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Certain aspects of holomorphic function theory on some
genus-zero arithmetic groups

Jay Jorgenson, Lejla Smajlović and Holger Then

Abstract

There are a number of fundamental results in the study of holomorphic function theory
associated to the discrete group PSL(2,Z), including the following statements: the ring of
holomorphic modular forms is generated by the holomorphic Eisenstein series of weights four
and six, denoted by E4 and E6; the smallest-weight cusp form ∆ has weight twelve and can be
written as a polynomial in E4 and E6; and the Hauptmodul j can be written as a multiple of
E3

4 divided by ∆. The goal of the present article is to seek generalizations of these results to
some other genus-zero arithmetic groups Γ0(N)+ with square-free level N , which are related to
‘Monstrous moonshine conjectures’. Certain aspects of our results are generated from extensive
computer analysis; as a result, many of the space-consuming results are made available on a
publicly accessible web site. However, we do present in this article specific results for certain
low-level groups.

1. Introduction and statement of results

Consider the discrete group PSL(2,Z) which acts on the upper half plane H. The quotient
space PSL(2,Z)\H has one cusp, which can be taken to be at i∞. Let Γ∞ denote the stabilizer
subgroup for the cusp at i∞, which consists of isometries(

a b
c d

)
∈ PSL(2,Z)

with c = 0. For every integer k > 2, the holomorphic Eisenstein series E2k(z) is defined by the
absolutely convergent sum

E2k(z) :=
∑

γ∈Γ∞\PSL(2,Z)

(cz + d)−2k, where γ =

(
∗ ∗
c d

)
.

There is an abundance of important and classical formulae which can be wound back to the
holomorphic Eisenstein series E2k. For example, if one defines

G2k(z) :=
∑

(n,m)∈Z2\{(0,0)}

(nz +m)−2k,

then E2k(z) = G2k(z)/2ζ(2k), where ζ(s) is the Riemann zeta function. If we set g2 = 60G4

and g3 = 140G6, the modular discriminant

∆(z) := e2πiz
∞∏
n=1

(1− e2πinz)24
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can be written as

∆(z) = g3
2(z)− 27g2

3(z) = 1
1728 (E3

4(z)− E2
6(z)). (1)

The function ∆ is a weight-twelve cusp form with respect to PSL(2,Z), meaning that it vanishes
as z approaches i∞. It can be shown that no smaller weight cusp form exists. Furthermore,
∆ is related to the algebraic discriminant of the cubic equation y2 = 4x3 − g2x − g3, in
the complex projective coordinates [x, y, 1], which defines an elliptic curve associated to the
modular parameter z.

All higher weight modular forms associated to PSL(2,Z), including Eisenstein series, can
be written in terms of E4(z) and E6(z). For example, the formulae E8(z) = E2

4(z), E10(z) =
E4(z)E6(z), and

691E12(z) = 441E4(z)3 + 250E6(z)2

are just the beginning of the never ending list of interesting relations which one can write.
Whereas the content of the above discussion is classical, there is a very modern component.

The function

j(z) =
1728E3

4(z)

E3
4(z)− E2

6(z)
(2)

is a weight-zero modular form on PSL(2,Z)\H, which can be viewed as the biholomorphic
function that maps the one-point compactification of PSL(2,Z)\H onto the Riemann sphere P1.
If we set q = e2πiz, then one can expand j(z) as a function of q, namely one has

j(z) =
1

q
+ 744 + 196884q + 21493760q2 +O(q3) as q → 0. (3)

In the 1970s, the coefficients in (3) were observed to be related to the sizes of the irreducible
representations of the largest sporadic simple group, which is now known as ‘the monster’.
The observations were made precise through the ‘Monstrous moonshine conjectures’, some of
which are proven in the celebrated work by Borcherds. We refer the interested reader to [4, 5]
for a thorough account of the underlying mathematics and physics surrounding the moonshine
conjectures as well as the mathematical history associated to j(z).

Setting to the side the important formulae themselves, one can summarize the above
discussion as the three following points. First, the ring of holomorphic modular forms associated
to PSL(2,Z) is generated by E4 and E6. Second, the smallest-weight cusp form ∆ has weight
twelve and hence can be written as a polynomial in E4 and E6. Third, the Hauptmodul j is
equal to a multiple of E3

4 divided by ∆ and hence is a rational function in E4 and E6.
The goal of this article is to seek generalizations of the above three statements to certain

other arithmetic groups related to the ‘Monstrous moonshine conjectures’. Specifically, for any
square-free positive integer N , let

Γ0(N)+ =

{
e−1/2

(
a b
c d

)
∈ SL(2,R) : ad− bc = e, a, b, c, d, e ∈ Z,

e | N, e | a, e | d, N | c
}

(4)

and let Γ0(N)+ = Γ0(N)+/{± Id}, where Id denotes the identity matrix. Observe that
PSL(2,Z) = Γ0(1)+. It has been shown that there are 43 square-free integers N > 1 such
that the quotient space XN := Γ0(N)+\H has genus zero (see [3]). Each group has one cusp,
which we can always choose to be at i∞. As stated in the title, the aim of this paper is to
present results in the study of the holomorphic function theory associated to these 43 spaces.
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Let

η(z) = e2πiz/24
∞∏
n=1

(1− e2πinz)

denote the Dedekind eta function. For any square-free N , assume that N has r prime factors,
and let lcm(· , ·) denote the least common multiple function. Let σ(N) equal the sum of divisors
of N . It was proven in [7] that the function

∆N (z) =

(∏
v|N

η(vz)

)`N
,

where

`N = 21−r lcm

(
4, 2r−1 24

(24, σ(N))

)
,

is a weight-kN = 2r−1`N modular form on Γ0(N)+, vanishing at the cusp i∞ only. For reasons
discussed in [7], we refer to ∆N as the Kronecker limit function on Γ0(N)+.

The main results of the present paper are the following statements, which hold true for each
square-free N provided that XN has genus zero.

(1) There is an explicitly computed integer MN such that ∆MN

N is equal to a polynomial QN
in holomorphic Eisenstein series associated to Γ0(N)+.

(2) The Hauptmodul jN associated to Γ0(N)+ is equal to a rational function whose
numerator is a polynomial PN in holomorphic Eisenstein series and whose denominator
is ∆MN

N .
(3) The polynomials PN and QN are explicitly computed; hence, we determine, for each

N , a finite set T(N) of holomorphic Eisenstein series such that any meromorphic form
with at most polynomial growth at i∞ can be expressed as a rational function involving
elements of T(N).

Points 1 and 2 are direct generalizations of the formulae (1) and (2). Point 3 is a weak
generalization of the result that the ring of holomorphic modular forms associated to PSL(2,Z)
is generated by the holomorphic Eisenstein series of weights four and six. For certain small
levels, we are able to compute generators of the ring of holomorphic forms; however, for general
N , and for future investigations we plan to undertake, we are content with point 3 as stated.

The present article is organized as follows. In § 2, we establish notation and cite appropriate
background material. In particular, we recall the Kronecker limit formula associated to the
non-parabolic Eisenstein series on XN = Γ0(N)+\H and a computer algorithm of [7]. In § 3,
we prove some basic results regarding low-weight modular forms for any level N > 1. In § 4,
we present a variant of the algorithm of [7] from which we prove that for every square-free
N , provided that XN has genus zero, there is an integer MN such that ∆MN

N can be written
as a polynomial in holomorphic Eisenstein series. Let jN denote the biholomorphic map from
the one-point compactification of XN to the Riemann sphere P1 which maps i∞ to zero. The
algorithm described in § 4 allows us to prove that jN∆MN

N can be written as a polynomial in
holomorphic Eisenstein series. The data provided by the algorithm is presented in Table 1,
as is a comparison of the results of the original algorithm of [7] and the modified variant
thereof. From the algorithm developed in this paper, we are able to determine for each level N
a set of holomorphic Eisenstein series which generate T(N), the ring of holomorphic modular
forms associated to XN ; this information is given in Table 2. It is important to note that the
entries in Table 2 may not be a minimal set of generators, meaning that for each N there may
exist further relations amongst the elements of sets listed in Table 2. In § 5, we present results
regarding the ring of holomorphic forms for certain small levels.

As N grows, so does the complexity of the formulae for ∆N and jN . For example, when
N = 17, our algorithm shows that the five holomorphic Eisenstein series of weights four
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through twelve generate T(17) and M17 = 9, meaning that ∆9
17 and j17∆9

17 can be written as a
polynomial in these five Eisenstein series. As an indication of the complexity of the formulae,
we present these two examples in § 5. The formulae for ∆17 and j17 each occupy approximately
one page.

We note that the Tables 3 and 4a of [2] describe, in their notation, how one can express each
Hauptmodul jN in terms of holomorphic forms. In Table 3, we translate the aforementioned
data from [2], related to 43 groups defined by (4) with square-free N and genus zero, such that
we explicitly write these formulae in terms of the Dedekind eta function and theta function
attached to quadratic forms. By combining our formulae for jN and the formulae from [2], one
has the prospect of obtaining further identities involving holomorphic Eisenstein series and
theta functions.

