GROUPS WITH A CYCLIC SYLOW SUBGROUP

WALTER FEIT1)

Dedicated to the memory of Tadasi Nakayama

§ 1. Introduction

By focusing attention on indecomposable modular representations J. G. Thompson [11] has recently simplified and generalized some classical results of R. Brauer [1] concerning groups which have a Sylow group of prime order. In this paper this approach will be used to prove some results which generalize theorems of R. Brauer [2] and H. F. Tuan [12].

We will say that a finite group \mathfrak{G} is of $type\ L_2(p)$ if every composition factor is either a p-group or a p'-group or is isomorphic to $PSL_2(p)$. Thus in particular every p-solvable group is of type $L_2(p)$. It is well known that every subgroup of a group of type $L_2(p)$ is again of type $L_2(p)$.

THEOREM 1. Let \mathfrak{G} be a finite group with a cyclic S_p -subgroup \mathfrak{F} for some prime p. Assume that \mathfrak{G} is not of type $L_2(p)$. Suppose that \mathfrak{G} has a faithful indecomposable representation \mathfrak{L} of degree $d \leq p$ in a field of characteristic p. Then $p \neq 2$, $|\mathfrak{F}| = p$, $\mathfrak{L}|\mathfrak{F}$ is indecomposable and $C_{\mathfrak{G}}(\mathfrak{F}) = \mathfrak{F} \times \mathbf{Z}(\mathfrak{G})$. Furthermore $d \geq 2/3(p-1)$ and $d \geq \frac{7}{10} p - \frac{1}{2}$ in case $p \geq 13$.

It is known [9] that the multiplier of \mathfrak{A}_5 , \mathfrak{A}_6 , \mathfrak{A}_7 , respectively has a non-trivial complex representation of degree 2, 3, 4 respectively. Hence this is the case in any algebraically closed field. The new simple group discovered by Z. Janko [8] has a 7-dimensional representation in the field of 11 elements. Thus for $p \le 11$ the estimate in Theorem 1 is the best possible (since d is an integer). However it follows easily from the last statement that $d \ge 2/3(p-1)$ is never the best possible estimate for $p \ge 13$. By modifying the argument in section 4 slightly it can be shown that for $p \ge 13$ the estimate can be improved

Received July 2, 1965.

 $^{^{1)}}$ The work on this paper was partially supported by the U. S. Army Contract DA-31-124-ARO-D-336.

provided $|\mathbf{N}_{\mathfrak{G}}(\mathfrak{P}): \mathbf{C}_{\mathfrak{G}}(\mathfrak{P})|$ is sufficiently large. In particular it is easy to show that if $\mathfrak{G} = \mathfrak{G}'$, $|\mathbf{N}_{\mathfrak{G}}(\mathfrak{P})| = p-1$ and $p \ge 13$ then $d \ge \frac{3(p-1)}{4}$. This is in sharp contrast to the case of Janko's group where p=11, d=7 and $|\mathbf{N}_{\mathfrak{G}}(\mathfrak{P}): \mathbf{C}_{\mathfrak{G}}(\mathfrak{P})| = 10$. It would be of interest to determine the best possible lower bound for d in case $p \ge 13$. Since the Symmetric group on p letters has a faithful representation of degree p-2 in the field of p elements one cannot do better than p-3. However this is probably much too large in general.

Theorem 1 is easily seen to imply some results of Brauer [2] and Tuan [12] concerning groups \mathfrak{G} which have a faithful irreducible complex representations of "small" degree relative to the size of some prime dividing $|\mathfrak{G}|$. As another application of these methods the following can be proved.

Theorem 2. Suppose the S_p -subgroup $\mathfrak P$ of $\mathfrak S$ is not normal in $\mathfrak S$ and $\mathbf Z(\mathfrak S)=\langle 1\rangle$. Assume that $\mathfrak S$ has a complex irreducible representation of degree d with $\frac{p-1}{2} < d < p-1$. Let $|\mathbf N_{\mathfrak S}(\mathfrak P)| = e$. Then $\mathfrak S$ is simple and $e \equiv \frac{p-1}{e} \equiv 0 \pmod 2$. Thus in particular $p \equiv 1 \pmod 4$.

The only known groups which satisfy the hypotheses of Theorem 2 are $PSL_2(p)$ with $p \equiv 1 \pmod 4$ and $d-1=e=\frac{p-1}{2}$, and $PSL_2(p-1)$ where $p-1=2^a$ for some integer $a \ge 1$ with e=2 and d=p-2.

