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ON EULER MIDPOINT FORMULAE

LJ. DEDIC1, M. MATIC1 and J. PECARIC2

(Received 19 January, 2000; revised 6 November, 2004)

Abstract

Modified versions of the Euler midpoint formula are given for functions whose derivatives
are either functions of bounded variation, Lipschitzian functions or functions in Lp -spaces.
The results are applied to quadrature formulae.

1. Introduction

S. S. Dragomir, P. Cerone and A. Sofo [6] proved the inequalities

»-'Vi_.
<

24

where/" belongs to the appropriate space, \/p + \/q = 1 and p > 1. The first
of these is usually referred to as the midpoint inequality. A simple application of
the midpoint inequality is as follows. Divide the interval [a, b] into v subintervals
of equal length h = {b — a)/v. For given / : [a, b] -*• R, consider the midpoint
quadrature formula

(1.2)
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where

(2/-1)-
/=i ^

If/ is twice differentiable and ||/"||oo < o°, then applying the midpoint inequality
gives the estimate \pv(f)\ < (vtf/ltyWf'Woo for the remainder pv(f).

A generalisation of (1.1) for n-times differentiable functions has been obtained in
the recent paper [6]. In this paper we give another generalisation of (1.1) and use
it to establish various error estimates for some quadrature rules which generalise the
midpoint quadrature rule (1.2).

In the recent paper [4] we proved the formula

- *b jf / « * + E ̂ r^"' (Iff)

Here Bk(t) are the Bernoulli polynomials, Bk = Bk(0) the Bernoulli numbers, and
Bk*(r), k > 0, are periodic functions of period one, related to the Bernoulli polynomi-
als by

B*k(t) = Bk(t), for 0 < t < 1,

B'k(t + 1) = B*(t), for t e R,

so that BQ (r) = 1, B*(t) is a discontinuous function with a jump of — 1 at each integer
and Bk(t), k > 2, is a continuous function. The sum in (1.3) is taken as zero when
n = l . The Bernoulli polynomials Bk(t), k > 0, are uniquely determined by the
identities

B'k(t) = kBk.dt), * > 1 , Bo(O = l (1-4)

and

Bk(t+l)-Bk(t) = ktk-\ k>0.

For further details on the Bernoulli polynomials and the Bernoulli numbers see [1]
or [2]. The formula (1.3) is valid for every function r / : [a, b] -» K such that/*"-0

is a continuous function of bounded variation on [a, b] for some n > 1, and for every
x 6 [a, b\. Also this formula is an extension of a Krylov formula [7, page 17].

In Section 2 we make use of (1.3) to give modified versions of the Euler midpoint
formula. In Section 3 we use these modified Euler midpoint formulae to prove
some generalisations of (1.1) for functions whose derivatives are either functions of
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bounded variation, Lipschitzian functions or functions from Lp-spaces. Finally, in
Section 4, we consider the repeated Euler midpoint formula and the repeated modified
Euler formula which generalise the midpoint quadrature formula (1.2). Applying
the estimates obtained in Section 3, we establish various error estimates for these
generalised quadrature formulae.

2. The Euler midpoint formulae

THEOREM 2.1. Letf : [a, b] -*• K be such thatf(n~X) is a continuous function of
bounded variation on [a,b] for some n > 1. For any integerm such that 0 < m < n/2
define

with the convention that the sum is zero when m = 0, that is, T0(f) = 0 . Ifn = 1r — 1,
r > 1, then

fjf
^df^ty (2.2)

{aM \ b-a )

Ifn = 2r, r > 1, then

rb

,2 . _ . ((a + b)/2-t

and

PROOF. Set x = (a + b)/2 in (1.3) and multiply by b — a to obtain the identity
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We have [1, 23.1.19, 23.1.21] 52*_i(l/2) = 0, k > 1, so that the above identity can
be rewritten as

[ ( n l ) / 2

" E

where [n] denotes the greatest integer less than or equal to n. The sum on the right-
hand side of (2.5) is taken to be zero for n = 1 or n = 2. If n = 2r — 1, r > 1, then
[(n - l)/2] = r - 1, B2r-i(l/2) = 0 and (2.5) becomes (2.2). If n = 2r, r > 1, then
again [(n - l)/2] = r - 1 and (2.5) reduces to (2.3). Finally, note that

" *2- (5)
and

so that (2.3) can be rewritten as (2.4).