As in [7], the theoretical work developed in this article is supplemented by extensive computer
analysis and, quite frankly, some of the results are not printable. For example, for N = 119,
the formula for j119 from [7] occupies nearly 60 pages. Nonetheless, in order to disseminate
the results obtained by our algorithms, we have posted all formulae to a web site [8].

2. Background material

2.1. Holomorphic modular forms

Let Γ be a Fuchsian group of the first kind. Following [10], we define a weakly modular form
f of weight 2k for k > 1 associated to Γ to be a function f which is meromorphic on H and
satisfies the transformation property

f

(
az + b

cz + d

)
= (cz + d)2kf(z) for all

(
a b
c d

)
∈ Γ.

Assume that Γ has at least one class of parabolic elements. By transforming coordinates, if
necessary, we may always assume that the parabolic subgroup of Γ has a fixed point at i∞,
with identity scaling matrix. In this situation, any weakly modular form f will satisfy the
relation f(z + 1) = f(z), so we can write

f(z) =

∞∑
n=−∞

anq
n, where q = e2πiz.

If an = 0 for all n < 0, then f is said to be holomorphic in the cusp i∞. The form f is said
to vanish in the cusp i∞ if an = 0 for all n 6 0. A holomorphic modular form with respect to
Γ is a weakly modular form which is holomorphic on H and is holomorphic in all of the cusps
of Γ. A holomorphic cusp form is a holomorphic form which vanishes in all of the cusps of Γ.

For Γ = PSL(2,Z), the full modular surface, there is no weight-two holomorphic modular
form. Nonetheless, one defines the function E2(z) by the q-expansion

E2(z) = 1− 24

∞∑
n=1

σ(n)qn. (5)

It can be shown that E2(z) transforms according to the formula

E2(γz) = (cz + d)2E2(z) +
6

πi
c(cz + d) for γ =

(
∗ ∗
c d

)
∈ SL(2,Z). (6)

From this, it is elementary to show that for a prime p, the function

E2,p(z) :=
pE2(pz)− E2(z)

p− 1
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is a weight-two holomorphic form associated to the congruence subgroup Γ0(p) of SL(2,Z).
The q-expansion of E2,p is

E2,p(z) = 1 +
24

p− 1

∞∑
n=1

σ(n)(qn − pqpn).

2.2. Certain arithmetic groups related to ‘moonshine’

For any square-free integer N , the subset of SL(2,R) defined by (4) is an arithmetic subgroup
of SL(2,R). As shown in [3], there are precisely 44 such groups which have genus zero and
which appear in ‘Monstrous moonshine conjectures’. In this article we will focus on the 43
genus-zero groups for which N > 1.

We denote by Γ0(N)+ = Γ0(N)+/{± Id} the corresponding subgroup of PSL(2,R). Basic
properties of Γ0(N)+ for square-free N are derived in [6] and references therein. In particular,
we use that the surface XN = Γ0(N)+\H has exactly one cusp, which can be taken to be at
i∞.

Let T(N) denote the ring of holomorphic modular forms associated to XN , and let T
(N)
2k

denote the holomorphic modular forms of weight 2k. We will denote the subspace of cusp

forms on XN of weight 2k by S
(N)
2k .

2.3. Holomorphic Eisenstein series on Γ0(N)+

In the case when N > 1 is square-free, the holomorphic Eisenstein series associated to Γ0(N)+

are defined for k > 2 by

E
(N)
2k (z) :=

∑
γ∈Γ∞(N)\Γ0(N)+

(cz + d)−2k with γ =

(
∗ ∗
c d

)
,

where Γ∞(N) denotes the stabilizer group of the cusp at i∞. Note that for all N , Γ∞(N)

is independent of N , namely one has that Γ∞(N) = Γ∞. In [7], it is proven that E
(N)
2k (z)

may be expressed as a linear combination of forms E2k(z), the holomorphic Eisenstein series
associated to PSL(2,Z). Namely, it is known that

E
(N)
2k (z) =

1

σk(N)

∑
v|N

vkE2k(vz), (7)

where σα denotes the generalized divisor function

σα(m) =
∑
δ|m

δα.

Formula (7), together with a well-known q-expansion of classical forms E2k, yields that the

q-expansion of E
(N)
2k is given by

E
(N)
2k (z) =

1

σk(N)

∑
v|N

vk
(

1− 4k

B2k

∞∑
j=1

σ2k−1(j)qvj
)
, (8)

where Bk denotes the kth Bernoulli number.
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2.4. Kronecker limit function on Γ0(N)+

Associated to the cusp of Γ0(N)+ one has a non-holomorphic Eisenstein series denoted by
Epar
∞ (z, s), which is defined for z ∈ H and Re(s) > 1 by

Epar
∞ (z, s) =

∑
η∈Γ∞\Γ0(N)+

Im(ηz)s.

In [7] it is proven that, for any square-free N which has r prime factors, the parabolic Eisenstein
series Epar

∞ (z, s) admits a Taylor series expansion of the form

Epar
∞ (z, s) = 1 + s · log

(
2r

√∏
v|N

|η(vz)|4 · Im(z)

)
+O(s2) as s→ 0,

where η(z) is Dedekind’s eta function associated to PSL(2,Z). As stated above, it is proven
that the function

∆N (z) =

(∏
v|N

η(vz)

)`N
, (9)

where

`N = 21−r lcm

(
4, 2r−1 24

(24, σ(N))

)
and lcm(· , ·) denotes the least common multiple function, is a weight-kN = 2r−1`N modular
form on Γ0(N)+, vanishing at the cusp i∞ only. We call the function ∆N (z) defined by (9)
the Kronecker limit function on Γ0(N)+.

2.5. The algorithm

Let XN = Γ0(N)+\H have genus g. For any positive integer M , the function

Fb(z) =
∏
ν

(E(N)
mν (z))bν/(∆N (z))M , where

∑
ν

bνmν = MkN and b = (b1, . . .) (10)

is a holomorphic modular function on XN , meaning a weight-zero modular form with
polynomial growth near i∞. The q-expansion of Fb follows from substituting the q-expansions

of E
(N)
k and ∆N .

Let SM denote the set of all possible rational functions defined in (10) for all vectors b = (bν)
and m = (mν) with fixed M . In [7], we implemented the following algorithm, which we refer
to as the JST2 algorithm.

Choose a non-negative integer κ. Let M = 1 and set S = S1 ∪ S0.
(1) Form the matrix AS of coefficients from the q-expansions of all elements of S, where each

element in S is expanded along a row with each column containing the coefficient of a
power, negative, zero, or positive, of q. The expansion is recorded out to order qκ.

(2) Apply Gauss elimination to AS, thus producing a matrix BS which is in row-reduced
echelon form.

(3) Implement the following decision to determine if the algorithm is complete: if the g + 1
lowest non-trivial rows at the bottom of BS correspond to q-expansions whose leading
terms have precisely g gaps, meaning zero coefficients, in the set {q−1, . . . , q−2g}, then
the algorithm is completed. If the indicator to stop fails, then replace M by M + 1, S by
SM ∪ S, and reiterate the algorithm.
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If g = 0, then the algorithm stops if the lowest non-trivial row at the bottom of BS has a
q-expansion which begins with q−1. We also denote by MN the value of M for the group of
level N at which Step (3) shows that the algorithm is completed.

As stated in [7], the rationale for the stopping decision in Step (3) above is based on two ideas,
one factual and one hopeful. First, the Weierstrass gap theorem states that for any point P on
a compact Riemann surface there are precisely g gaps in the set of possible orders from 1 to 2g
of functions whose only pole is at P . Second, for any genus, the assumption which is hopeful
is that the function field is generated by the set of holomorphic modular functions defined
in (10), which is related to the question of whether the field of meromorphic modular forms
on Γ0(N)+ is generated by holomorphic Eisenstein series and the Kronecker limit function.
The latter assumption is not obvious and, indeed, the assumption itself is equivalent to the
statement that the rational function field on XN is generated by the holomorphic Eisenstein
series. As it turned out, for all groups Γ0(N)+ that we have studied so far, which includes all
groups of genus zero, genus one, genus two, and genus three, the algorithm stopped. Therefore,
we conclude that, in particular, the rational function field associated to all genus-zero groups
Γ0(N)+ is generated by a finite set of holomorphic Eisenstein series.

We described the algorithm with choice of arbitrary κ and g. For reasons of efficiency, we
initially selected κ to be zero, so that all coefficients for qν for ν 6 κ are included in AS. In [7],
it is shown that for each N , there is an explicitly computable κ = κN such that if a modular
form associated to Γ0(N)+ has integral coefficients in its q-expansion out to qκN , then all
remaining coefficients are also integral. The list of κN for square-free levels N provided that
Γ0(N)+ has genus zero is given in Table 1 of [7]. In the implementation of the above algorithm,
both in the present article and in [7], the value of κ was finally increased to κN .

In the present article, we implemented a slight variant of the above algorithm, which we
refer to as the JST3 algorithm. The difference between the JST2 and the JST3 algorithm is
the following action should the decision in Step (3) fail.