§ 2. Preliminaries

Let K be a field and $\mathfrak S$ a group. If M, N are $K\mathfrak S$ -modules then M+N denotes their direct sum and $aM=M+\cdots+M$ a times for any nonnegative integer a. The kernel of M is the kernel of the representation of $\mathfrak S$ corresponding to M. If $\mathfrak S$ is a subgroup of $\mathfrak S$ then $M|_{\mathfrak S}$ denotes the restriction of M to $\mathfrak S$ and for any $K\mathfrak S$ -module L, $L^{\mathfrak S}$ is the $K\mathfrak S$ -module induced by L. The contragradient module of M is denoted by M^* . The remainder of the notation and terminology is standard.

Basic properties of modules will be used continually. In particular the Mackey decomposition [3, (44.2)] and a fundamental result of D. G. Higman [3, (63.5)] are of importance. Also a theorem of Schanuel will be used [6, (1.6 e)] or [10, p. 270]. The following result is a simple consequence of the Mackey decomposition, the proof of [3, (51.2)] and Fitting's Lemma.

(2.1) Suppose that K is a field of characteristic p. Let \mathfrak{P} be a p-group and \mathfrak{H}

a p'-group. A $K(\mathfrak{P} \times \mathfrak{H})$ -module is indecomposable if and only if it is of the form $V \otimes W$ where V is an indecomposable $K\mathfrak{P}$ -module and W is an irreducible $K\mathfrak{H}$ -module.

An exposition of the fundamentals of the theory of blocks can be found in [3, Chapter XII]. The following special cases of some results of R. Brauer [2] will be needed.

Suppose S_p -subgroup $\mathfrak P$ of $\mathfrak S$ has order p for some prime p. Assume further that $C_{\mathfrak S}(\mathfrak P) = \mathfrak P \times \mathbf Z(\mathfrak S)$. Let $e = |\mathbf N_{\mathfrak S}(\mathfrak P)| : C_{\mathfrak S}(\mathfrak P)|$.

- (2.2) If ζ is an irreducible complex character of \mathfrak{G} with $1 < \zeta(1) < p-1$ then e < p-1 and either $\zeta(1) = e$ or $\zeta(1) = p-e$. In the latter case ζ does not contain the principal Brauer character as a modular constituent. Furthermore if B is the p-block of \mathfrak{G} containing ζ then B contains exactly $\frac{p-1}{e}$ irreducible complex character of degree $\zeta(1)$, any two of which are p-conjugate and hence coincide as Brauer characters.
- (2.3) If $\mathbf{Z}(\mathfrak{G}) = \langle 1 \rangle$ and e = 2 then the degree of any irreducible modular representation of \mathfrak{G} is 1, p-2 or at least p.

The following result of Tuan [12, Theorem C] is also useful.

(2.4) Any modular irreducible representation of \S in the principal block can be written in the field of p elements.

The proofs of (2.2), (2.3) and (2.4) can be simplified considerably using the methods of [11].

§ 3. Local Results

Throughout this section K is a field of characteristic p. \mathfrak{SP} is a Frobenius group with Frobenius kernel \mathfrak{P} where $|\mathfrak{P}|=p$ and $\mathfrak{C}\cap\mathfrak{P}=\langle 1\rangle$. The one dimensional K-representation α of \mathfrak{CP} is defined by

(3.1)
$$G^{-1}PG = P^{\alpha(G)} \text{ for } P \in \mathfrak{P}, \ G \in \mathfrak{G}.$$

The following result is a reformulation of [11, Lemma 2].

Lemma 3.1. Let λ be a one dimensional K-representation of \mathfrak{PE} and let $1 \leq s \leq p$. Then there exists an indecomposable K \mathfrak{PE} -module V_s^{λ} such that $\dim_K V_s^{\lambda} = s$, $V_{s|\mathfrak{P}}^{\lambda}$ is indecomposable and if U is the unique submodule of V_s^{λ} with $\dim_K U$

= 1 then $uG = \lambda(G)u$ for all $u \in U$, $G \in \mathfrak{FP}$. Furthermore every nonzero indecomposable $K\mathfrak{PF}$ -module is isomorphic to some V_s^{λ} ; $V_s^{\lambda} \approx V_t^{\mu}$ if and only if s = t, $\lambda = \mu$; V_s^{λ} is projective if and only if s = p.