REMARK 1. In the case when F : [a, b] —> K is such that F' exists and is integrable
on [a, Z>], then the Riemann-Stieltjes integral f[g b] G(t) dF(t) is equal to the Riemann

integral / j " G(t)F'(t) dt. Therefore, if / ( 2 r~" exists for some r > 1 and is integrable
on [a, i ] , then (2.2) reduces to

Similarly, if/(2r) exists for some r > 1 and is integrable on [a, b], then (2.3) and (2.4)
reduce to

rb
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[ f(t)dt = (b-a)f
Ja

. &-a)2r

-Z{f)

! J\aM \ o-a )

respectively.

(2r)!

3. Generalisations of the midpoint inequality

( 2 . 8 )

THEOREM 3.1. Letf : [a, b] -> Kbe such that f(n~X) is an L-Lipschitzian function
on [a, b]for some n > 1. Assume the notation established by (2.1). If n = 2r — 1,
r > 1, f/ien

f(t)dt-(b-a)f <«££«(, _r* , , w l . (3.,)
{lr)\

Ifn = 2r, r > 1,

I f(t)dt-(b-a)f
(2/")!

(l-2'-2r) |B2r |L. (3.2)

Also, we have

f(t)dt-(b-a)f

(3.3)

PROOF. For an integrable function F : [a, b] -> OS we have

\F«)\dtL,
U[a,b]

(3.4)

since/(" " is an L-Lipschitzian function. Applying the above estimate, we get

(2r - 1)!
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Because of

Lj. Dedid, M. Matic and J. Pe£ari<5 [6]

0 < ( - i y g 2 f _ , ( 0 < **' D ' , 0 < r < l / 2 , r > 2 (3.5)

and

), r e [0,1] (3.6)

(see [1, 23.1.14, 23.1.8]), we have

f \B2r_dt)\dt = 2 f \B2r.x{t)\dt
Jo Jo

Hi B2r-\(t)dt = -\B2r(l/2)-B2r(0)\

1 n — ?'-2'">
= - I—Cl — 2l~lr)B2r - B2r\ =

 U ) \B2r\
r ' ' r

In the above calculation we used the identity (1.4) and

(3.7)

(see [1, 23.1.21]). The above estimate, in combination with (2.2), proves the inequality
(3.1). Further, using the estimate (3.4), we get

(b-a)2r

(2r)!
(b - a)2'

(2r)!
dtL

dtL

Because of

( - 1 / " 1 (52r(r) - ZJ2r(l/2)) > 0, 0 < t < 1

(see [7, Section 1.2]), on using (3.7) we get

f \B2r(t)-B2r(l/2)\dt = \[ (B2r(t)-B2r(l/2))dt
Jo \Jo
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This, in combination with (2.3), proves the inequality (3.2). Finally, we can apply the
estimate (3.4) to obtain

(b - a)2r

(2r)!

(2r
dtL

(2r)!

which is, by (2.4), the first inequality in (3.3). Further, because of

( -1) ' (B2r(t) - B2r) > 0, 0 < r < 1

(see [7, Section 1.2]), we have

32r(t)-B2r\dt = f (B2r(t)-B2r
Jo

)dt = 1*2 ,1

and

f \B2r(t)\dt= I \B2r(t)-B2r + B2r\d
Jo Jo

\B2r(t) - B2r\dt + \B2r\ = 2\B2r\, (3.8)

which proves the second inequality in (3.3).

As corollaries to the preceding theorem let us state some particular results. Note
that B2(l/2) = -1/12, S4(l/2) = 7/240 and

COROLLARY 3.2. Letf : [a, b] -*• K be a given function. If f is L-Lipschitzian
on [a, b], then

rf(t)dt-(b-a)f

If f is L-Lipschitzian on [a, b], then

24

https://doi.org/10.1017/S144618110000835X Published online by Cambridge University Press

https://doi.org/10.1017/S144618110000835X


424 Lj. Dedic, M. Matid and J. Pecarid [8]

PROOF. Set r = 1 in (3.1) to obtain the first inequality. The second one follows
from (3.2) with r = 1.

REMARK 2. The first inequality established in the above corollary has been proved
by Dragomir in [5] (see also the recent survey paper [3]), while the second extends
the first inequality in (1.1) to a wider class of functions. Namely, if / is such that
/ " exists and is bounded, then the second inequality from Corollary 3.2 applies with

COROLLARY 3.3. Let f : [a, b] -> Rbe a given function. If f is L-Lipschitzian
on [a, b], then

<{-^SL.