Replace M by M + 1, S by SM , and reiterate the algorithm.

In other words, the JST3 algorithm studies the q-expansions of the space of rational functions
of the form (10) with a fixed denominator (∆N (z))M . Should the JST3 algorithm successfully
complete, then the row in BS with q-expansion beginning with q−1 would correspond to a
formula for jN with denominator (∆N (z))M and numerator given as a polynomial in Eisenstein
series. Furthermore, any lower row in BS would correspond to a q-expansion beginning with
q0, which would yield, upon clearing the denominator, a formula for (∆N (z))M in terms of
Eisenstein series.

As we will report below, the JST3 algorithm has successfully completed for all genus-zero
groups Γ0(N)+ with square-free level N .

3. Modular forms on surfaces XN

From [1, Proposition 7, p. II-7], we immediately obtain the following formula, which relates
the number of zeros of a modular form, counted with multiplicity, with its weight and the
volume of XN .

Lemma 1. Let f be a modular form on XN of weight 2k, not identically zero. Let FN denote
the fundamental domain of Γ0(N)+ and let vz(f) denote the order of zero z of f . Then

k
Vol(XN )

2π
= vi∞(f) +

∑
e∈EN

1

ne
ve(f) +

∑
z∈FN\EN

vz(f), (11)
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where EN denotes the set of elliptic points in FN and ne is the order of the elliptic point
e ∈ EN .

Lemma 1 enables us to deduce the following proposition.

Proposition 2. Let N be a square-free number such that the surface XN has genus zero.
Then there are no weight-two holomorphic modular forms on XN .

Proof. From the tables in [3], one determines that all genus-zero groups Γ0(N)+ for a square-
free N have at most one elliptic point of order three, four, or six and a various number of
order-two elliptic points. Let eN (2) denote the number of order-two elliptic points on XN , and
let nN ∈ {3, 4, 6} denote the order of the additional elliptic point on XN . Since all surfaces
XN have one cusp and genus zero, the Gauss–Bonnet formula for the volume of the surface
XN becomes

Vol(XN )

2π
=

1

2
eN (2) +

(
1− 1

nN

)
δ(N)− 1, (12)

where δ(N) is equal to 1 if XN has an elliptic point of order different from two, and zero
otherwise.

For an arbitrary, square-free N and e | N , the elliptic element of Γ0(N)+ is of the form(
a
√
e b/

√
e

(cN)/
√
e d

√
e

)
, (13)

where a, b, c, d ∈ Z are such that |(a + d)
√
e| < 2 and ade − (bcN)/e = 1. The first condition

implies that either a+ d = 0 or |a+ d| = 1 and e ∈ {1, 2, 3}.
If |a+ d| = 1, then d = ±1− a; hence,(

a
√
e b/

√
e

(cN)/
√
e d

√
e

)2

=

(
±ae− 1 ±b
±cN ±ae− 1

)
6= ± Id

for any choice of a, b, c ∈ Z such that a(±1 − a)e − (bcN)/e = 1. Therefore, there are no
order-two elements in Γ0(N)+ such that |a+ d| = 1.

On the other hand, if a+ d = 0, then −a2e− (bcN)/e = 1; hence,(
a
√
e b/

√
e

(cN)/
√
e d

√
e

)2

=

(
−1 0
0 −1

)
.

In other words, any elliptic element (13) of Γ0(N)+ has order two if and only if a+ d = 0. Let

η =

(
a
√
e b/

√
e

(cN)/
√
e −a

√
e

)
denote an arbitrary elliptic element of Γ0(N)+ of order two, and let zη be its fixed point.
Solving the equation η(zη) = zη leads to the conclusion that (zηcN/

√
e− a

√
e)2 = −1.

Assume that f2,N is a holomorphic modular form onXN of weight two. By the transformation
rule, we have that

f2,N (zη) = f2,N (ηzη) = (−1)f2,N (zη)

and hence zη is a vanishing point of f2,N . Since this holds true for any order-two elliptic

element of Γ0(N)+, we conclude that all order-two elliptic points of XN are vanishing points
of f2,N . Applying Lemma 1 to f2,N , we arrive at the inequality

Vol(XN )

2π
>

1

2
eN (2),
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which contradicts (12). Therefore, there are no weight-two holomorphic modular forms
on XN .

Though there are no weight-two holomorphic forms on Γ0(N)+, we may construct forms
that transform almost like a weight-two form, up to an order-two character.

Proposition 3. Let N = p1 . . . pr be a square-free positive integer with N > 1. Let µ(ν)
denote the Möbius function and E2 the series defined in (5). Then the holomorphic function

E2,N (z) :=
(−1)r

ϕ(N)

∑
v|N

µ(v)vE2(vz)

satisfies the transformation rule

E2,N (γez) = µ(e)

(
c
N√
e
z + d

√
e

)2

E2,N (z)

for any

γe =

(
a
√
e b/

√
e

(cN)/
√
e d

√
e

)
∈ Γ0(N)+.

Proof. Choose and fix any e | N . For any v | N , let (e, v) denote the greatest common divisor
of e and v. Then, using the transformation formula (6) for E2, it is easy to deduce that

vE2(v(γez)) =
ev

(e, v)2

(
c
N√
e
z + d

√
e

)2

E2

(
ev

(e, v)2
z

)
+

6

πi
cN

(
c
N

e
z + d

)
.

Since N is square-free with r prime factors, it is easy to see that∑
v|N

µ(v)
6

πi
cN

(
c
N

e
z + d

)
=

6

πi
cN

(
c
N

e
z + d

) r∑
j=1

(
r

j

)
(−1)j = 0

and hence ∑
v|N

µ(v)vE2(v(γez)) =
∑
v|N

µ(v)
ev

(e, v)2

(
c
N√
e
z + d

√
e

)2

E2

(
ev

(e, v)2
z

)
.

We claim that {v : v | N} = {ev/(e, v)2 : v | N}, which is easily deduced by induction in r.
Furthermore, when e has an even number of prime factors, the parity of the number of factors
of ev/(e, v)2 remains the same as the parity of the number of factors of v, while when e has an
odd number of factors, the parity changes, meaning that µ(v) = µ(e)µ(ev/(e, v)2). Therefore,∑

v|N

µ(v)vE2(v(γez)) = µ(e)

(
c
N√
e
z + d

√
e

)2∑
v|N

µ(v)vE2(vz)

and the proof is complete.

Proposition 4. The smallest even integer kN such that there exists a weight-kN cusp form
fN vanishing only at the cusp i∞ is given by the formula

kN = lcm

(
4, 2r−1 24

(24, σ(N))

)
, (14)

where lcm denotes the least common multiple and (· , ·) stands for the greatest common divisor.
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Proof. From [7], one has that the volume of the surface XN is given by

Vol(XN ) =
πσ(N)

6 · 2r−1
, (15)

where r is the number of (distinct) prime factors of N . By combining (15) with (11), we have
that

kN ·
σ(N)

24 · 2r−1
= vi∞(fN )

and hence 2r−1(24/(24, σ(N))) | kN .
On the other hand, the cusp form fN does not vanish at order-two elliptic points. As proven

above, every surface XN for a square-free N has at least one order-two elliptic point that is a
fixed point of the Atkin–Lehner involution τN : z 7→ −1/(Nz). Since

fN (τN (i/
√
N)) = fN (i/

√
N) = (i)kN fN (i/

√
N),

it follows that 4 | kN . The smallest kN divisible by both 4 and 2r−1(24/(24, σ(N))) is given
by (14). Therefore, the proof is complete.

The above proposition, together with Theorem 16 from [7], yields the following corollary.

Corollary 5. Let `N = 21−rkN , where kN is given by (14). Then the function

∆N (z) :=

(∏
v|N

η(vz)

)`N
is the smallest-weight cusp form on XN vanishing at the cusp only. Furthermore, the order of
vanishing of ∆N at the cusp is given by

vi∞(∆N ) =
σ(N)`N

24
= kN ·

σ(N)

24 · 2r−1
.

The next proposition determines the smallest-weight k̃N for square-free N such that the space

S
(N)

k̃N
is not empty.

Proposition 6. Let N = p1 . . . pr be a square-free positive integer, where N > 1. Then the
smallest even integer k̃N such that there exists a weight-k̃N cusp form on a genus-zero surface
XN is equal to 8 for N ∈ {2, 3} and equal to 4 for all other N .

Proof. When N = 2, it is immediate that k = 8 is the smallest number such that
k · (Vol(X2)/4π) > 1. Since ∆2 is a weight-eight cusp form, the assertion is proven when
N = 2.

When N = 3, k = 6 is the smallest number such that k · (Vol(X3)/4π) > 1. However, if there
exists a weight-six cusp form on X3, this cusp form also vanishes at order-two elliptic point e2

of X3. Therefore, the right-hand side of the formula (11) is at least 3/2, while the left-hand
side of the same formula with k = 6 is equal to 1, which yields a contradiction. This shows
that eight is the smallest possible weight of cusp form on X3. An example of a weight-eight

cusp form on X3 is E
(3)
8 − (E

(3)
4 )2, so the case when N = 3 is complete.