Throughout this section V_s^{λ} will be defined as in Lemma 3.1 and for any λ , $V_0^{\lambda} = 0$. In case $\mathfrak{E} = \langle 1 \rangle$ we will write $V_s = V_s^{\lambda}$. If $E \in \mathfrak{E}$ then $\det_s^{\lambda}(E)$ denotes the determinant of E acting as a linear transformation on V_s^{λ} and φ_s^{λ} denotes the Brauer character of $\mathfrak{P}\mathfrak{E}$ corresponding to V_s^{λ} .

Lemma 3.2. Let $0 \le i \le s \le p$. Then V_s^{λ} has a unique submodule U_i with $\dim_K U_i = i$. Furthermore $U_i \approx V_i^{\lambda}$ and $V_s^{\lambda}/U_i \approx V_{s-i}^{\lambda a-i}$.

Proof. Since every irreducible $K\mathfrak{B}\mathfrak{E}$ -module is 1-dimensional V_s^{λ} has an i-dimensional submodule U_i for $0 \le i \le s$. As $V_{s|\mathfrak{P}}^{\lambda}$ is indecomposable each U_i is uniquely determined. By Lemma 3.1. $U_1 \subseteq U_i$ and so $U_i \approx V_i^{\lambda}$.

If i=0 or i=s the last statement is clear. Suppose that i=1 and $s\geq 2$. Since $|\mathfrak{C}| | (p-1)$ the $K\mathfrak{C}$ -module $U_2|\mathfrak{C}$ is a direct sum of two $K\mathfrak{C}$ -modules. Choose a K-basis x, y of U_2 such that $y\in U_1$ and $xE=\mu(E)x$ for all $E\in\mathfrak{C}$ and some 1-dimensional K-representation of \mathfrak{C} . Then for suitable $P\in\mathfrak{P}$, xP=x+y. Thus for $E\in\mathfrak{C}$

$$x + \alpha(E)y = xP^{\alpha(E)} = xE^{-1}PE = \mu(E^{-1})xPE = \mu(E^{-1})xE + \mu(E^{-1})yE$$
$$= x + \mu(E^{-1})\lambda(E)y.$$

Hence $\mu(E) = \lambda(E)\alpha^{-1}(E)$ for all $E \in \mathfrak{E}$. If \overline{x} denotes the image of x in V_s^{λ}/U_1 this implies that if G = PE, $P \in \mathfrak{P}$, $E \in \mathfrak{E}$ then

$$\overline{x}G = \overline{x}E = \lambda \alpha^{-1}(E)\overline{x} = \lambda \alpha^{-1}(G)\overline{x}$$

Thus $V_s^{\lambda}/U_i \approx V_{s-1}^{\lambda \alpha^{-1}}$. Since $V_s^{\lambda}/U_1 \approx (V_s^{\lambda}/U_1)/(U_i/U_1)$ for $i \ge 1$ the result follows by induction on i.

Lemma 3.3. $(V_s^{\lambda})^* \approx V_s^{\lambda^{-1}\alpha^{(s-1)}}$. $\det_s^{\lambda}(E) = \lambda^s \alpha^{-s(s-1)/2}(E)$ for $E \in \mathfrak{E}$. Let $\mathfrak{E} = \langle E_0 \rangle$. Then $\varphi_s^{\alpha j}(E_0) = \varepsilon^j \binom{s-1}{i=0} \varepsilon^{-i}$ for a suitable primitive $|\mathfrak{E}|$ th root of unity ε and all s and j.

Proof. This is an immediate consequence of Lemma 3.2.

Lemma 3.4.
$$V_s^{\lambda} \otimes V_p^{\mu} \approx \sum_{t=0}^{s-1} V_p^{\lambda \mu \alpha^{-t}}$$
 for $0 \le s \le p$.

Proof. Let M_{μ} be the 1-dimensional $K\mathfrak{E}$ -module corresponding to the representation $\mu|\mathfrak{E}$. It is easily seen (and well known) that $V_{\rho}^{\mu} \approx M_{\mu}^{\mathfrak{E}\mathfrak{P}}$. By Lemma 3.2 $V_{s}^{\lambda}|\mathfrak{E} \approx \sum_{i=1}^{s-1} M_{\lambda a^{-i}}$. Thus [3, p. 325].

$$V_s^{\lambda} \otimes V_p^{\mu} \approx (V_s^{\lambda}|_{\mathfrak{S}} \otimes M_{\mu})^{\mathfrak{SP}} \approx \left(\sum_{i=0}^{s-1} M_{\lambda \mu \alpha^{-i}}\right)^{\mathfrak{SP}} \approx \sum_{i=0}^{s-1} V_p^{\lambda \mu \alpha^{-i}}$$

Lemma 3.5. If $0 \le s \le t$ and $s + t \le p$ then

$$V_s^{\lambda} \otimes V_t^{\mu} \approx \sum_{i=0}^{s-1} V_{s+t-1-2i}^{\lambda\mu\alpha^{-i}}.$$

Proof. It suffices to prove the result in case $|\mathfrak{G}| = p - 1$. If s = 0 or 1 it is immediate.

