartite graphs, as two corollaries to Theorem 2. The notation {r} 
indicates the least integer greater than or equal to r. 

COROLLARY 3. For the complete graph Kp with p points, 

COROLLARY 4. For the complete bipartite graph K(pi, p2), with pi ^ p2, 

pk(K(php2)) = \l> fpl = 
v2, if pi > if pi > k. 

Since every graph with p points can be considered as a subgraph of Kp, we 
obtain the following upper bound for pjc(G). 

COROLLARY 5. For every graph G with p points and for every non-negative 
integer k, 
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5. Critical and durable graphs. In general, the bound given in Corollary 5 
for pk(G) is not particularly good. We will sharpen this bound in § 6, using 
two of the results of this section. 

A graph G is said to be n-critical with respect to pk if pk(G) = n, but 
pk(G — v) = n — 1 for each point v of G. A graph G is said to be n-minimal 
with respect to pk if pk(G) = n, but pk(G — e) = n — 1 for each line e of G. 
Graphs which are critical with respect to p0 (chromatic number) have been 
studied extensively, particularly by Dirac (see [5; 6; 7]). In [9], we considered 
graphs which are n-critical and n-minimal with respect to p0 and pi (point-
arboricity). 

PROPOSITION 9. If G is n-minimal with respect to pk and if G has no isolated 
points, then G is n-critical with respect to pk. 

Proof. Let G be n-minimal with respect to pk and assume that G has no 
isolated points. Then for any point v of C7, v is incident with at least one line 
e of G. Then 

pk(G - v) g pk(G - e) = n - 1, 

so that pk{G — v) = n — 1, and G is ^-critical with respect to pk. 

It is well known that any graph having chromatic number n contains an 
w-critical induced subgraph. Chartrand and Kronk [3] have established the 
analogue for point-arboricity. In the following theorem, we generalize these 
results for all values of k. 

THEOREM 3. Let G be a graph such that pk(G) = n, where n ^ 2. Then G 
contains an induced n-critical subgraph. 

Proof. If G is ^-critical with respect to pk, there is nothing to prove. Other­
wise, there is a point v± in G such that pk(G — Vi) = n. Now, if G — v± is 
n-critical, our proof is complete. Otherwise, there is a point v2 in G — V\ such 
that pk(G — Vi — v2) = n. Continuing this process, we eventually arrive at 
an induced ^-critical subgraph. 

It also seems natural to study graphs G for which pk(G — v) = pk(G) for 
each point v of G, and graphs H which satisfy pk{H — e) = pk(H) for each 
line e of H. Such graphs are called durable with respect to pk and permanent with 
respect to pk, respectively. If pk(G) = n and G is durable with respect to pk, 
then G is said to be n-durable with respect to pk. Similarly, if pk(H) = n and H 
is permanent with respect to pk, then H is called n-permanent with respect to pk. 
In [9], we investigated graphs which are ^-durable and n-permanent with 
respect to p0 (chromatic number) and pi (point-arboricity). 

PROPOSITION 10. If G is n-durable with respect to pk, then G is n-permanent 
with respect to pk. 
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Proof. Le t G be ^-durable with respect to pk and let e be any line of G. 
Let v be an endpoint of e. Then 

Pk(G - e) ^ pk(G - v) = n. 

Therefore G is ^ -permanent with respect to pk. 

In contras t to Theorem 3, we have the following result. 

P R O P O S I T I O N 11. Let G be a graph such that pk{G) = n. Then G is an induced 
subgraph of an n-durable graph. 

Proof. Le t H be the graph having two components, each isomorphic to G. 
Then H is ^-durable , and G is an induced subgraph of H. 

From the proofs of Theorem 3 and Proposition 11, i t is clear tha t , if 
Pk(G) = n, then G also contains an induced ^-minimal subgraph (if n ^ 2) 
and is an induced subgraph of an ^-permanent graph. 

I t is well known t h a t if G is an ^-critical graph with respect to chromatic 
number , then the minimum degree of G satisfies the inequali ty 3(G) ^ n — 1. 
Char t r and and Kronk [3] proved t h a t if a graph G is ^-critical with respect 
to point-arboricity, then 8(G) ^ 2(n — 1). We now extend these results to 
graphs G which are ^-critical with respect to pk, for arbi t rary non-negative 
integers k. 

T H E O R E M 4. If the graph G is n-critical with respect to pkl then 5(G) ^ 
(k+ l ) ( n - 1). 