When N > 5, we can construct the weight-four cusp form on XN , whether or not the genus
is zero, as follows. Let

E4,N (z) := (E2,N (z))2.
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From Proposition 3, it is immediate that E4,N is a weight-four holomorphic form on Γ0(N)+.
Recall that for a square-free N with r prime factors, we have the formula

ϕ(N) = (−1)r
∑
v|N

vµ(v).

The q-expansion (5) implies that E2,N (z) is normalized so that its q-expansion has a leading
coefficient equal to one. Therefore, the difference

∆̃N (z) := E
(N)
4 (z)− E4,N (z)

is a weight-four cusp form. By computing the q-expansion of E4,N , we deduce that the term
multiplying q in the q-expansion of E4,N (z) is 48/ϕ(N), while the term multiplying q in the

q-expansion of E
(N)
4 (z) is equal to 240/(1 +N2). In other words, for square-free N /∈ {2, 3},

we have the expansion

∆̃N (z) = 48

(
1

ϕ(N)
− 5

N2 + 1

)
q + . . . .

The leading coefficient is non-zero whenever N > 5 and hence ∆̃N (z) is a weight-four cusp
form on XN .

4. Expressing the Hauptmodul in terms of Eisenstein series

In this section, we discuss the main results of this article.

Theorem 7. For any square-free N > 1 such that the surface XN has genus zero, there
exist effectively computable integers MN and mN , and explicitly computable polynomials
PN (x1, . . . , xmN−1) and QN (x1, . . . , xmN−1) in mN −1 variables with integer coefficients, such
that the Hauptmodul jN can be written as

jN (z) =
PN (E

(N)
4 , . . . , E

(N)
2mN

)

QN (E
(N)
4 , . . . , E

(N)
2mN

)

and the Kronecker limit function can be written as ∆MN

N = QN (E
(N)
4 , . . . , E

(N)
2mN

).

Proof. The result follows, because for each square-free level N , provided that XN has genus
zero, the JST3 algorithm terminates in finite time. As stated, the computer code as well as
the output is available on the web site [8]. In the space below, let us describe in further detail
the output of the computational algorithm. We remind the reader that the JST2 and the
JST3 algorithm are described in § 2.5.

After Gauss elimination, one of the q-expansions has a pole of order one. This is the
Hauptmodul; see § 5 for explicit examples. Keeping track of the linear algebra, we have an exact
expression for the Hauptmodul as a linear combination of holomorphic modular functions (10)
with rational coefficients. In other words,

jN (z) =
1

(∆N (z))MN

∑
b

Cb ·
(∏

ν

(E(N)
mν (z))bν

)
,

where the sum is taken over all b = (b1, . . .) such that
∑
ν bνmν = kNMN , where MN is given

in the right-hand column of Table 1 and Cb ∈ Q.
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There is also a q-expansion which is equal to the constant 1. Again, by keeping track of the
linear algebra, we have an exact expression for the constant 1 as

1 =
1

(∆N (z))MN

∑
b

Db ·
(∏

ν

(E(N)
mν (z))bν

)
,

where the sum is taken over the same set of b as above and Db ∈ Q.
By the design of the JST3 algorithm, this exact expression can easily be solved for the

MN th power of the Kronecker limit function, showing that

jN (z) =

∑
b Cb · (

∏
ν(E

(N)
mν (z))bν )∑

bDb · (
∏
ν(E

(N)
mν (z))bν )

.

After multiplication of both numerator and denominator with the least common multiple of
the denominators of the numbers Cb and Db, we deduce the statement of the theorem.

Remark 8. The polynomials PN and QN appearing in Theorem 7 are weighted
homogeneous in the sense that there exists an integer MN such that the coefficient of the
term (x1)α1 . . . (xmN−1)αmN−1 is non-zero only if 4α1 + 6α2 + . . . + 2mNαmN−1 = kNMN ,
where kN is the weight of the Kronecker limit function ∆N .

Remark 9. Table 1 provides the data regarding the performance of the JST2 and JST3
algorithms. More precisely, the first columns of data in Table 1 list, for each level N provided
that XN has genus zero, the weight kN of the Kronecker limit function and the integer κN .
To recall, it is shown in [7] that if the q-expansion of a holomorphic modular form has integer
coefficients out to qκN , then all further coefficients are also integral. The columns of data in
Table 1 under the heading JST2 algorithm list the integer M such that the JST2 algorithm
stops, together with the number of q-expansions which are used in the Gauss elimination
algorithm as well as the order of the largest pole at i∞ amongst the rational functions
considered. The columns of data in Table 1 under the heading JST3 algorithm present similar
information.

Remark 10. Table 2 provides a list of the holomorphic Eisenstein series E
(N)
mν which appear

in the expression for the Hauptmodul jN cited in Theorem 7. For all levels, the highest-weight
Eisenstein series has weight 26.

Remark 11. Expressions that are based on the track record of the linear algebra depend on
how the base change is made through Gauss elimination. In particular, there may be linearly
dependent functions, some of which survive the Gauss elimination while others get annihilated.
We sought to express our results in terms of Eisenstein series whose weights are as small as
possible. In other words, in the Gauss elimination we prioritized the holomorphic modular
functions accordingly.

By expressing the Hauptmodul in terms of holomorphic Eisenstein series of smallest possible
weights, we were able to determine a finite list of holomorphic Eisenstein series which generates
the rational function field. LetG denote any modular form of weight k and consider the function

F (z) = G(z)(E
(N)
6 (z))n6(E

(N)
4 (z))n4/(∆N (z))nMN

with non-negative integers n6, n4, and n such that k+6n6 +4n4 = kNnMN . There is a rational
function R in one variable such that F (z) = R(jN (z)). Therefore, we conclude that G can be
written as a rational function in terms of the holomorphic Eisenstein series that are listed in
Table 2.
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Table 1. Performance of the JST2 and the JST3 algorithms. For all genus-zero groups Γ0(N)+ we
list the level N , the weight kN of the Kronecker limit function, and the value of κN in the proof of
integrality [7] (left); the level N , the number of iterations M , the number of equations, and the largest
order of pole for the JST2 algorithm (middle) and similar for the JST3 algorithm (right).

N kN κN

1 12 19

2 8 47

3 12 48

5 4 19

6 4 60

7 12 19

10 8 75

11 4 19

13 12 19

14 4 47

15 4 96

17 4 19

19 12 19

21 12 53

22 4 47

23 4 19

26 8 47

29 4 19

30 4 127

31 12 19

33 4 48

34 8 47

35 4 19

38 4 47

39 12 48

41 4 19

42 4 108

46 4 47

47 4 19

51 4 48

55 4 19

59 4 19

62 4 47

66 4 60

69 4 48

70 4 181

71 4 19

78 4 81

87 4 48

94 4 47

95 4 19

105 4 181

110 4 89

119 4 19

JST2 algorithm

N M #{eqs} Pole

1 1 5 1

2 1 3 1

3 1 5 2

5 1 2 1

6 1 2 1

7 1 5 4

10 2 10 6

11 3 8 6

13 2 26 14

14 3 8 6

15 3 8 6

17 4 15 12

19 3 114 30

21 2 26 16

22 4 15 12

23 5 27 20

26 3 31 21

29 6 48 30

30 4 15 12

31 4 434 64

33 5 27 20

34 3 31 27

35 5 27 20

38 5 27 25

39 3 114 42

41 7 82 49

42 5 27 20

46 6 48 36

47 8 137 64

51 6 48 36

55 6 48 36

59 9 225 90

62 7 82 56

66 6 48 36

69 7 82 56

70 6 48 36

71 10 362 120

78 6 48 42

87 7 82 70

94 8 137 96

95 7 82 70

105 7 82 56

110 7 82 63

119 8 137 96

JST3 algorithm

N MN #{eqs} Pole

1 1 4 1

2 1 2 1

3 1 4 2

5 3 4 3

6 3 4 3

7 2 21 8

10 2 7 6

11 9 88 18

13 3 88 21

14 6 21 12

15 5 12 10

17 9 88 27

19 4 320 40

21 2 21 16

22 6 21 18

23 15 1 039 60

26 4 55 28

29 15 1 039 75

30 6 21 18

31 5 1 039 80

33 8 55 32

34 4 55 36

35 7 34 28

38 10 137 50

39 3 88 42

41 21 8 591 147

42 7 34 28

46 14 708 84

47 27 56 224 216

51 11 210 66

55 8 55 48

59 33 310 962 330

62 18 3 094 144

66 8 55 48

69 14 708 112

70 8 55 48

71 39 1512 301 468

78 9 88 63

87 17 2 167 170

94 26 41 646 312

95 11 210 110

105 9 88 72

110 9 88 81

119 10 137 120
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Table 2. Finite sets of Eisenstein series which include the generators of the holomorphic Eisenstein
series on groups Γ0(N)+ of genus zero. Listed are level N and finite set.