Suppose s=2. By [6, Theorem 3 (2.3 b)] $V_2 \otimes V_t \approx V_{t-1} + V_{t+1}$. Thus by Lemma 3.1 $V_2^{\lambda} \otimes V_t^{\mu} \approx V_{t-1}^{\beta} + V_{t+1}^{\gamma}$ for some β , γ . By Lemma 3.2 there exist K-bases $\{x_0, x_1\}$ of V_2^{λ} and $\{y_0, \ldots, y_{t-1}\}$ of V_t^{μ} such that for $E \in \mathfrak{E}$ and all i

$$x_i E = \lambda \alpha^{-i}(E) x_i, \ y_i E = \mu \alpha^{-i}(E) y_i.$$

Furthermore if U is the submodule of $V_t^{\lambda} \otimes V_t^{\mu}$ consisting of all u with uP = u for all $P \in \mathfrak{P}$ then $\dim_{\mathbb{K}} U = 2$. Let $P \in \mathfrak{P}$. Then there exist $a, b \in \mathbb{K}$ with $ab \neq 0$ such that

$$x_0P = x_0$$
, $x_1P = x_1 + ax_0$
 $y_0P = y_0$, $y_1P = y_1 + by_0$

Define

$$v_0 = x_0 \otimes y_0, \ v_1 = \frac{1}{a} x_1 \otimes y_0 - \frac{1}{b} x_0 \otimes y_1.$$

Then $v_i P = v_i$ for i = 0, 1, and so $\{v_0, v_1\}$ is a basis of U. If $E \in \mathfrak{E}$ then

$$v_0 E = \lambda \mu(E) v_0$$
, $v_1 E = \lambda \mu \alpha^{-1}(E) v_1$

As $|\mathfrak{E}| \neq 1$, $\lambda \mu \neq \lambda \mu \alpha^{-1}$. Therefore $v_0 \in V_{t-1}^3$ and $\beta = \lambda \mu$ or $v_0 \in V_{t+1}^{\mathsf{T}}$ and $\gamma = \lambda \mu$. Let $\langle x_0 \rangle \approx V_1^{\lambda}$ be the submodule of V_2^{λ} generated by x_0 . Let $W = \langle x_0 \rangle \otimes V_t^{\mu}$ $\approx V_t^{\mu \lambda}$. Thus W is indecomposable and $v_0 \in W$. Since $\dim_K W = t$ it follows that $W \cap U_{t+1} \neq 0$, where U_{t+1} is a submodule of $V_2^{\lambda} \otimes V_t^{\mu}$ with $U_{t+1} \approx V_{t+1}^{\mathsf{T}}$. By Lemma 3.2 $v_0 \in W \cap U_{t+1}$. Hence $v_0 \in U \cap U_{t+1}$ and $\gamma = \lambda \mu$. Thus $\beta = \lambda \mu \alpha^{-1}$ and the result is proved in case s = 2.

We proceed by induction on s. Assume that $s \ge 3$ and the result has been proved for s-1 and s-2. Then

$$V_{s-1}^{\lambda} \otimes V_{2}^{\mathsf{l}} \otimes V_{t}^{\mu} \approx (V_{s-2}^{\lambda a^{-1}} \otimes V_{t}^{\mu}) + (V_{s}^{\lambda} \otimes V_{t}^{\mu}).$$

Thus by induction

$$\sum_{i=0}^{s-2} (V_{s+t-2-2i}^{\lambda\mu\alpha^{-i}} \otimes V_2^1) \approx \sum_{i=0}^{s-3} V_{s+t-3-2i}^{\lambda\mu\alpha^{-i-1}} + (V_s^{\lambda} \otimes V_t^{\mu}).$$

Applying the first part of the lemma once again yields that

$$V_{s+t-1}^{\lambda\mu} + 2 \left(\sum_{i=1}^{s-2} V_{s+t-1-2i}^{\lambda\mu\alpha^{-i}} \right) + V_{t-s+1}^{\lambda\mu\alpha^{-(s-1)}} \approx \sum_{i=0}^{s-3} V_{s+t-3-2i}^{\lambda\mu\alpha^{-i-1}} + (V_s^{\lambda} \otimes V_t^{\mu}).$$

The result now follows from the Krull-Schmidt Theorem.

