GROUPS WITH A CYCLIC SYLOW SUBGROUP
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Dedicated to the memory of Tapast Nakavama

§ 1. Introduction

By focussing attention on indecomposable modular representations J. G.
Thompson [11] has recently simplified and generalized some classical results
of R. Brauer [1] concerning groups which have a Sylow group of prime order.
In this paper this approach will be used to prove some results which generalize
theorems of R. Brauer [2] and H. F. Tuan [12].

We will say that a finite group & is of #ype L.(p) if every composition
factor is either a p-group or a p'-group or is isomorphic to PSL,(p). Thus in
particular every p-solvable group is of type L:(p). It is well known that

every subgroup of a group of type L.(p) is again of type L:(p).

TueoreMm 1. Let & be a finite group with a cyclic Sy-subgroup B for some
prime p.  Assume that & is not of type L.(p). Suppose that & has a faithful
indecomposable representation { of degree d<p in a field of characteristic p. Then
=2, IBl=p, QIB is indecomposable and Cgy(P) =P x Z(S). Furthermore
d=2/3(p—1) and d= l—z)—p— % in case p=13.

It is known [9] that the multiplier of s, s, A, respectively has a non-
trivial complex representation of degree 2, 3, 4 respectively. Hence this is
the case in any algebraically closed field. @ The new simple group discovered
by Z. Janko [8] has a 7-dimensional representation in the field of 11 elements.
Thus for p<11 the estimate in Theorem 1 is the best possible (since d is an
integer). However it follows easily from the last statement that d>=2/3(p — 1)
is never the best possible estimate for p>13. By modifying the argument in

section 4 slightly it can be shown that for p=13 the estimate can be improved
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provided |Ng(®B) : Cx(PB)| is sufficiently large. In particular it is easy to
show that if @ = @&’, INg(®B) : Cg(B)| =p -1 and p>13 then d> ?i‘%——l—) This
is in sharp contrast to the case of Janko's group where p=11, d=7 and
INg(B) : Cg(B)| =10. It would be of interest to determine the best possible
lower bound for d in case p=>13. Since the Symmetric group on p letters has
a faithful representation of degree p — 2 in the field of p elements one cannot
do better than p — 3. However this is probably much too large in general.
Theorem 1 is easily seen to imply some results of Brauer [2] and Tuan
[12] concerning groups & which have a faithful irreducible complex represen-
tations of ‘“‘small” degree relative to the size of some prime dividing |§|. As

another application of these methods the following can be proved.

THEOREM 2. Suppose the Sp-subgroup P of & is not normal in @ and Z(S)
=<1>. Assume that & has a complex irrveducible representation of degree d with

‘P_;—l <d<p-1 Let |Ng(P) : Co(®=e. Then © is simple and e="> : F=0

(mod 2). Thus in particular p=1 (mod 4).

The only known groups which satisfy the hypotheses of Theorem 2 are
PSL.(p) with p=1 'mod 4) andd - 1=¢= 21, and PSL.(p -~ 1) where p— 1
= 2% for some integer ¢>1 with e=2 and d =p - 2.

§ 2. Preliminaries

Let K be a field and ® a group. If M, N are K&-modules then M+ N
denotes their direct sum and aM =M+ + - - +M a times for any nonnegative
integer a. The kernel of M is the kernel of the representation of & corres-
ponding to M. If  is a subgroup of & then M |p denotes the restriction of
M to 9 and for any K9H-module L, L® is the K&-module induced by L. The
contragradient module of M is denoted by M*. The remainder of the notation
and terminology is standard.

Basic properties of modules will be used continually. In particular the
Mackey decomposition [3, (44.2)] and a fundamental result of D. G. Higman
[3, (63.5)] are of importance. Also a theorem of Schanuel will be used [6,
(1.6 Y] or [10, p. 270]. The following result is a simple consequence of the
Mackey decomposition, the proof of [3, (51.2)] and Fitting’s Lemma.