If f" is L-Lipschitzian on [a, b], then

(b -

18V3

192

If f" is L-Lipschitzian on [a, b], then

5760

PROOF. We have B2(t) = t2 — t + 1/6 and by a simple calculation we get
/0 1^2(01^' = l /9 \ /3 . To prove the first assertion we apply the first inequality
in (3.3) with r — 1. The second inequality follows from (3.1) with r = 2, while the
third follows from (3.2) with r = 2.

THEOREM 3.4. Let f : [a, b] -*• K be such that f(-"~}) is a continuous function of
bounded variation on [a, b] for some n > 1. Assume the notation established by (2.1)
and denote by V*(f("-X)) the total variation off("-l) on [a, b]. Ifn = 2r-l,r>2,
then

f(t)dt-(b-a)f

(b - a)2'-1

max|fi2r_,(0l Vn"
~ (2r-l)!

2{b-a)2'-i
 b

. ~ (2n)2r-l(l-22-2r) "

The first inequality holds for r = 1 too.

(3.9)
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Ifn = 2r,r> 1, then

425

<^_^2(l-2-2')|fl2r|VflV<2'-'>).
(2r)\

(3.10)

Also, we have

b

f(t)dt-(b-a)f Tr(f)
(b-a)

(2r)!

2r

\B2r\V
b

a(f«'-»). (3.11)

PROOF. If F : [a, b] —> R is bounded on [a, b] and the Stieltjes integral

f
J[a,b]

exists, then

F(.t)df(n-X\t)
[a.b]

<rnax|F(r)|VA (3.12)

Using the above estimate we get for r > 1

(b-a)2r-^_ r

' Jla.b](2r-

max
(2r-l)\ .ei«.

(b - a)2r~x

(2r - 1)!

b-a

max|B2r_,(OI Va
b(fi2r~2)).

By (2.2), this implies the first inequality in (3.9). Also, for r > 2, using (3.5) and
(3.6) we get

which implies the second inequality in (3.9). Further, using (3.12) we get

(2r)\
(b - a)2r

(2r)!
(b - a?'

(2r)!
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Now, the fact that

Lj. Dedic, M. Matid and J. Pe£arid [10]

max 1*2,(0 -
te[a,b]

= \B2r - B2r(l/2)\ = 2(1 - 2~Zr)\B2r

(see [7, Section 1.2]) together with (2.3) imply (3.10). Finally, applying the estimate
(3.12), we get

(b-

(2r)! la.b]
^(b- a)2r

- tn M
 m a M(2r)! teia.b)

= (b- a)2'
(2r)\

Using max,€lo,u |B2r(OI = \B2r\ and (2.4) gives (3.11).

COROLLARY 3.5. Let f : [a, b] -> R be a given function. If f has bounded
variation on [a, b], then

If f has bounded variation on [a, b], then

PROOF. TO prove the first assertion, apply the first inequality in (3.9) with r = 1
and note that max,Gl0,i] \Bi(t)\ = max,€|0I] \t - 1/2| = 1/2. The second assertion
follows from (3.10) with r = 1.

REMARK 3. The first inequality of Corollary 3.5 can be found in [3], while the
second extends the third inequality in (1.1) to a wider class of functions. Namely, if/
is such tha t / " exists and belongs to the space Lx[a, b], then the second inequality
from Corollary 3.5 applies with Vo

6(/') replaced by | | /"| | i-

COROLLARY 3.6. Let f : [a,b]

variation on [a, b], then

\J (t)c,t-(b-a)f
24

be a given function. If f' has bounded

<*->•*,, .
12
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If f" has bounded variation on [a, b], then

rb

^ Va
b(f").

If f" has bounded variation on [a, b], then

• 72V3

: ^ v » ( f " )
• 384 aKJ

PROOF. The first inequality follows from (3.11) with r = 1. To prove the second,
note that max,e[0,i] IB3WI = rnax,e[o,i] U3 - 3r2/2 + //2 | = 1/12^3 and apply the
first inequality in (3.9) with r = 2. Finally, the third inequality follows from (3.10)
with r = 2.

THEOREM 3.7. Letf : [a, b] -*• R be such thatf{n) e L,[a, b]for some n > 1.
Assume the notation established by (2.1). Ifn = 2r — 1, r > 2,

r f(t)dt-(b-a)f

^ (b - a)2r"'

The first inequality holds for r = 1 too. //« = 2r, r > 1, f/ien

f(t)dt-(b-a)f

A/JO, we /iave

jf f(t)dt-{b-a)f
(2r)!