The next result is proved in a similar manner to [6, (2.5 a)].

Lemma 3.6. Suppose that $1 \le b$, $c \le p-1$ and $V_b^{\beta} \otimes V_c^{\gamma} \approx \sum_{i=0}^k V_{e_i}^{\sigma_i}$ with $e_i > 0$ for $i = 0, \ldots, k$. Then

$$\sum_{i=0}^k V_p^{\sigma_i a^{b-e_i}} + (V_{p-b}^{\mathrm{s}} \otimes V_c^{\mathrm{t}}) \approx \sum_{j=0}^{c-1} V_p^{\mathrm{sy} a^{-j}} + \sum_{i=0}^k V_{p-e_i}^{\sigma_i a^{b-e_i}}.$$

Proof. By Lemma 3.2

$$0 \to V_{p-b}^{\beta\alpha^{p-b}} \to V_p^{\beta\alpha^{p-b}} \to V_b^\beta \to 0.$$

is exact. Tensoring with V_c^{τ} yields that

$$0 \to V_{p-b}^{\beta\alpha^{p-b}} \otimes V_c^{\intercal} \to V_p^{\beta\alpha^{p-b}} \otimes V_c^{\intercal} \to V_b^{\beta} \otimes V_c^{\intercal} \to 0$$

is exact. Also

$$0 \to \sum_{i=0}^k V_{p-e_i}^{\tau_i \alpha^{p-e_i}} \to \sum_{i=0}^k V_p^{\tau_i \alpha^{p-e_i}} \to \sum_{i=0}^k V_{e_i}^{\tau_i} \to 0$$

is exact. Thus Schanuel's Theorem and Lemma 3.4 imply that

$$\sum_{i=0}^{k} V_{p}^{\tau_{i}a^{p-e_{i}}} + (V_{p-b}^{\beta a^{p-b}} \otimes V_{c}^{\mathsf{T}}) \approx \sum_{j=0}^{c-1} V_{p}^{\beta \mathsf{T}a^{p-b-j}} + \sum_{i=0}^{k} V_{p-e_{i}}^{\tau_{i}a^{p-e_{i}}}.$$

The result follows by tensoring this equation with $V_1^{a^{b-p}}$

LEMMA 3.7. If
$$1 \le s \le \frac{p-1}{2}$$
 then

$$\begin{split} V_{s}^{\lambda} \otimes V_{s}^{\mu} &\approx \sum_{i=0}^{s-1} V_{2}^{\lambda\mu\alpha^{i+1-s}} \\ V_{p-s}^{\lambda} \otimes V_{p-s}^{\mu} &\approx \sum_{i=0}^{s-1} V_{2}^{\lambda\mu\alpha^{s+i}} + \sum_{i=2s}^{p-1} V_{p}^{\lambda\mu\alpha^{i}} \end{split}$$

Proof. The first statement is a special case of Lemma 3.5. Also Lemma 3.5 yields that

$$V_s^{\lambda} \otimes V_{p-s}^{\mu} pprox \sum\limits_{i=0}^{s-1} V_{p-1-2i}^{\lambda\mulpha^{-i}}$$

Apply Lemma 3.6 with $\beta = \lambda$, $\gamma = \mu$, b = s and c = p - s. Then

$$\sum_{i=0}^{s-1} V_p^{\lambda \mu a^{s+i-p+1}} + (V_{p-s}^{\lambda} \otimes V_{p-s}^{\mu}) \approx \sum_{j=0}^{p-s-1} V_p^{\lambda \mu \alpha^{-j}} + \sum_{i=0}^{s-1} V_{2\,i+1}^{\lambda \mu a^{s+i-p+1}}$$

Since $\alpha^{p-1}(G) = 1$ for all $G \in \mathfrak{GP}$ the Krull Schmidt Theorem implies the result.