(2.1) Suppose that K is a field of characteristic p. Let P be a p-group and $
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a p'-group. A K(PxD)-module is indecomposable if and only if it is of the form
VQ W where V is an indecomposable KB-module and W is an irveducible K-
module.

An exposition of the fundamentals of the theory of blocks can be found
in [3, Chapter XII1. The following special cases of some results of R. Brauer
[2] will be needed.

Suppose Sjp-subgroup P of & has order p for some prime p. Assume
further that Cg(P) = PXZ(S). Let e=|Ng/B) : Cx(P)l.

(2.2) If ¢ is an irreducible complex character of & with 1< (1) <p—1 then
e<p—1 and either €(1) =e or C(1) =p—e. In the latter case ¢ does not contain
the principal Brauer character as a modular constituent. Furthermore if B is the
p-block of & containing ¢ then B contains exactly A;l irreducible complex charac-
ter of degree C(1), any two of which arve p-conjugate and hence coincide as Brauer
characters.

(2.3) If Z(®) =<1> and e=2 then the degree of any irreducible modular
representation of & is 1, p—2 or at least p.

The following result of Tuan [12, Theorem C] is also useful.

(2.4)  Any modular irreducible representation of & in the principal block can
be written in the field of p elements.

The proofs of (2.2), (2.3) and (2.4) can be simplified considerably using
the methods of [111.

§ 3. Local Results

Throughout this section K is a field of characteristic p. €% is a Frobenius
group with Frobenius kernel ® where |B| =p and €N P=<1>. The one dimen-
sional K-representation a of € is defined by

(3.1) G'PG = P*? for P, G EP.
The following result is a reformulation of [11, Lemma 2.

LemMma 3.1. Let i be a one dimensional K-representation of TE and let 1<
s<p. Then there exists an indecomposable KBE-module Vi such that dimg Vs =

s, Vg is indecomposable and if U is the unique submodule of Vs with dimg U
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=1 then uG = A(G)u for all us U, G CB. Furthermore every nonzero indecom-
posable KRG-module is isomorphic to some V¥ ; VS=V} if and only if s=t,
A=up; V) is projective if and only if s = p.

Throughout this section V3 will be defined as in Lemma 3.1 and for any
A, Vi=0. In case €=<1> we will write Vi=V}. If E€E then det)dE)
denotes the determinant of E acting as a linear transformation on V! and ¢}

denotes the Brauer character of P8¢ corresponding to V3.

LemMMA 3.2, Let 0<i<s<p. Then V3 has a unique submodule U; with dimg U;

=i. Furthermore U; =V} and VUi Vieii.

Proof. Since every irreducible KB€&-module is 1-dimensional V} has an i-
dimensional submodule U; for 0<i<s. As Vé]sB is indecomposable each U; is
uniquely determined. By Lemma 3.1. U,CU; and so U;x V2.

If i=0 or i=s the last statement is clear. Suppose that =1 and s>2.
Since |€||(p —1) the KE-module U, is a direct sum of two KE-modules.
Choose a K-basis %, y of U, such that y= U; and xE = u(E)x for all E€ € and
some 1-dimensional K-representation of €. Then for suitable P B, xP = x+ y.
Thus for E€€

x4+ a(E)y = xP*® = xE'PE = p(E "")xPE = p(E " )xE + p(E™)yE
=%+ u(EHAE)y.

Hence u(E) = i(E)a""(E) for all E€ €. If ¥ denotes the image of x in V3/U;
this implies that if G = PE, P, E< € then

%G = ¥E = da M E)% = 2a " (G)¥

Thus V3Y/U;x V2. Since VU= (VY U)/(U;/U,) for i=>1 the result follows

by induction on 1.

LemMma 3.3. (V)*x ;“1“(8_”. dets(E) = 1°a S V2 (E) for E€ €. Let €
. /81 .
=<Ey. Then ¢¥(Ey) = e’(%s_'> for a suitable primitive |€|th root of unity e
and all s and j.