PROOF. Since/(n) e L{[a, b],f(n~u has bounded variation on [a, b] and

VnV"-•>)= f \f<»\t)\dt = \\fMh.
Ja

Now apply Theorem 3.4 to obtain the inequalities stated in the theorem.

COROLLARY 3.8. Letf : [a, b]-* Rbea given function. Iff e L,[a, b], then

Li[a, i], //ien
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PROOF. Apply Corollary 3.5 with the same argument as in the proof of the preceding
theorem.

REMARK 4. The first inequality of the above corollary can be found in [3], while
the second coincides with the third inequality in (1.1).

COROLLARY 3.9. Letf : [a, b] -> K be a given function. If f" € Lx[a, b], then

•Wf'h.
\ 2 24 12

Iff'e L da, b], then

e L\[a, b], then

PROOF. Apply Corollary 3.6 with the same argument as in the proof of the preceding
theorem.

THEOREM 3.10. Let(p, q) be a pair ojconjugate exponents, that is, 1 < p,q < oo,
l/p + \/q = \ orp = oo, q = \. Letf : [a, b] -> K be such thatf{n) e Lp[a, b]

for some n > 1 and assume the notation established by (2.1). Ifn = 2r — 1, r > 1,
then

rb

(b - aSlr 1/9
r - 1 ) l l P . (3.13)

Ifn = 2r, r > 1, then

f
J a

f(t)dt-{b-a)f

(b - a)2r

(2r)!
(3.14)

Also, we have

(b - a)2r

(2r)\ n/ ( 2 r ) iiip- (3.15)
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PROOF. By applying the Holder inequality we have

429

(b -

(2r - 1)!

I \ > / < 7

1*2,-1(01'rf'J \\fi2r-l)\ip-

Now apply the above estimate to the formula (2.6) to get (3.13). We get the inequalities
(3.14) and (3.15) by a similar argument, using (2.7) and (2.8), respectively.

COROLLARY 3.11. Letf : [a, b] -> K be such that f(n) e Lx[a, b] for some n > 1
and assume the notation established by (2.1). Ifn = 2r — 1, r > 1, then

\l (t)dt-(b-a)f

Ifn = 2r, r > 1, then

I f(t)dt-(b~a)f

(fr-a)2f

(2r)!

(b-a)2r+]

(2r)\
( l-21-2 f ) |B2 f | | | /

( 2 r ) | | 0 0 .

Also, we have

£ f(t)dt-(b-a)f

(b ~

Tr(f)

(2r)\
2,1 11/(201

PROOF. Apply Theorem 3.10 with p = oo and q = 1, and use the same calculation
for /0' \B2r-dO\dt, /„' 1*2,(0 - B2,{l/2)\dt and /„' |B2,(O|rfr as in the proof of
Theorem 3.1.

COROLLARY 3.12. Assume the pair (p, q) is as in Theorem 3.10. Let f : [a, b] -*•
K be a given function. If f 6 Lp[a, b], then

f
/ / / " € Lp[a,b],then
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PROOF. TO obtain the first inequality, apply (3.13) with r = 1 and note that

1
f \Bx{t)\idt= f \t-\/2\"dt =

Jo Jo

To obtain the second inequality, apply (3.14) with r = 1 and note that

/ \B2(t) - B2(l/2)\'dt = f \t2 - t + l/4\i dt
Jo Jo

= 2 [ (t- 1/2)29 dt = i .
J\/2 4i (2q + 1)'1/2

REMARK 5. For p = oo, q = 1, the inequalities established in Corollary 3.12
become

and

This second inequality coincides with the first inequality of (1.1). The second in-
equality established in Corollary 3.12 coincides with the second inequality in (1.1).