Proof. There are no non-trivial 1-critical graphs with respect to pfc, and so 
we assume t h a t n ^ 2. Suppose t h a t G is ^-critical with respect to pk and t h a t 
G contains a point v with d(v) < (k + l)(n — 1). Since G is n-critical with 
respect to pk, pk(G — v) = n — 1, and there is a part i t ion Vi, . . . , Vn-i of 
V(G — v) such t ha t each induced subgraph (Vi), i = 1, . . . , n — 1, is a 
^-degenerate subgraph of G — v. Since d(v) < (k + l)(n — 1), a t least one 
of these subsets, say Vj, contains a t most k points adjacent to v. Thus , the 
set Vj U {v} necessarily induces a ^-degenerate subgraph of G. Hence, 
Vi, . . . , Vj\J {v}, . . . , Vn~i is a part i t ion of V(G) such t h a t each subset 
induces a ^-degenerate subgraph of G. This implies t h a t pk(G) < n, which 
contradicts the fact t h a t G is ^-critical with respect to pk. Therefore, 
à(G) ^ (k+l)(n- 1). 

T h e observation t ha t any graph G having a t most k + 1 points is ^-degen­
erate leads to the fact t h a t if pk(G) = n, then G has a t least (k + l)(n — 1 ) + 1 
points. Hence, any graph G which is ^-critical (^-minimal) with respect to pk 

has a t least (k + l)(n — 1) + 1 points. In fact, the following proposition 
shows t h a t the unique graph G with pk(G) = n and (& + l )(w — 1) + 1 
points is G = K(k+1)(n__1)+1. 
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PROPOSITION 12. If G is a graph with (k + l)(n — 1) + 1 points, then 
pk(G) = n if and only if G = K(k+1)(n_1)+1. 

Proof. That pk(K(k+D(n-i)+i) = n follows immediately from Corollary 3. 
Conversely, assume that pk{G) = n and that G has (k + l)(n — 1) + 1 
points. If n = 1, then trivially G = K\. Otherwise, let u and v be any pair 
of points of G. If u and v are not adjacent in G, then we may partition V{G) 
into n — 2 sets each containing k + 1 points and one set containing u and v 
as well as k other points. Since any graph with k + 1 points is ^-degenerate, 
and any subgraph of Kk+2 — e is also ^-degenerate, it follows that the point 
set V(G) can be partitioned into n — 1 sets, such that each set induces a 
^-degenerate subgraph of G. Thus pk{G) < n, which is a contradiction. 
Therefore each pair of points of G is adjacent, and G = i£(fc+i)(ra-i)+i-

Since the unique smallest (with respect to the number of points) graph 
with pjc(G) = n is G = K(k+i)(n-i)+i, the smallest w-critical (w-minimal) graph 
with respect to pk is also JK^+IXW-D+I- It follows that any n-durable (w-per-
manent) graph with respect to pk has at least ( £ + l ) ( w — l ) + 2 points. 
This leads to the following proposition. 

PROPOSITION 13. / / G is a graph with (k + l)(n — 1) + 2 points, where 
n > 1 and k > 0, then G is n-durable (n-permanent) with respect to pk if and 
only if G = Kik+1)(n_1)+2. 

The proof, being similar to that of Proposition 12, is omitted. 

Proposition 13 does not cover the case of durability and permanence with 
respect to chromatic number (pk(Kik+1)(n_1)+2) = n, by Corollary 3, unless 
k = 0). In [9] we have shown that the unique smallest w-durable graph with 
respect to p0 is the graph 2Kn, consisting of two disjoint copies of Kn. The 
smallest ^-permanent graph with respect to p0 is the graph Kn- Kn\ that is, 
the one point union of two copies of Kn. 

6. Bounds for the parameters pk. As mentioned earlier, the upper bound 
given in Corollary 5 is not particularly good. We now present a generally 
sharper upper bound for the parameter pkl together with a lower bound. For 
a graph G and a non-negative integer k, let Mk denote the maximum number 
of points in G which induce a ^-degenerate subgraph of G. The number M0 is 
also called the point-independence number of G. 

THEOREM 5. Let G be a graph with p points and let k be a non-negative integer. 
Then 

i s ,(G) s fe#}+, 
Proof. We first establish the lower bound. Let Si, . . . , Sn be a minimum 

partition of V(G) such that Sui = 1, . . . , w, is a ^-degenerate subgraph of G. 
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Thus pic(G) = n and |54 | ^ Mk, i = 1, . . . , n. Therefore, 

Ê \St\g nMk = Pk(G)Mk. 

But 

è i5«i = />, 

so that p*(G) è />/M*. 
In order to establish the upper bound, let S be a set of points of G such that 

5 is a ^-degenerate subgraph of G and |5| = Mk. Let G — S denote the sub­
graph of G obtained by removing the points in S. Then pk (G — S) ^ pk (G) — 1. 
Since G — S has p — Mk points, we apply Corollary 5 to obtain 

.«*-*>* te?}. 
Therefore, 

We now give additional upper bounds for pk(G). It is well known that 
Po(G) g 1 + A(G). Chartrand, Kronk, and Wall [4] showed that 

Pi(G) S 1 + [*A(G)]. 