Proof. This is an immediate consequence of Lemma 3. 2.

8—1
LemMa 3.4. VIQ Vi< IV for 0<s<p.

i=0
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Proof. Let M, be the 1-dimensional K&-module corresponding to the repre-
sentation xj€. It is easily seen (and well known) that V<=M g$. By Lemma

s—1
3.2 VH6X S My-i. Thus [3, p. 3251.
1=0

s—1 s—1 .
Vi@ V5= (Vie® M) ™®x (S M) = SV
= =0
LemMma 3.5. If 0<s<t and s+ t<p then
s—1 i
V;@ V‘th ZOV;i;—]—ZL

Proof. It suffices to prove the result in case ||=p—1. If s=0or 1 it
is immediate.

Suppose s =2. By [6, Theorem 3 (2.3b)] Vo® Vi< Vi-,+ Vi+1. Thus by
Lemma 3.1 V3@ V¥ Vi_,+ Vi, for some B, r. By Lemma 3.2 there exist
K-bases {xo, t:} of V3 and {y, ..., v:-1} of V¥ such that for E€ € and all ¢

xE = lcx-i(E)xi, yiE = /—la-i(E\’yﬁ

Furthermore if U is the submodule of Vi Q® V¥ consisting of all # with uP=u
for all P= P then dimxg U=2. Let P=P. Then there exist a, b € K with ab
2% 0 such that

%P =%y, 0 P=x+ ax,

YP =y, P=y+by
Define

Vo = X0 @Yo, V1= 711 X1 QYo — %x‘)@yl-

Then viP=v; for i=0, 1, and so {v,, vi} is a basis of U. If E€ & then
0E = Au( Evy, v.E = Apa” (E)v,

As 1€ %1, Az~ iua™". Therefore voc Vi_; and B=Au or v V3, and 7 = A
Let <x» =V} be the submodule of V) generated by x. Let W=<xpQ V¥
~V%¥. Thus W is indecomposable and vo= W. Since dimx W =¢ it follows
that WN Us+1 %0, where Uy, is a submodule of V) ® V¥ with Usri=Vi.. By
Lemma 3.2 vo€ WN Usv;. Hence vo= UN Uy and y=Ax. Thus B =ipa™*
and the result is proved in case s = 2.
We proceed by induction on s. Assume that s>3 and the result has been

proved for s—1 and s—2. Then
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Via® Vi@ ViR (VI @ V) + (VI VD).
Thus by induction
S e vhs S+ (e v,
Applying the first part of the lemma once again yields that

Apa=i=1

s—2
Vi 2SR + v B v st (e vh.

The result now follows from the Krull-Schmidt Theorem.

The next result is proved in a similar manner to [6, (2.5 a)].

k
LemMa 3.6. Suppose that 1<b, c<p—1 and ViQ Ve Ve with ¢;>0 for
i=0
i=0,...,k Then

k c-1
DVET (Vi@ V= BV + 2 Ve .
1= J=

Proof. By Lemma 3.2

v=b

0V >V 5 vE-o0.
is exact. Tensoring with Vi yields that
0- Ve ' @Vi- Vi ' @Vi-Vi®@Vi-0
is exact. Also
K - 13 e K
0> 2 Vie "o VET ™ 5 S V-0
i=0 i=0 =0

is exact. Thus Schanuel's Theorem and Lemma 3.4 imply that

Z V’,l al=¢; + (V‘MP b® VC) ~ }J Vﬁ"a?"""]_*_ 2 Vn,ap ”x.

=0 i=0

The result follows by tensoring this equation with T

Lemma 3.7. If 1<s< p‘;—l then

8—1

A\paf+i-8
= 2V
r=0

s—1 p—-1 .