N Finite set

1 E
(1)
4 , E

(1)
6

2 E
(2)
4 , E

(2)
6 , E

(2)
8

3 E
(3)
4 , E

(3)
6 , E

(3)
12

5 E
(5)
4 , E

(5)
6 , E

(5)
8 , E

(5)
12

6 E
(6)
4 , E

(6)
6 , E

(6)
8 , E

(6)
12

7 E
(7)
4 , E

(7)
6 , E

(7)
8 , E

(7)
10 , E

(7)
12

10 E
(10)
4 , E

(10)
6 , E

(10)
8 , E

(10)
10 , E

(10)
12 , E

(10)
16

11 E
(11)
4 , E

(11)
6 , E

(11)
8 , E

(11)
10 , E

(11)
12

13 E
(13)
4 , E

(13)
6 , E

(13)
8 , E

(13)
10 , E

(13)
12

14 E
(14)
4 , E

(14)
6 , E

(14)
8 , E

(14)
10 , E

(14)
12

15 E
(15)
4 , E

(15)
6 , E

(15)
8 , E

(15)
10 , E

(15)
12 , E

(15)
14 , E

(15)
16

17 E
(17)
4 , E

(17)
6 , E

(17)
8 , E

(17)
10 , E

(17)
12

19 E
(19)
4 , E

(19)
6 , E

(19)
8 , E

(19)
10 , E

(19)
12

21 E
(21)
4 , E

(21)
6 , E

(21)
8 , E

(21)
10 , E

(21)
12 , E

(21)
14 , E

(21)
16

22 E
(22)
4 , E

(22)
6 , E

(22)
8 , E

(22)
10 , E

(22)
12 , E

(22)
14 , E

(22)
16 , E

(22)
18

23 E
(23)
4 , E

(23)
6 , E

(23)
8 , E

(23)
10 , E

(23)
12

26 E
(26)
4 , E

(26)
6 , E

(26)
8 , E

(26)
10 , E

(26)
12 , E

(26)
14

29 E
(29)
4 , E

(29)
6 , E

(29)
8 , E

(29)
10 , E

(29)
12

30 E
(30)
4 , E

(30)
6 , E

(30)
8 , E

(30)
10 , E

(30)
12 , E

(30)
14 , E

(30)
16 , E

(30)
18

31 E
(31)
4 , E

(31)
6 , E

(31)
8 , E

(31)
10 , E

(31)
12

33 E
(33)
4 , E

(33)
6 , E

(33)
8 , E

(33)
10 , E

(33)
12 , E

(33)
14

34 E
(34)
4 , E

(34)
6 , E

(34)
8 , E

(34)
10 , E

(34)
12 , E

(34)
14 , E

(34)
16

35 E
(35)
4 , E

(35)
6 , E

(35)
8 , E

(35)
10 , E

(35)
12 , E

(35)
14 , E

(35)
16 , E

(35)
18

38 E
(38)
4 , E

(38)
6 , E

(38)
8 , E

(38)
10 , E

(38)
12 , E

(38)
14

39 E
(39)
4 , E

(39)
6 , E

(39)
8 , E

(39)
10 , E

(39)
12 , E

(39)
14

41 E
(41)
4 , E

(41)
6 , E

(41)
8 , E

(41)
10 , E

(41)
12

42 E
(42)
4 , E

(42)
6 , E

(42)
8 , E

(42)
10 , E

(42)
12 , E

(42)
14 , E

(42)
16 , E

(42)
18

46 E
(46)
4 , E

(46)
6 , E

(46)
8 , E

(46)
10 , E

(46)
12

47 E
(47)
4 , E

(47)
6 , E

(47)
8 , E

(47)
10 , E

(47)
12

51 E
(51)
4 , E

(51)
6 , E

(51)
8 , E

(51)
10 , E

(51)
12 , E

(51)
14

55 E
(55)
4 , E

(55)
6 , E

(55)
8 , E

(55)
10 , E

(55)
12 , E

(55)
14 , E

(55)
16 , E

(55)
18 , E

(55)
20 , E

(55)
22

59 E
(59)
4 , E

(59)
6 , E

(59)
8 , E

(59)
10 , E

(59)
12

62 E
(62)
4 , E

(62)
6 , E

(62)
8 , E

(62)
10 , E

(62)
12

66 E
(66)
4 , E

(66)
6 , E

(66)
8 , E

(66)
10 , E

(66)
12 , E

(66)
14 , E

(66)
16 , E

(66)
18 , E

(66)
20 , E

(66)
22

69 E
(69)
4 , E

(69)
6 , E

(69)
8 , E

(69)
10 , E

(69)
12

70 E
(70)
4 , E

(70)
6 , E

(70)
8 , E

(70)
10 , E

(70)
12 , E

(70)
14 , E

(70)
16 , E

(70)
18 , E

(70)
20 , E

(70)
22

71 E
(71)
4 , E

(71)
6 , E

(71)
8 , E

(71)
10 , E

(71)
12

78 E
(78)
4 , E

(78)
6 , E

(78)
8 , E

(78)
10 , E

(78)
12 , E

(78)
14 , E

(78)
16 , E

(78)
18

87 E
(87)
4 , E

(87)
6 , E

(87)
8 , E

(87)
10 , E

(87)
12

94 E
(94)
4 , E

(94)
6 , E

(94)
8 , E

(94)
10 , E

(94)
12

95 E
(95)
4 , E

(95)
6 , E

(95)
8 , E

(95)
10 , E

(95)
12 , E

(95)
14 , E

(95)
16

105 E
(105)
4 , E

(105)
6 , E

(105)
8 , E

(105)
10 , E

(105)
12 , E

(105)
14 , E

(105)
16 , E

(105)
18 , E

(105)
20

110 E
(110)
4 , E

(110)
6 , E

(110)
8 , E

(110)
10 , E

(110)
12 , E

(110)
14 , E

(110)
16 , E

(110)
18 , E

(110)
20 , E

(110)
22 , E

(110)
24 , E

(110)
26

119 E
(119)
4 , E

(119)
6 , E

(119)
8 , E

(119)
10 , E

(119)
12 , E

(119)
14 , E

(119)
16 , E

(119)
18 , E

(119)
20 , E

(119)
22 , E

(119)
24
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Remark 12. We note that the sets in Table 2 are not necessarily minimal sets of generators.
A specific example in the case N = 2 is discussed below. As stated in the introduction, our
goal was to determine a set of generators of the function field. Indeed, it seems to be a difficult
problem to determine the structure of the ring of modular forms in any setting when MN > 1,
meaning when there is an expression for the MN th power of the Kronecker limit function in
terms of holomorphic Eisenstein series yet no apparent expression for any smaller power of the
Kronecker limit function.

5. Examples

In this section, we will present a number of specific formulae for various levels. It seems as if
each level has its own idiosyncratic characteristics, so we choose various examples, which, in
our opinion, depict some of the most comprehensible and quantifiable nuances.

5.1. N = 2

We will cite specific results here, referring the reader to the article [9] for additional information
and proofs. The Kronecker limit function can be written as

∆2(z) = 17
1152 (E

(2)
4 (z))2 − 17

1152E
(2)
8 (z). (16)

In addition, one has that

j2(z)∆2(z) = − 77
144 (E

(2)
4 (z))2 + 221

144E
(2)
8 (z).

By arguing as in [10], one can prove a dimension formula for the space of automorphic forms
of weight 2k, namely that

dimT
(2)
2k =


⌊
k

4

⌋
if k is congruent to 1 modulo 4, k > 0,⌊

k

4

⌋
+ 1 if k is not congruent to 1 modulo 4, k > 0.

(17)

The space T
(2)
2k is generated by the set of monomials (E

(2)
4 (z))l(E

(2)
6 (z))m(E

(2)
8 (z))n, where

l,m, n are non-negative integers such that 4l + 6m + 8n = 2k. The dimension formula (17)

yields some interesting number-theoretical formulae. For example, since dimT
(2)
10 = 1, we see

that E
(2)
10 (z) = E

(2)
6 (z)E

(2)
4 (z). By equating the q-expansions (8) for k ∈ {2, 3, 5}, one obtains

the following summation formula for the generalized sum of divisors:

A
(2)
9 (n) = 336

n−1∑
j=1

A
(2)
3 (j)A

(2)
5 (n− j) + 7A

(2)
5 (n)− 6A

(2)
3 (n),

where A
(2)
2k−1(n) = σ2k−1(n)+2kδ(n)σ2k−1(n/2) for k = 1, 2, . . . and δ(n) = 1 for even positive

integers n and δ(n) = 0, otherwise.
Analogously, using formula (16), the q-expansion (8), and the q-expansion for the delta

function, ∆(z) =
∑∞
n=1 τ(n)qn, where τ(n) is the Ramanujan function, one obtains relations

involving τ , σ3, and σ7.
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5.2. N = 3

As with the case N = 2, we refer the reader to [9] for additional information and proofs. The
Kronecker limit function vanishes to order two at i∞ and has weight twelve. The smallest-
weight cusp form has weight eight, but it vanishes to order one at i∞, and, consequently, it
vanishes elsewhere. The Kronecker limit function can be written as

∆3(z) = − 25
3456 (E

(3)
4 (z))3 − 1049

72900 (E
(3)
6 (z))2 + 50443

2332800E
(3)
12 (z). (18)

and the Hauptmodul is given by

j3(z)∆3(z) = 541
1728 (E

(3)
4 (z))3 + 14461

24300 (E
(3)
6 (z))2 − 353101

388800E
(3)
12 (z) (19)

The dimension formula for the space of automorphic forms of weight 2k is

dimT
(3)
2k =


⌊
k

3

⌋
if k is congruent to 1 or 3 modulo 6, k > 0,⌊

k

3

⌋
+ 1 if k is not congruent to 1 or 3 modulo 6, k > 0.