Lemma 3.8. If $1 \le s \le \frac{p-1}{2}$ then

$$\begin{split} V_s^{\lambda} \otimes (V_s^{\lambda})^* &\approx \sum_{i=0}^{s-1} V_{2i+1}^{a^i} \\ V_{p-s}^{\lambda} \otimes (V_{p-s}^{\lambda})^* &\approx \sum_{i=0}^{s-1} V_{2i+1}^{a^i} + \sum_{i=s}^{p-s-1} V_p^{a^i} \end{split}$$

Proof. This follows directly from Lemmas 3.3 and 3.7 and the fact that $\alpha^{p-1}(G) = 1$ for all $G \in \mathfrak{GP}$.

§ 4. Proof of Theorem 1

Throughout this section \mathfrak{G} is a group which satisfies the hypotheses of Theorem 1. \mathfrak{P} is a S_p -subgroup of \mathfrak{G} . Since $d \leq p$ in Theorem 1 \mathfrak{P} has exponent p and so $|\mathfrak{P}| = p$ as \mathfrak{P} is cyclic. $\mathfrak{N} = \mathbf{N}_{\mathfrak{G}}(\mathfrak{P})$ and $\mathfrak{C} = \mathbf{C}_{\mathfrak{G}}(\mathfrak{P}) = \mathfrak{P} \times \mathfrak{P}$. By assumption $\mathfrak{N} \neq \mathfrak{G}$ and by Burnside's transfer theorem $\mathfrak{N} \neq \mathfrak{C}$. K is a field of characteristic p.

 $\mathcal{M} = \langle M | M \text{ is an indecomposable } K\mathfrak{B}\text{-module with } \dim_{\mathbb{K}} M \leq p \text{ and } \mathfrak{P} \text{ is not in the kernel of } M \rangle.$

By assumption \mathscr{M} is nonempty. If $M \in \mathscr{M}$ then M is a direct summand of $(M|_{\mathfrak{N}})^{\mathfrak{G}}$ by D. G. Higman's Theorem [3.§63]. Thus $M|_{\mathfrak{N}}$ is indecomposable by the Mackey decomposition and if $\dim_{\kappa} M < p$ then M is uniquely determined by $M|_{\mathfrak{N}}$. The Mackey decomposition and (2.1) imply that $M|_{\mathfrak{G}} = \sum_{i=1}^{a} U_i \otimes W_i$ where for each i U_i is an indecomposable $K\mathfrak{P}$ -module and W_i is an irreducible $K\mathfrak{P}$ -module. Furthermore $U_i \otimes W_i$ is conjugate to $U_j \otimes W_j$ for all i, j under the action of $\mathfrak{N}/\mathfrak{G}$. Thus $\dim_{\kappa} U_i = c$, $\dim_{\kappa} W_i = b$ are both independent of i and in the notation of section 3 $U_i \approx V_c$ for all i. Therefore

$$(4.1) M_{|\mathfrak{C}} \approx V_c \otimes \left(\sum_{i=1}^a W_i\right), \ \dim_{\mathbb{K}} W_i = b.$$

The triple a = a(M), b = b(M), c = c(M) is a set of invariants attached to M and (4.1) implies that

$$\dim_{\kappa} M = a(M) b(M) c(M).$$

Lemma 4.1. Suppose that $p \ge 5$. If $M \in \mathcal{M}$ then $\dim_K M > 2$.

Proof. Suppose $\dim_{\mathbb{K}} M \leq 2$ for some $M \in \mathscr{M}$. Let \Re be the kernel of M. Then $\mathfrak{G}/\mathfrak{K}$ is isomorphic to a subgroup of $GL_2(K)$. All finite subgroups of $GL_2(K)$ are known and it is easily seen that $\mathfrak{G}/\mathfrak{K}$ and hence \mathfrak{G} , is of type $L_2(p)$ contrary to assumption.

Lemma 4.2. Suppose that $p \ge 5$. If $M \in \mathcal{M}$ with \mathfrak{H} in the kernel of M then $\dim_K M > 3$.