A ~ AwasHe - Apat

Vs ® VZ—S‘*— 2 Vit + > pr
i=0

=25
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Proof. The first statement is a special case of Lemma 3.5. Also Lemma
3.5 yields that

s=1 .
N 1 ~ -\ Al -2
Vs® V;—s“— Z Vplial_“_
=0

Apply Lemma 3.6 with f=21, y=p, b=s and c=p—s. Then

14 1

s-1 1 p -5 =
SV L (VL@ VO D)

§—-1 .
MLG’j M.Lu"'“"l‘*l
Vp + 2 Vi
=0 2=0 i=0

Since a?M(G) =1 for all G € &P the Krull Schmidt Theorem implies the result.

Lemma 3.8. If 1<s< 1"2’,,1,_ then

s—1 .
ViQ(VH*T Vi
i=0

p-s—1

V3s® (Vi = BViin+ 3 V3

Proof. This follows directly from Lemmas 3.3 and 3.7 and the fact that
a®(G) =1 for all G GH.

§ 4. Proof of Theorem 1

Throughout this section & is a group which satisfies the hypotheses of
Theorem 1. B is a Sp-subgroup of @. Since d<p in Theorem 1 P has exponent
p and so |PB|=p as Pis cyclic. M= Ng(PB) and € = Cx(P) =PxH. By assump-
tion M@ and by Burnside’s transfer theorem N = €. K is a field of characteri-
stic p.

M ={M|M is an indecomposable K&-module with dimxM<p and B is not
in the kernel of M}.

By assumption .# is nonempty. If M & . # then M is a direct summand
of (M|»3z)© by D. G. Higman’s Theorem [3.§63]. Thus M|y is indecomposable
by the Mackey decomposition and if dims M <p then M is uniquely determined
by Min. The Mackey decomposition and (2.1) imply that M|g = ;,: U:® Wi
where for each ¢ U; is an indecomposable KP-module and W; is an irreducible
K9-module. Furthermore U;® W; is conjugate to U;®@ W, for all 7, j under
the action of /€. Thus dimgU; = ¢, dimx W; =b are both independent of 7 and

in the notation of section 3 U;X V. for all . Therefore
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(4.1) Mg=V.® (X W:), dimeW:=b.
i=1

The triple a = a(M), b=b(M), c=c(M) is a set of invariants attached to M
and (4.1) implies that

(4.2) dimg M = a(M) b(M) c(M).
LemMma 4.1. Suppose that p=5. If M & A then dimgM> 2.

Proof. Suppose dimxk M <2 for some M -#. Let & be the kernel of M.
Then G/ is isomorphic to a subgroup of GL.(K). All finite subgroups of
GL,(K) are known and it is easily seen that &/& and hence @, is of type

L:(p) contrary to assumption.

LEmMmA 4.2, Suppose that p=5. If M M with O in the kernel of M then
dimK M>3.

Proof. Let M e # with © in the kernel of M. Suppose that dimxM<3.
By Lemma 4.1 it may be assumed that dimxM =3 and M is absolutely ir-
reducible. We will reach a contradiction by showing that & is of type L.(p).
By changing notation it may be assumed that & =® and M is faithful. Thus
Ce(P) =P. Let N=PE with PNE =<1>. Let €=<E>. Let « be defined as
in (3.1). Then M|x=XV; for some one dimensional K-representation 1 by
Lemma 3.1 and (4.1). Lemmas 3.1, 3.3 and 3.8 imply that MQM™ =L, +
L+ L, where dimxL;=2i+1 and Li|j; = Lijn. 'Thus M may be chosen so that

Since Cg(P) =B there is only one block of defect 1 [3, (86.10)]. Hence
M is in the principal block of @. Thus if K, is the field of p elements there
exists a Ky-representation §F of @ corresponding to M by (2.4). Since Mp=
M3 it follows from Lemma 3.3 that § is equivalent to F*. An argument of
R. Brauer [2, p. 4381 now implies that @ is isomorphic to a subgroup of Os(p).