We note that the forms E
(3)
8 (z) − (E

(3)
4 (z))2 and E

(3)
10 (z) − E(3)

4 (z)E
(3)
6 (z) are cusp forms

which vanish at elliptic points on X3; see Appendix B of [9]. In other words, there are cusp
forms of weight smaller than the weight of the Kronecker limit function, but these forms
necessarily vanish at some point in the interior of X3, whereas the Kronecker limit function
vanishes at i∞ only.

Finally, let us explain why E
(3)
8 does not appear in Table 2. The information in Appendix B

of [9] describes the zeros of small-weight holomorphic forms. In particular, we conclude from
the information provided that

E
(3)
8 (z)

E
(3)
8 (z)− (E

(3)
4 (z))2

= c1j3(z) + c2

for some explicitly computable constants c1 and c2. From this, we get that

E
(3)
8 (z) = (E

(3)
4 (z))2 c1j3(z) + c2

c1j3(z) + c2 − 1
. (20)

When combining (19), (18), and (20), we get a formula which expresses E
(3)
8 as a rational

function involving E
(3)
4 , E

(3)
6 , and E

(3)
12 , as asserted by Table 2.

5.3. N = 5

In the case N = 5, the surface X5 has genus zero, three order-two elliptic elements e1 = i/
√

5,
e2 = 2/5 + i/5, e3 = 1/2 + i/(2

√
5), and one cusp; hence, Volhyp(X5) = π. Its Kronecker limit

function has weight four, which is minimal, and the function vanishes at i∞ to order one,
which is also minimal. As a result, we have that the mapping f 7→ ∆5f is an isometry between

the spaces T
(5)
2k−4 and S

(5)
2k ; therefore, we arrive at the dimension formula

dimT
(2)
2k =


⌊
k

2

⌋
if k is congruent to 1 modulo 2, k > 0,⌊

k

2

⌋
+ 1 if k is not congruent to 0 modulo 2, k > 0.

https://doi.org/10.1112/S1461157016000425 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000425


376 j. jorgenson, l. smajlović and h. then

The space T
(5)
2k is generated by the set of monomials (E

(5)
4 (z))l(∆5(z))m(E

(5)
6 (z))n, where

l,m, n are non-negative integers such that 4l + 4m+ 6n = 2k. From the output of the JST2
algorithm, we have that

j5(z)∆5(z) = E
(5)
4 (z)− 172

13 ∆5(z).

The analysis of ∆3
5 differs between the JST2 and the JST3 algorithms. From JST2, we have

that ∆3
5 is a rational function in the holomorphic Eisenstein series of weights four, six, eight,

and twelve. From JST3, we have that ∆3
5 is a polynomial in the holomorphic Eisenstein series

of weights four, six, eight, and twelve. Namely, from the output of the JST3 algorithm, we
have that

j5(z)(∆5(z))3 = 10330419229
11016000000 (E

(5)
4 (z))3 + 36659

2448000 (E
(5)
6 (z))2

− 28493266087
11016000000E

(5)
8 (z)E

(5)
4 (z) + 2999646893

1836000000E
(5)
12 (z)

and

(∆5(z))3 =− 9383387
162000000 (E

(5)
4 (z))3 − 13

9000 (E
(5)
6 (z))2

+ 3226717
20250000E

(5)
8 (z)E

(5)
4 (z)− 5398783

54000000E
(5)
12 (z).

5.4. N = 6

Topologically, X5 and X6 are identical, with the same number of cusps, elliptic points of
order two, and, consequently, the same hyperbolic volume. The JST2 and JST3 algorithms
performed similarly in both cases, as one can see from Tables 1 and 2. All comments above
regarding the holomorphic function theory for X5 hold for X6. However, as shown in [6], the
analytic function theories of X5 and X6 are different. Specifically, the counting functions for
the analytic Maass forms, when ordered by their Laplacian eigenvalues, are shown to be equal
in their leading term but unequal in lower order terms.

5.5. N = 17

As we stated in the introduction, as N becomes larger, the formulae become massive. In our
last example for N = 17, the Kronecker limit function has weight four and vanishes at i∞ to
order four. From the JST3 algorithm, we have the following formulae:

j17(z)
(
∆17(z)

)9
= 81682801889356820001790224970058471917613108127362192461613220533

3269846855773492420944242299705431901325975126578932604974661632

(
E

(17)
4 (z)

)9
− 57998022455299820152689336251300228068357304045275286805301

1197457521190948626327504142387996791894290229520024731648

(
E

(17)
6 (z)

)2(
E

(17)
4 (z)

)6
+ 40497436515338798408532045523225489025965457561330556316291

1852774239194857326466652706713276353684752025138495488000

(
E

(17)
6 (z)

)4(
E

(17)
4 (z)

)3
− 3758480257690225061233693208729793594924453574315163

550341367907988517797569501748755788899740024832000

(
E

(17)
6 (z)

)6
− 19414695740146736017085565287911573267947533788487530546931336997391

235020242758719767755367415291327917907804462222860780982553804800
E

(17)
8 (z)

(
E

(17)
4 (z)

)7
+ 87392429573930662513617849766871793131053840056808626436739811257

429213680251880648249264766037197600094609654143583864750080000
E

(17)
8 (z)

(
E

(17)
6 (z)

)2(
E

(17)
4 (z)

)4
− 5203291809002722923420727059042670529678338299681100572348497

159222786180808051493227966983172186644783377160339456000000
E

(17)
8 (z)

(
E

(17)
6 (z)

)4
E

(17)
4 (z)

− 3408021881707620602850044141317857445104537752516243513916285865231
546558704090045971524110268119367250948382470285722746471055360000

(
E

(17)
8 (z)

)2(
E

(17)
4 (z)

)5
− 16613503534705813629198888518084937494696284987808069450102921171

95380817833751255166503281341599466687691034254129747722240000

(
E

(17)
8 (z)

)2(
E

(17)
6 (z)

)2(
E

(17)
4 (z)

)2
+ 2084310764069464266375452181379302123943671896630614730410490282708941

24481275287366642474517439092846658115396298148214664685682688000000

(
E

(17)
8 (z)

)3(
E

(17)
4 (z)

)3
− 9922136522478992021059089148544040599546174236808342061149389

600269903901646354129469435526559143650833331894479749120000

(
E

(17)
8 (z)

)3(
E

(17)
6 (z)

)2
+ 39971724261482388723963548784518805970985444209456555554807081177551

580296895700542636433005963682291155327912252402125385142108160000

(
E

(17)
8 (z)

)4
E

(17)
4 (z)

− 12179813594881425731721530954876395006064827564865712237231709007
111595556865488968544808839169671376024598510077331804835020800

E
(17)
10 (z)E

(17)
6 (z)

(
E

(17)
4 (z)

)5
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− 1625258630148098158844608861059428762679867410760523654188493
305707749467151458866997696607690598357984084147851755520000

E
(17)
10 (z)

(
E

(17)
6 (z)

)3(
E

(17)
4 (z)

)2
+ 201956165169824936446796453214912198922237546648448042931247350643

697472230409306053405055244810446100153740687983323780218880000
E

(17)
10 (z)E

(17)
8 (z)E

(17)
6 (z)

(
E

(17)
4 (z)

)3
+ 2813492092804509777019550484166164259166371672470004179865987

110819059181842403839286665020287841904769230503596261376000
E

(17)
10 (z)E

(17)
8 (z)

(
E

(17)
6 (z)

)3
− 298150566267220507427939657298379519874877536521040468383984890437

2789888921637224213620220979241784400614962751933295120875520000
E

(17)
10 (z)

(
E

(17)
8 (z)

)2
E

(17)
6 (z)E

(17)
4 (z)

+ 270142921637107712433606444209937936587102913556256973385136064101
1339146682385867622537706070036056512295182120927981658020249600

(
E

(17)
10 (z)

)2(
E

(17)
4 (z)

)4
− 118581244701243654625492701946386671875131600350921745366238181

1324733581024322988423656685299992592884597697974024273920000

(
E

(17)
10 (z)

)2(
E

(17)
6 (z)

)2
E

(17)
4 (z)

− 622123658423176240663440801764445330920253599234807877389715511211
1287641040755641944747794298111592800283828962430751594250240000

(
E

(17)
10 (z)

)2
E

(17)
8 (z)

(
E

(17)
4 (z)

)2
− 41865928593946018666000515901728601665582738769261235242020892533923

970881344729754026339836900776140971414007037672786702064680960000

(
E

(17)
10 (z)