COROLLARY 3.13. Letf :.[a, b] ->• Rbe a given function. Iff" e L^a, b], then

[
/ / / ' "

fit)dt-{b-a)f

, H then

18V3
•11/"Hoc

192
-11/ '"11=

// /""

PROOF. The result follows from Corollary 3.11 by an argument analogous to that
used to obtain Corollary 3.3 from Theorem 3.1.
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COROLLARY 3.14. Letf : [a,fc]-> K be such that f ( n ) e L2[a, b] for some n > 1
and assume the notation established by (2.1). Ifn = 2r — 1, r > 1, then

Ifn = 2r,r> 1, then

rb

f(t)dt-(b-a)f

Also, we have

PROOF. The Bernoulli polynomials satisfy the relations

f Bn(t)dt = O, n> 1
Jo

and

\n-\ B n + m , n,m >

(see [1, 23.1.11, 23.1.12]). Therefore we have

Jo

n\2

(2n)! (2n)!

and

= [ B2r(t)
2dt-2B2r(l/2) f B2r(t)dt+B2

2r(l/2)
Jo Jo

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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Apply Theorem 3.10 with p = q = 2. Using (3.19) with n = 2r - 1 and (3.13),
we get (3.16). Similarly, using (3.20) and (3.14), we get (3.17), while (3.18) follows
from (3.15) and (3.19) with n = 2r.

COROLLARY 3.15. / / / ' e L2[a, b], then

Iffe L2[a,b),then

PROOF. Apply (3.16) with r = 1 and (3.17) with r = 1, respectively.

COROLLARY 3.16. Iff" e L2[a, b], then

b

f(t)dt-(b-a)f

Iff'e L2[a,blthen

12V5

I2V2IO

6 L2[a,b],then

- 5760

PROOF. Apply (3.18) with r = 1, (3.16) with r
respectively.

= 2 and (3.17) with r = 2,

4. Error estimates for some quadrature formulae

Let us divide the interval [a, b] into v subintervals of equal length h = (b — d)/v.
Under appropriate assumptions on / : [a, b] -> DS, we consider the repeated Euler
midpoint formula

t f{t)dt =Sv(f)~ Xr-l(v,f) + Pv(f), (4.1)
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w h e r e

^2 ^ (4.2)
i=i ^ '

and

*-<"•/> := E
with the convention that ro(v,f) = 0.

Since

the remainder pv(f) can be written in the form

1=1

where, for i = 1 , . . . , v,

U)= f(t)dt-hf (a

+ E (^js« (5)
We shall apply the results from the preceding section to obtain some estimates for the
remainder pv(f).

THEOREM 4.1. Letf : [a,6]-> R be such that f ln~u is an L-Lipschitzian function
on [a, b]for some n > 1. Then for n = 2r — 1, r > 1, we

while for n = 2r, r > 1, we Ziave

v/i2 r + l

P R O O F . U s i n g (3 .1) w e ge t for 1 = l,...,v that

https://doi.org/10.1017/S144618110000835X Published online by Cambridge University Press

https://doi.org/10.1017/S144618110000835X


434 Lj. Dedic, M. Malic and J. PeCarid [18]

By the triangle inequality, we get from (4.4) that

^ 1 2\p»(f)\ <

which proves the first assertion. Further, using (3.2), we get the estimate

which holds for i = 1, . . . , v. Using (4.4) and the triangle inequality, we prove the
second assertion in the same way as we did the first one.

THEOREM 4.2. Letf : [a, b] -*• R be such thatfin~]) is a continuous function of
bounded variation on [a, b] for some n > 1. Then for n = 2r — I, r > 2, we have

- (2n)2r-l(l-22-2r) "

and the first inequality holds for r = 1 too. Also, for n = 2r, r > 1, we have

2h2r

[„ ff\\ ^ t \ i - 2 f \ I n I \rotf (2r—1)\

\pv(f)\<— d - 2 )\B2r\Va(f ).

PROOF. Applying (3.9), we get for i = 1 , . . . , v that

. . . . . . h2r~l

From (4.4), we have by the triangle inequality that

( 2 r - 1)! (elan
rnax|B2f_,(OI
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which proves the first assertion. To prove the second, we use (3.10) to obtain the
estimate

2h2r

for I: = 1 , . . . , v. From (4.4) we get

which proves the second assertion.

COROLLARY 4.3. Letf : [a, b] -> IR be such thatfw € L^a, b], for some n > 1.
Then for n = 2r — 1, r > 2, we have

\\f2~20
i2r~])

h

and the first inequality holds for r = 1 too. Also, for n = 2r, r > I, we have

2h2r

( l 2 -

PROOF. Note that/(n~" has bounded variation on [a, b],

ya
b(f <»-»)= f \fw(t)\dt = \\fM\\u

Ja

and then apply Theorem 4.2 to obtain the inequalities stated in the corollary.