Since Os(p) is of type L.(p) so is & contrary to assumption.
Lemma 4.3. Suppose that p=5. If M M then c(M)> %

Proof. Suppose M € A4 with c=c(M) < p—gi- By Lemma 3.8 and (4.1)

M®M*[@:(§ V2i+1)® ( > é W:Q I/V]*)

J=1k=1
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Thus no direct summand of M ® M*|s is projective. Let W, be the trivial 1-

dimensional K®&-module. Then
c-1
MM* g~ EO(VziH@ W+ U

where U is a direct sum of indecomposable modules none of which are pro-
jective. Since M e 4, ¢>1. Thus Va® W, is isomorphic to a direct summand
of M@ M*s. Let L be a direct summand of M®M™ such that Va® W, is
isomorphic to a direct summand of Lig. Since no direct summand of Ly is
projective, Liy is indecomposable. As 9 is in the kernel of Va® W, 9 is also
in the kernel of Ljw. Thus Lijg is indecomposable by Lemma 3.1. Hence
dimxL = 3 contrary to Lemma 4.2.

LemMma 4.4. If Me _#, M|y is indecomposable and D= Z(S).

Proof. If dimeM =p then M is projective and so M|y is projective and
hence indecomposable. Suppose that dimcM<p—1. If p=3 then M)y is
indecomposable since P is not in the kernel of M. If p>5 then (4.2) and
Lemma 4.3 imply that a(M) =56(M) =1. Thus by (4.1) M|y is indecomposable
in any case. If ¥ is the K-representation of & corresponding to M this implies
that any p’-element in the commuting ring of F|p is a scalar. Thus $ =Z(§)
as required.

The proof of Theorem 1 can now be given. If p=2 then & is 2-solvable
since |P| =2 contrary to assumption. Thus p=2. In view of Lemma 4.4 it
only remains to prove the inequalities. If p =3 the result is trivial and if p
=5 it follows from Lemma 4.1. Hence it may be assumed that p=>7. It may
further be assumed that & =@’ and K is algebraically closed without loss of
generality.

Choose L € A with dimg L minimal. Let d=p—s=dimgL. It may be
assumed that L is faithful. By Lemma 4.3 and (4.1)

(4.3) Lig=< Vp-s® W, dimgW =1, s< 1’7;—1.

Since N/€ is cyclic and HZ(N) it follows that N/P is abelian. Thus there
exists a K)i-module W; whose kernel contains P such that Wijg= W. Then

(4.4) Lin®@ L p= (Lin® W) Q (Lig® W)™
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Furthermore
(Lig® W) |g= Vp-sQ Wo

where W, denotes the trivial 1-dimensional K9-module. Let %t =N/9. Thus
L@ Wi is a KMN-module. Hence (4.3), (4.4) and Lemma 3.8 imply that in
the notation of section 3

p-s—

s—1 1
(4.5) Lin® L¥ ¢~ §V§’f-+l+ > vy,

where each V} is a K%-module.

Higman’s Theorem and (4.5) imply that
s~1
LRL*~>Li+ A
=0

where each L; is indecomposable, A is projective and L;z has V;::-H has a
direct summand. Let

(4.6) Lijp= Vi + jz Vi
=1
Thus L, is the 1-dimensional trivial K&-module. By (4.5)
(4.7) {wili=1, ... ,mi; i=0,...,s=1)c{a’|s<i<p—s—1}

Suppose that p —s<2/3(p—1). Then p<3s—1. By (4.7)

s—1
Smi<(p-s-1)—s+1=p—2s<s—1.

=1 .

Hence at least (s—1) — (p — 2s) of the m; are zero. Thus m, =0 for some &
with
1<k<(s—1)—{(s=1)—(p—25)} =p—2s.

Thus by (4.6)
dimgLr=2k+1<2p—4s+1=(p—s)+(p+1-35)<p—s=d.