As a corollary to the next theorem, it will follow that 

for each non-negative integer k. 
We use the notation H < G to indicate that jff is an induced subgraph of G. 

In [11], Szekeres and Wilf proved that 

Po(G) g 1 + max5(#) , 

where the maximum is taken over all induced subgraphs H of G. Chartrand 
and Kronk [3] extended the result to point-arboricity: 

Pi(G) £ 1 + Umax«(ff) l . 

These results are now generalized for all of the parameters pk. 

THEOREM 6. For any graph G, 

Pk{G) g ! + [**ff*®\ , 
where the maximum is taken over all induced subgraphs H of G. 

Proof, If G is a ^-degenerate graph, then the result is obvious; thus we 
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assume that pk(G) = n ^ 2. There exists an induced subgraph H oî G which 
is w-critical with respect to pk. It follows that 

Ô(H) ^maxô(G ' ) , 
G'<H 

since H itself is an induced subgraph of H. Moreover, any induced subgraph 
of H is also an induced subgraph of G, and so 

max 5 (GO g max 5(GO-
G'<H G'<G 

Since H is ^-critical with respect to pk, 5(H) ^ (k + l)(n — 1), and so 

max «(GO ^(k+l)(n-l)= (k+ \)n - (k + 1) = (k + l)p*(G) - (* + 1). 
G'<G 

The desired result follows from this inequality. 
Since ô(G0 S A (G) for any induced subgraph G' of G, we have the following 

corollaries. 

COROLLARY 6. For any graph G, 

COROLLARY 7. If G is a planar graph, then: pi(G) g 3, pk{G) ^ 2 /or 
k = 2, 3, 4, awrf p*(G) = 1 for k ^ 5. 

There are many other bounds for the chromatic number and point-
arboricity of a graph that can be generalized to include all point partition 
numbers pk. For example, if X is the largest eigenvalue of the adjacency 
matrix A of graph G, then 

Pk(G) S 1 + [J+J] . 
The case where k = 0 (chromatic number) was proved by Wilf [12], and 
Mitchem [10] has extended this result to the case k = 1 (point-arboricity). 

7. Remarks concerning the four-colour conjecture. One of the truly 
famous unsolved problems in mathematics is the four-colour conjecture. In 
the terminology of this paper the conjecture may be stated as follows. For any 
planar graph G, po(G) ^ 4. In this section, we show that if G is a counter­
example to this conjecture, then G Ç n 5 — n4 . The proof of the following 
theorem is essentially part of that employed by Behzad and Chartrand [1] in 
giving a version of Kempe's incorrect "proof" of the four-colour "theorem". 

THEOREM 7. If G is a planar ^-degenerate graph, then po(G) ^ 4. 

Proof. We use induction on p, the order of G. For p = 1, the result is trivial. 
Thus, let G be a planar 4-degenerate graph with p points. Since G is 4-degen-
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erate, <5(G) ^ 4; let v £ F (G), with d(z>) ^ 4. By the induction hypothesis, 
since G — v is also planar and 4-degenerate, po(G — v) ĝ 4; i.e. the graph 
G — v can be four-coloured. Let a proper four-colouring of G — v be given. 
If less than four colours are required in G for the points adjacent to v, v may 
be coloured with a fourth colour, so that po(G) ^ 4. Suppose, however, that 
v is adjacent to t/i, v2, v^ v± in G, with vt given colour i in the four-colouring 
of G — v, i = 1, 2, 3, 4. Without loss of generality, suppose these points to 
be arranged cyclically around v as indicated in Figure 4. Consider the subgraph 

O 

v4 O Q O v2 

0 
v. '3 

FIGURE 4 

H oî G — v induced by those points coloured either 1 or 3. If v± and v$ are in 
different components of H, then there is no path all of whose points are 
coloured 1 or 3 joining V\ and v^ in G — v. In this case, the colours of the 
points in the component containing V\ may be interchanged, and then v may 
be given the colour 1, showing that po(G) ^ 4. On the other hand, if V\ and v% 
are in the same component of H, then there is a path joining Vi and v% in G — v, 
all of whose points are coloured 1 or 3. Then this path together with v and the 
lines V&, W\ forms a cycle in G enclosing v2. It therefore follows that there is 
no path joining v2 to v± in G — v, all of whose points are coloured 2 or 4. Let F 
be the subgraph of G — v induced by those points coloured either 2 or 4; then 
v2 and Vi are in different components of F. Now interchange the colours of 
the points in the component of F containing v2. Then v may be given the colour 
2, showing that po(G) S 4. As this exhausts the possibilities, the proof is 
complete. 

Since any planar graph is 5-degenerate, and any planar 4-degenerate graph 
is four-colourable, it follows immediately that any planar graph which cannot 
be four-coloured must be 5-degenerate, but not 4-degenerate. 
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