THEOREM 4.4. Let {p,q) be a pair of conjugate exponents, that is, 1 < p, q < oo,
\/p + \/q = 1 orp = oo, q = 1. Letf : [a, b] -> K fee swc/i thatf{n) e Lp[a,b]

for some n > 1. Then for n = 2r — I, r > I, we have

/ /-I

(/ ) \\far-'%,
/

while for n = 2r, r > 1, we have
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PROOF. For i = 1 , . . . , v consider the function

gM = / ( n ) ( 0 , te[a + (i- \)h, a + ih\.

Obviously we have \\gi\\p < | | / (n ) | |p, where the norm \\gj\\p is taken over the interval
[a + (i — l)h,a + ih], while the norm ||/(n) H, is taken over the interval [a, b]. Using
the above inequality, we get for i = I,... ,v that

using (3.13) in the case n = 2r — 1, and

. C / ' i O l ^ ^ z - ^ / \B2r(t) - B2r(l/2)\"dt){Zr)\ \J0 J
(l/2)\"dt) ||ft| p

h2r+i/q / r\ '/«

(2r)! Vo ' 2r

using (3.14) in the case n = 2r. The rest of the argument is the same as for the
preceding theorems.

COROLLARY 4.5. Letf : [a, b] -+ R be such that f ( n ) € L^a, b] for some n > 1.
Then for n = 2r — 1, r > 1, we have

vh2r

l*tf)l<^4(i-r
while for n = 2r, r > 1, we /iave

vA 2 r + 1

I P P ( / ) I < - ^ 7 - ( 1 - 2 1

PROOF. Apply Theorem 4.4 with p = oo.

COROLLARY 4.6. Le// : [a, i ] ->• IR be such that f ( n ) e L2[a, ft]/or jowie n > 1.
Then for n = 2r — I, r > I, we have

1/2

while for n = 2r — 1, r > 1, we have
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PROOF. Apply Theorem 4.4 with p — 2.

Instead of the repeated Euler midpoint formula (4.1), under appropriate assumptions
o n / : [a, b] -> R, we can consider the repeated modified Euler midpoint formula

= Sv(f)~zr(f)+ov(f),

where v and h = (Jt> — a)/v are as before, Sv(f) is given by (4.2), and zr(f ) is defined
by (4.3). In this case, the remainder crv(f) can be written in the form

( 4 5 )

where, for i =

0

= 1,

=

+
r

E

, v,

+ih

J/ (0 dt -hf (a + (2i - 1)

f (fl ~^~ '^) —f (" "J" (' — 1)")J •

Here we give the estimates for the remainder crv(f), using the same argument as that
used for pv(f). We omit the details.

THEOREM 4.7. Letf : [a,b] ->• RbesuchthatfV'-^isanL-LipschitzianJunction
on [a, b], for some r > 1. Then

vfl2r+l r\ h2r+l

\ov(f)\ < -pr-rr / \B2r{.t)\dtL < ——2\B2r\L.
(2r)\ Jo [2r)\

PROOF. AS in Theorem 4.1, using (3.3) and (4.5).

THEOREM 4.8. Let f : [a, b] -> OS fee 5Mcft r/iar/ (2r~l) is a continuous Junction of
bounded variation on [a, b], for some r > 1. Then

PROOF. AS in Theorem 4.2, using (3.11) and (4.5).

COROLLARY 4.9. Letf : [a,b] -*• R be such that f ( 2 r ) 6 L,[«, b], for some r > 1.
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PROOF. Note tha t / (2r~1) has bounded variation on [a, b],

= I
Ja

and then apply Theorem 4.8.

THEOREM 4.10. Lef(p, g) be a pair ofconjugate exponents, that is, 1 < p,q < oo,
l/p + l/q = 1 orp = oo, q = 1. Let f : [a, b] -*• K be such that/(2r) e Lp[a, b],

for some r > 1. 77ie/i

PROOF. AS in Theorem 4.4, using (3.15) and (4.5).

COROLLARY 4.11. Let f : [a,b] -> R be such that fi2r) e Loo[a, fc], for some
r > 1.

2|B2, | | | / (2r)|

PROOF. Apply Theorem 4.10 with p = oo and use (3.8).

COROLLARY 4.12. Let f : [a,b] -+ R be such that fi2r) € L2[a, b], for some
r > 1. Then \av(f)\ < v/l

2r+1/2(|fi4r|/(4r)!)1/2||/(2')||2.

PROOF. Apply Theorem 4.10 with p =2.
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