Hence Lr € A contrary to the minimality of d. Therefore in proving Theorem 1
it may be assumed that p>13 and d =p —s=>2/3(p — 1) or equivalently

(4.8) s< 232, p=13,
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Choose E= @ so that M =<E, €>. Since § =@ E must have determinant 1
when considered as a linear transformation on the K-space L;fori=0, . .. ,s—1.
Thus by (4.6) and Lemma 3. 3.

m; m;
(4.9) (1 i) a™ @25 E) = (T pipe )a™™## V2 E) = 1.
J=1 J=1

Hence if m; =1 then wi(E)=a? V*(E)= 1. Since @ is not of type L.(p),
E=x1. Thus for any % either a*(E) xa®™V*(E) or a*"(E)*a'*""*(E). Con-

sequently (4.5) and (4.6) imply that at most » +12:ﬁ of m!s are equal to 1.

Suppose first that 2s—1<p—s=d. The minimality of d and (4.6) yield
that m; >0 for 7=1, ... ,s—1. Thus by (4.6)

p+1-2s 1 (p+1-28)\ _ 1 o,
s—1< PHEIZES 4 Sty g5 SPELTESI N L (3p— 65+ 1),
Hence s < _3%)":,5 and so d=p — s> {—g - —% as required.
Assume now that 2s—1=p —s. Thus s>5. The minimality of d yields
that m;=x0for i =1, ...,s—2.
Thus by (4.6)
s—2<s PHLZ2S 4 Dy 25— (pr1-29)) = ;(B3p-6s+1)

Therefore

10s<3p+9=9s+6

Hence s<6 and p=13 so p<35s—1<17. Thus s=6 and p=17. Furthermore
dimgL;=11=d. Since 9 is in the kernel of L; it may be assumed L was chosen
initially such that  is in the kernel of L. Hence since L is faithful it may
be assumed that » =<1>. Thus L is in the principal p-block. The minimality
of d implies that L is an irreducible K&-module. Therefore [KE>| =[N : P|>2
by (2.3). Thus for any k either a*(E)xa® P(E) or a*"(E)xa*"""*(E) or
a***(E) % «'*"P*(E). Thus by (4.9) at most —piz:;?‘i <3 of the ms are
equal to 1 and so by (4.6).

d=s—-2<2+ »§-<5—2)<4.

This contradiction establishes Theorem 1 in all cases,
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§ 5. Proof of Theorem 2

Throughout this section & is a group which satisfies the hypotheses but not
the conclusion of Theorem 2. %P is a Sp-subgroup of & and M = Ng(®). ¢ is

an irreducible faithful complex character of degree d.
LemMma 5.1. & is simple. |B|=p and Cgy(P) =P

Proof. Let &, be the subgroup of & generated by all p-elements in @.
Thus G <J®. Let (|, = ?:‘1‘”" where each w; is an irreducible character of ®,.
Since the w; are conjugate under the action of & they all have the same degree.
Thus if #>1, wi(1)< 2;—1 for each 7 and so by [5]1 IS contrary to assump-
tion. Hence ¢|g, = w is irreducible. Thus Z{(®,) = Z(®) = <1>.

Suppose that |B|xp. Then there exists PG with |B: Rul=p [41
Hence BcCx(B) 4G and so Go=Cx(By). Thus PycZ(By) = <1> and so [Pl = p.

Suppose that A @, A %G, Then U is a p'-group. Hence A AP and AP
is p-solvable. Since AP has a faithful complex representation of degree d <p —1
it follows that AP has a K-representation whose kernel is in P for a
suitable field K of characteristic p. Thus by Theorem B of Hall and Higman
[7]1 (see also [11] for a simplification of part of the proof.) PcCq,(A) I G,.
Thus ACZ(Sy) =<1>. Therefore @, is simple.

By (2.2)
e=IM:CPU =p—¢(1) =p—w(l) =|Ng,(B) : Cg,(P)|.

Since & = @GN this yields that & = Cx(P). If & is not of type L.(p) then
Theorem 1 implies that ® = & and P = Cg(B) completing the proof of the Lemma.
Suppose that & is of type L,(p). Thus &= PSL.(p). Since PSL:(p) admits
no outer automorphism which leaves all the elements in a S,-subgroup fixed
it follows that @ = = PSL,(p). Thus @ is simple since p>3 and Cg(P) =P
as required.