)2(
E

(17)
8 (z)

)2
+ 226293023118065631604956427915797705760362816981994085929537

2676229456614793916007387243030288066433530702977826816000

(
E

(17)
10 (z)

)3
E

(17)
6 (z)

+ 65939988441096018663885334259995469677
1934740380512325216435446698160947200

E
(17)
12 (z)

(
E

(17)
4 (z)

)6
− 47508694350054116027131578232203571279280588142292406574968917

496775092884121120658871256987497222331724136740259102720000
E

(17)
12 (z)

(
E

(17)
6 (z)

)2(
E

(17)
4 (z)

)3
+ 83239130800439493554048989758304142656207424379566457431

2818127349459872237687554172747939125917634265088000000
E

(17)
12 (z)

(
E

(17)
6 (z)

)4
+ 18888098569562683617871650219704377045625972851708713833077441

99355018576824224131774251397499444466344827348051820544000
E

(17)
12 (z)E

(17)
10 (z)E

(17)
6 (z)

(
E

(17)
4 (z)

)2
− 6458100747185096513157918629463271052359

48368509512808130410886167454023680000

(
E

(17)
12 (z)

)2(
E

(17)
4 (z)

)3
+ 13456181814083822984196529705199819074619

77183791775757654910988565086208000000

(
E

(17)
12 (z)

)3
and(

∆17(z)
)9

= − 4410175152266863630497017095287573799108101287320169
513269785149806673002504728644869309011527884341248

(
E

(17)
4 (z)

)9
+ 19865215328281078919219868581830673116116281279861

1077982783479943155001973186393454060492470353920

(
E

(17)
6 (z)

)2(
E

(17)
4 (z)

)6
− 1147994099850642662275857201554136108251932243

116332425049635581779544719243012827040972800

(
E

(17)
6 (z)

)4(
E

(17)
4 (z)

)3
+ 257163348099153057405937570593213576401

86387408378599422207040509547266048000

(
E

(17)
6 (z)

)6
+ 4110275602561195487616512760454051197916582070385787933

147565063230569418488220109485399926340814266748108800
E

(17)
8 (z)

(
E

(17)
4 (z)

)7
− 2455783752311086170178917777522781426586892700694851

33686961983748223593811662074795439390389698560000
E

(17)
8 (z)

(
E

(17)
6 (z)

)2(
E

(17)
4 (z)

)4
+ 1581775255838347728745765778157179068844765441801

99973177777030578091796243099464148238336000000
E

(17)
8 (z)

(
E

(17)
6 (z)

)4
E

(17)
4 (z)

+ 6518162027197225998646914560331274207300504121132929847
1844563290382117731102751368567499079260178334351360000

(
E

(17)
8 (z)

)2(
E

(17)
4 (z)

)5
+ 877428475040946870505912480572673877165899233742103

14971983103888099375027405366575750840173199360000

(
E

(17)
8 (z)

)2(
E

(17)
6 (z)

)2(
E

(17)
4 (z)

)2
− 905386954382815429576749294608296584568282296576830392199

30742721506368628851712522809458317987669638905856000000

(
E

(17)
8 (z)

)3(
E

(17)
4 (z)

)3
+ 207452833460189538372130707619778910743078771025457

36182292501062906822982896302558064530418565120000

(
E

(17)
8 (z)

)3(
E

(17)
6 (z)

)2
− 6765708051219903828398888390867858547193923080811280631

273268635612165589793000202750740604334841234718720000

(
E

(17)
8 (z)

)4
E

(17)
4 (z)

+ 7025876804004356240055790621469114807967838822691
194096623064255692728887138824306132775652556800

E
(17)
10 (z)E

(17)
6 (z)

(
E

(17)
4 (z)

)5
+ 203944326653207551761076174261325691779672537

265856650044181038692865355610763385896960000
E

(17)
10 (z)

(
E

(17)
6 (z)

)3(
E

(17)
4 (z)

)2
− 88050066607840362983543089832425254378757106875786733

875861011577453813439103213944681424150132162560000
E

(17)
10 (z)E

(17)
8 (z)E

(17)
6 (z)

(
E

(17)
4 (z)

)3
− 114754891200905341203611097297729345611512888589

13916266346562656470378037039445409434776371200
E

(17)
10 (z)E

(17)
8 (z)

(
E

(17)
6 (z)

)3
+ 66394449571915938902069992307694226884439057160324951

1751722023154907626878206427889362848300264325120000
E

(17)
10 (z)

(
E

(17)
8 (z)

)2
E

(17)
6 (z)E

(17)
4 (z)

− 3664823227867792880990102284616506270153441589203601
52551660694647228806346192836680885449007929753600

(
E

(17)
10 (z)

)2(
E

(17)
4 (z)

)4
+ 14427551517079169370308214911137713786234600256489

415888419552447204861872371293770856671477760000

(
E

(17)
10 (z)

)2(
E

(17)
6 (z)

)2
E

(17)
4 (z)

+ 34114607946828890598140117698005174033430842408608771
202121771902489341562869972448772636342338191360000

(
E

(17)
10 (z)

)2
E

(17)
8 (z)

(
E

(17)
4 (z)

)2
+ 1186277940138861135501685541633367245343342399481395343

76199908007238481769201979613187283901061498142720000

(
E

(17)
10 (z)

)2(
E

(17)
8 (z)

)2
− 2240074672005345691936094582673021223667749558747

73095540406187690551480598591026392990744576000

(
E

(17)
10 (z)

)3
E

(17)
6 (z)
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− 473713406463236803998887
40792493008974879129600

E
(17)
12 (z)

(
E

(17)
4 (z)

)6
+ 187627181944563944553278965376532704223825410987

5030908301037667800748456104360131330703360000
E

(17)
12 (z)

(
E

(17)
6 (z)

)2(
E

(17)
4 (z)

)3
− 3176432730003963047610699437833910664552631

221181554210724382719750270133948416000000
E

(17)
12 (z)

(
E

(17)
6 (z)

)4
− 2144787933823513840784295072436611609578065848101

31191631466433540364640427847032814250360832000
E

(17)
12 (z)E

(17)
10 (z)E

(17)
6 (z)

(
E

(17)
4 (z)

)2
+ 46882982116711758510391631

1019812325224371978240000

(
E

(17)
12 (z)

)2(
E

(17)
4 (z)

)3
− 4639965815125172171338200503

76485924391827898368000000

(
E

(17)
12 (z)

)3
.

Using the exact identity of the Hauptmodul in terms of Eisenstein series, we can read off

that E
(17)
4 (z), E

(17)
6 (z), E

(17)
8 (z), E

(17)
10 (z), and E

(17)
12 (z) generate the holomorphic Eisenstein

series E
(17)
k (z) for all even k > 4.

6. Concluding remarks

6.1. Known relations for Hauptmoduli

In [2], the authors computed expressions for jN , up to an additive constant. The authors call
their function tN . The data from [2] relates to genus-zero groups Γ0(N)+ with square-free level
N as given in Table 3, using the Dedekind eta function together with θ(a, b, c), which is the
theta function defined by the series

θ(a, b, c) =
∑

(x,y)∈Z2

q(ax2+bxy+cy2)/2.

Additionally, one has, in the notation of [2], the functions θx(a, b, c) and θy(a, b, c), which
are defined by the same series which defines θ(a, b, c) except that one restricts the sum to odd
values of x and y, respectively. By combining our results with the relations for the Hauptmoduli
in Table 3, it is possible to deduce many potentially interesting relations between classical
Eisenstein series Ek(z), eta functions, and theta functions.

For example, let us take N = 17. In the notation of Theorem 7, one has M17 = 9 and the
Hauptmodul j17(z) is given as a rational function of the form

j17(z) =
P17(E

(17)
4 , E

(17)
6 , E

(17)
8 , E

(17)
10 , E

(17)
12 )

Q17(E
(17)
4 , E

(17)
6 , E

(17)
8 , E

(17)
10 , E

(17)
12 )

,

where P17 and Q17 denote polynomials of degree nine in five variables with integer coefficients,
where coefficients are non-zero only if the sum of products of weights and corresponding degrees
is equal to 36.

In a sense, this result is a direct analogue of formula (2) expressing the classical j-invariant
for PSL(2,Z) in terms of classical holomorphic Eisenstein series.

Furthermore, formula (7) implies that the Eisenstein series E
(17)
2k for k = 2, 3, 4, 5, 6 may be

expressed as a linear combination of dilations of the series E2k; hence, the function(
θx( 1

2 , 0,
17
2 )− θy( 1

2 , 0,
17
2 )

2η(z)η(17z)

)2

is a rational function in the Eisenstein series E4(z), E4(17z), E6(z), E6(17z), E8(z), E8(17z),
E10(z), E10(17z), E12(z), and E12(17z) with integer coefficients.

Proceeding in a similar manner, for example when N = 29 or N = 47, we obtain other
relations between theta functions, eta functions, and holomorphic Eisenstein series E2k.
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Table 3. Known expressions of the Hauptmoduli jN for the genus-zero groups Γ0(N)+.

N Formula for tN = jN + const.