Proof. Let $M \in \mathcal{M}$ with \mathfrak{H} in the kernel of M. Suppose that $\dim_{\mathbb{K}} M \leq 3$. By Lemma 4.1 it may be assumed that $\dim_{\mathbb{K}} M = 3$ and M is absolutely irreducible. We will reach a contradiction by showing that \mathfrak{G} is of type $L_2(p)$. By changing notation it may be assumed that $\mathfrak{G}' = \mathfrak{G}$ and M is faithful. Thus $\mathbf{C}_{\mathfrak{G}}(\mathfrak{P}) = \mathfrak{P}$. Let $\mathfrak{N} = \mathfrak{P}\mathfrak{E}$ with $\mathfrak{P} \cap \mathfrak{E} = \langle 1 \rangle$. Let $\mathfrak{E} = \langle E \rangle$. Let α be defined as in (3.1). Then $M_{|\mathfrak{N}} \approx V_3$ for some one dimensional K-representation λ by Lemma 3.1 and (4.1). Lemmas 3.1, 3.3 and 3.8 imply that $M \otimes M^* = L_0 + L_1 + L_2$ where $\dim_{\mathbb{K}} L_i = 2i + 1$ and $L_i|_{\mathfrak{N}}^* = L_i|_{\mathfrak{N}}$. Thus M may be chosen so that $M_{|\mathfrak{N}} \approx M_{|\mathfrak{N}}$.

Since $C_{\mathfrak{G}}(\mathfrak{P})=\mathfrak{P}$ there is only one block of defect 1 [3, (86.10)]. Hence M is in the principal block of \mathfrak{G} . Thus if K_0 is the field of p elements there exists a K_0 -representation \mathfrak{F} of \mathfrak{G} corresponding to M by (2.4). Since $M_{|\mathfrak{P}}\approx M_{|\mathfrak{P}}$ it follows from Lemma 3.3 that \mathfrak{F} is equivalent to \mathfrak{F}^* . An argument of \mathfrak{R} . Brauer [2, p. 438] now implies that \mathfrak{G} is isomorphic to a subgroup of $O_3(p)$. Since $O_3(p)$ is of type $L_2(p)$ so is \mathfrak{G} contrary to assumption.

Lemma 4.3. Suppose that $p \ge 5$. If $M \in \mathcal{M}$ then $c(M) > \frac{p-1}{2}$.

Proof. Suppose $M \in \mathcal{M}$ with $c = c(M) \le \frac{p-1}{2}$. By Lemma 3.8 and (4.1)

$$M \otimes M^* |_{\mathfrak{C}} \approx \left(\sum_{i=0}^{c-1} V_{2i+1}\right) \otimes \left(\sum_{j=1}^{a} \sum_{k=1}^{a} W_i \otimes W_j^*\right).$$

Thus no direct summand of $M \otimes M^*|_{\mathfrak{V}}$ is projective. Let W_0 be the trivial 1-dimensional $K\mathfrak{G}$ -module. Then

$$M \otimes M^*|_{\mathfrak{C}} \approx \sum_{i=0}^{c-1} (V_{2i+1} \otimes W_0) + U$$

where U is a direct sum of indecomposable modules none of which are projective. Since $M \in \mathcal{M}$, c > 1. Thus $V_3 \otimes W_0$ is isomorphic to a direct summand of $M \otimes M^*|_{\mathfrak{V}}$. Let L be a direct summand of $M \otimes M^*$ such that $V_3 \otimes W_0$ is isomorphic to a direct summand of $L_{|\mathfrak{V}}$. Since no direct summand of $L_{|\mathfrak{V}}$ is projective, $L_{|\mathfrak{V}}$ is indecomposable. As \mathfrak{V} is in the kernel of $V_3 \otimes W_0$ \mathfrak{V} is also in the kernel of $L_{|\mathfrak{V}}$. Thus $L_{|\mathfrak{V}}$ is indecomposable by Lemma 3.1. Hence $\dim_{\mathfrak{K}} L = 3$ contrary to Lemma 4.2.

Lemma 4.4. If $M \in \mathcal{M}$, $M_{|\mathfrak{P}}$ is indecomposable and $\mathfrak{H} = \mathbf{Z}(\mathfrak{G})$.

Proof. If $\dim_{\kappa} M = p$ then M is projective and so $M_{|\mathfrak{P}}$ is projective and hence indecomposable. Suppose that $\dim_{\kappa} M \leq p-1$. If p=3 then $M_{|\mathfrak{P}}$ is indecomposable since \mathfrak{P} is not in the kernel of M. If $p \geq 5$ then (4.2) and Lemma 4.3 imply that a(M) = b(M) = 1. Thus by (4.1) $M_{|\mathfrak{P}}$ is indecomposable in any case. If \mathfrak{F} is the K-representation of \mathfrak{F} corresponding to M this implies that any p'-element in the commuting ring of $\mathfrak{F}_{|\mathfrak{P}}$ is a scalar. Thus $\mathfrak{F} = \mathbf{Z}(\mathfrak{F})$ as required.