Let F be a finite extension field of the field of p-adic numbers which is a
splitting field for & and all its subgroups and contains all the |@|th roots of
unity. Let R be the ring of local integers in F, let p be the maximal ideal

in R and let K=R/p. It is well known that there exists an R®-module Z
which affords the character ¢. Let Z =Z/pZ.

LemMma 5,2. Z is absolutely irreducible,
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Proof. Since F contains all | |th roots of unity K is a splitting field of
®. Thus it suffices to show that Z is irreducible. By (2.2) and Lemma 5.1

every modular irreducible constituent of Z is faithful. Hence if Z is reducible

then ® has a faithful K-representation of degree at most d/2< 2;1, Hence

by Theorem 1 & is of type L:(p) and so @ is isomorphic to PSL:(p) by Lemma

p,,; 1 and p=1 (mod 4) contrary

5.1. In this case it is well known that e¢=
to assumption.

Let Mt =PBE with PNE =<1> and let € =<E>. Let a be defined as in (3.1).
Let ¢ be a primitive ¢ root of unity in R such that the image of ¢ in R/p is

al(E).

LeEMMA 5.3. Z}ER?FV;~2

Proof. Suppose that th Vh-e. Let {C;Ii: 1, ... ,—P-;—l—} be all the ir-

reducible complex characters of @& which are algebraically conjugate to ¢.
Then by (2.2) the ¢; are all equal as Brauer characters. Thus if U is an RS-
module affording the character @ such that U = U/pU is the projective inde-
composable K&-module corresponding to Z then @ = pégCi-{— 0 for some charac-
ter 6. Thus [11, Theorem 1] there exists an R@-modzl‘le M which affords the

v-1le

character 3¢ such that A7=M/pM is indecomposable. Since dimxM =
=1

(2-; - 1)p+ 1 Higman’s theorem and Lemma 3.1 imply that

(p—1)/e—1

M= Vi+ 2} v
£

for suitable %Z and a(j). Let ¢ be the Brauer character afforded by A4. Then
Lemma 3.3 implies that
(v—1)/e—1 p-1 (p—1)/e~1

O(E) = f+ S ea(j)< e_t> =&+ >
=1 0

t= j=1

p—e-1
GE)= ) t=1

t=0

(p=D/e

Since ¢(E) = >) ¢(E) this yields that k=1 and a(j) =1 for all 7. Hence M|n
xVi+ A for sé)‘nlle projective KN-module A. Let L, be the trivial 1-dimensional
K®-module. Then Lo = Vi+ B for some projective KJ-module B. Hence by
Higman’s Theorem A/ and L, are both direct summands of (vhH® contrary to

the Mackey decomposition. This contradiction establishes the lemma.
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LEmMMA 5.4. ¢=0 (mod 2), Zm:V;e_/: and 2;—1 =0 (mod 2)

Proof. Let Zm‘«‘: V;‘,Iie. By Lemma 3.3 C(E) =¢*.  Since Cg(P) =P (2.2)
implies that ¢(E) is rational. Hence &= +1. If &#=1 then e|k and so
Zi =< V}-e contrary to Lemma 5.3. Hence = —1. Therefore e=0 (mod 2)

atl2

and Zjp< Vj_e.
Since ® is simple det}ie_/:(E) =1. Thus by Lemma 3.3

1= ae/z(p—e)a-(p—e)(p—e-1)/2(E) = — a—(p-e)(p-e—l‘,/z (E) = — a—(p—e—l)/z(E)

1]

Thus P__é’,;{ =¢/2 (mod ¢) and so ?‘} =0 (mod e¢). Hence p ;1 0

(mod 2) as required.

Theorem 2 now follows from Lemmas 5.1 and 5.4.
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