2 t2 =
( η(z)
η(2z)

)24 + 4096
( η(2z)
η(z)

)24
3 t3 =

( η(z)
η(3z)

)12 + 729
( η(3z)
η(z)

)12
5 t5 =

( η(z)
η(5z)

)6 + 125
( η(5z)
η(z)

)6
6 t6 =

( η(z)η(2z)
η(3z)η(6z)

)4 + 81
( η(3z)η(6z)
η(z)η(2z)

)4 =
( η(z)η(3z)
η(2z)η(6z)

)6 + 64
( η(2z)η(6z)
η(z)η(3z)

)6 + c1

=
( η(2z)η(3z)
η(z)η(6z)

)12 +
( η(z)η(6z)
η(2z)η(3z)

)12 + c2

7 t7 =
( η(z)
η(7z)

)4 + 49
( η(7z)
η(z)

)4
10 t10 =

( η(z)η(2z)
η(5z)η(10z)

)2 + 25
( η(5z)η(10z)
η(z)η(2z)

)2 =
( η(z)η(5z)
η(2z)η(10z)

)4 + 16
( η(2z)η(10z)
η(z)η(5z)

)4 + c1

=
( η(2z)η(5z)
η(z)η(10z)

)6 +
( η(z)η(10z)
η(2z)η(5z)

)6 + c2

11 t11 =
( θ(2,2,6)
η(z)η(11z)

)2 =
( η(z)η(11z)
η(2z)η(22z)

)2 + 16
( η(2z)η(22z)
η(z)η(11z)

)2 + 16
( η(2z)η(22z)
η(z)η(11z)

)4 + c1

13 t13 =
( η(z)
η(13z)

)2 + 13
( η(13z)
η(z)

)2
14 t14 =

( η(z)η(7z)
η(2z)η(14z)

)3 + 8
( η(2z)η(14z)
η(z)η(7z)

)3 =
( η(2z)η(7z)
η(z)η(14z)

)4 +
( η(z)η(14z)
η(2z)η(7z)

)4 + c1

15 t15 =
( η(z)η(5z)
η(3z)η(15z)

)2 + 9
( η(3z)η(15z)
η(z)η(5z)

)2 =
( η(3z)η(5z)
η(z)η(15z)

)3 +
( η(z)η(15z)
η(3z)η(5z)

)3 + c1

17 t17 =
( θx( 1

2
,0, 17

2
)−θy( 1

2
,0, 17

2
)

2η(z)η(17z)

)2
19 t19 =

( 2θ(2,2,10)
θ(1,2,20)−θ(4,2,5)

)2
21 t21 =

( η(z)η(3z)
η(7z)η(21z)

)
+ 7
( η(7z)η(21z)
η(z)η(3z)

)
=
( η(3z)η(7z)
η(z)η(21z)

)2 +
( η(z)η(21z)
η(3z)η(7z)

)2 + c1

22 t22 =
( η(z)η(11z)
η(2z)η(22z)

)2 + 4
( η(2z)η(22)
η(z)η(11z)

)2
23 t23 =

( θ(2,2,12)
η(z)η(23z)

)
=
( η(z)η(23z)
η(2z)η(46z)

)
+ 4
( η(2z)η(46z)
η(z)η(23z)

)
+ 4
( η(2z)η(46z)
η(z)η(23z)

)2 + c1

26 t26 =
( η(2z)η(13z)
η(z)η(26z)

)2 +
( η(z)η(26z)
η(2z)η(13z)

)2
29 t29 =

θx( 1
2
,0, 29

2
)−θy( 1

2
,0, 29

2
)

2η(z)η(29z)

30 t30 =
( η(z)η(6z)η(10z)η(15z)
η(2z)η(3z)η(5z)η(30z)

)3 +
( η(z)η(6z)η(10z)η(15z)
η(2z)η(3z)η(5z)η(30z)

)−3

=
( η(z)η(3z)η(5z)η(15z)
η(2z)η(6z)η(10z)η(30z)

)
+ 4
( η(z)η(3z)η(5z)η(15z)
η(2z)η(6z)η(10z)η(30z)

)−1 + c1

30 t30 =
( η(3z)η(5z)η(6z)η(10z)
η(z)η(2z)η(15z)η(30z)

)
+
( η(3z)η(5z)η(6z)η(10z)
η(z)η(2z)η(15z)η(30z)

)−1 + c2

=
( η(2z)η(3z)η(10z)η(15z)
η(z)η(5z)η(6z)η(30z)

)2 +
( η(2z)η(3z)η(10z)η(15z)
η(z)η(5z)η(6z)η(30z)

)−2 + c3

31 t31 =
( θ(2,2,16)−θ(4,2,8)

2η(z)η(31z)

)3
33 t33 =

( η(z)η(11z)
η(3z)η(33z)

)
+ 3
( η(z)η(11z)
η(3z)η(33z)

)−1

34 t34 is deduced from the formula t234(z) + t34(z)− 6 = j17(z) + j17(2z)

35 t35 =
( η(5z)η(7z)
η(z)η(35z)

)
−
( η(5z)η(7z)
η(z)η(35z)

)−1

38 t38 is deduced from the formula t238(z) + t38(z)− 4 = j19(z) + j19(2z)

39 t39 =
( η(3z)η(13z)
η(z)η(39z)

)
+
( η(3z)η(13z)
η(z)η(39z)

)−1

41 t41 =
θx( 3

2
,2, 15

2
)−θy( 3

2
,2, 15

2
)

2η(z)η(41z)

42 t42 =
( η(z)η(6z)η(14z)η(21z)
η(2z)η(3z)η(7z)η(42z)

)2 +
( η(z)η(6z)η(14z)η(21z)
η(2z)η(3z)η(7z)η(42z)

)−2

=
( η(2z)η(6z)η(7z)η(21z)
η(z)η(3z)η(14z)η(42z)

)
+
( η(2z)η(6z)η(7z)η(21z)
η(z)η(3z)η(14z)η(42z)

)−1 + c1
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Table 3. (Continued.)

N Formula for tN = jN + const.

46 t46 =
( η(z)η(23z)
η(2z)η(46z)

)
+ 2
( η(z)η(23z)
η(2z)η(46z)

)−1

47 t47 =
θ(2,2,24)−θ(4,2,12)

2η(z)η(47z)

51 t51 is deduced from the formula t351(z)− 2t51(z)− 6 = j17(z) + j17(3z)

55 t55 is deduced from the formula t555(z)− 10t355(z)− 5t255(z) + 16t55(z) = j11(z) + j11(5z)

59 t59 =
2θ(6,2,10)

θ(2,2,30)−θ(6,2,10)

62 t62 is deduced from the formula t262(z) + t62(z)− 2 = j31(z) + j31(2z)

66 t66 =
( η(2z)η(3z)η(22z)η(33z)
η(z)η(6z)η(11z)η(66z)

)
+
( η(2z)η(3z)η(22z)η(33z)
η(z)η(6z)η(11z)η(66z)

)−1

69 t69 is deduced from the formula t369(z)− 2t69(z)− 3 = j23(z) + j23(3z)

70 t70 =
( η(z)η(10z)η(14z)η(35z)
η(2z)η(5z)η(7z)η(70z)

)
+
( η(z)η(10z)η(14z)η(35z)
η(2z)η(5z)η(7z)η(70z)

)−1

71 t71 =
θ(4,2,18)−θ(6,2,12)

2η(z)η(71z)

78 t78 =
( η(z)η(6z)η(26z)η(39z)
η(2z)η(3z)η(13z)η(78z)

)
+
( η(z)η(6z)η(26z)η(39z)
η(2z)η(3z)η(13z)η(78z)

)−1

87 t87 is deduced from the formula t387(z) + t87(z)− 3 = j29(z) + j29(3z)

94 t94 is deduced from the formula t294(z) + t94(z)− 2 = j47(z) + j47(2z)

95 t95 is deduced from the formula t595(z)− 3t395(z) + t95(z)− 2 = j19(z) + j19(5z)

105 t105 is deduced from the formula t3105(z)− 2t105(z)− 3 = j35(z) + j35(3z)

110 t110 is deduced from the formula t2110(z) + t110(z) = j55(z) + j55(2z)

119 t119 is deduced from the formula t7119(z)− 7t3119(z)− 7t2119(z)− 6t119(z)− 7 = j17(z) + j17(7z)

6.2. Groups Γ0(N)+ of higher genus

There are 38 different square-free levels N such that XN has genus one. Similarly, there are
39 and 31 different square-free N such that XN has genus two and three, respectively. In
[7], the authors studied the q-expansions for the corresponding function fields, proving that
each function field admits two generators with various properties, such as minimal pole at
infinity and integer coefficients. In particular, a polynomial relation was computed for each
pair of generators, thus giving an algebraic equation for the corresponding projective curve. In
future studies, we plan to investigate the various properties of these elliptic (genus-one) and
hyperelliptic (genus-two) curves. There are a vast number of problems, both arithmetic and
analytic, to be considered given that one knows the uniformizing group, a projective equation,
q-expansions, and relations to holomorphic Eisenstein series.
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