The proof of Theorem 1 can now be given. If p=2 then $\mathfrak S$ is 2-solvable since $|\mathfrak P|=2$ contrary to assumption. Thus $p\neq 2$. In view of Lemma 4.4 it only remains to prove the inequalities. If p=3 the result is trivial and if p=5 it follows from Lemma 4.1. Hence it may be assumed that $p\geq 7$. It may further be assumed that $\mathfrak S=\mathfrak S'$ and K is algebraically closed without loss of generality.

Choose $L \in \mathcal{M}$ with $\dim_K L$ minimal. Let $d = p - s = \dim_K L$. It may be assumed that L is faithful. By Lemma 4.3 and (4.1)

$$(4.3) L_{|\mathfrak{C}} \approx V_{p-s} \otimes W, \dim_{\kappa} W = 1, s \leq \frac{p-1}{2}.$$

Since $\mathfrak{N}/\mathfrak{C}$ is cyclic and $\mathfrak{G}\subseteq \mathbf{Z}(\mathfrak{N})$ it follows that $\mathfrak{N}/\mathfrak{P}$ is abelian. Thus there exists a $K\mathfrak{N}$ -module W_1 whose kernel contains \mathfrak{P} such that $W_1|_{\mathfrak{T}}=W$. Then

$$(4.4) L_{\Re} \otimes L^*_{\Re} \approx (L_{\Re} \otimes W_1^*) \otimes (L_{\Re} \otimes W_1^*)^*.$$

Furthermore

$$(L_{|\mathfrak{N}} \otimes W_1^*)_{|\mathfrak{C}} \approx V_{p-s} \otimes W_0$$

where W_0 denotes the trivial 1-dimensional $K\mathfrak{H}$ -module. Let $\overline{\mathfrak{N}} = \mathfrak{N}/\mathfrak{H}$. Thus $L_{|\mathfrak{N}} \otimes W_1^*$ is a $K\overline{\mathfrak{N}}$ -module. Hence (4.3), (4.4) and Lemma 3.8 imply that in the notation of section 3

(4.5)
$$L_{\Re} \otimes L^*_{\Re} \approx \sum_{i=0}^{s-1} V_{2i+1}^{\alpha^i} + \sum_{i=s}^{p-s-1} V_{p}^{\alpha^i},$$

where each V_j^{λ} is a $K\overline{\mathfrak{N}}$ -module.

Higman's Theorem and (4.5) imply that

$$L \otimes L^* \approx \sum_{i=0}^{s-1} L_i + A$$

where each L_i is indecomposable, A is projective and $L_{i|\mathfrak{N}}$ has $V_{2i+1}^{\mathfrak{a}^i}$ has a direct summand. Let

$$(4.6) L_{i|\mathfrak{N}} = V_{2i+1}^{a^{i}} + \sum_{i=1}^{m_{i}} V_{p}^{\mu_{i}}$$

Thus L_0 is the 1-dimensional trivial K3-module. By (4.5)

$$(4.7) \{\mu_{ij} | j = 1, \ldots, m_i ; i = 0, \ldots, s-1\} \subseteq \{\alpha^i | s \le i$$

Suppose that p - s < 2/3(p - 1). Then p < 3s - 1. By (4.7)

$$\sum_{i=1}^{s-1} m_i \le (p-s-1)-s+1=p-2s \le s-1.$$

Hence at least (s-1)-(p-2s) of the m_i are zero. Thus $m_k=0$ for some k with

$$1 < k < (s-1) - \{(s-1) - (p-2s)\} = p-2s$$

Thus by (4.6)

$$\dim_{\kappa} L_k = 2k + 1 \le 2p - 4s + 1 = (p - s) + (p + 1 - 3s)$$

Hence $L_k \in \mathcal{M}$ contrary to the minimality of d. Therefore in proving Theorem 1 it may be assumed that $p \ge 13$ and $d = p - s \ge 2/3(p-1)$ or equivalently

(4.8)
$$s \le \frac{p+2}{3}, p \ge 13.$$

Choose $E \in \mathfrak{G}$ so that $\mathfrak{N} = \langle E, \mathfrak{G} \rangle$. Since $\mathfrak{G} = \mathfrak{G}'$ E must have determinant 1 when considered as a linear transformation on the K-space L_i for $i = 0, \ldots, s-1$. Thus by (4.6) and Lemma 3.3.

(4.9)
$$\left(\prod_{j=1}^{m_i} \mu_{ij}\right) \alpha^{m_i(p-1)/2}(E) = \left(\prod_{j=1}^{m_i} \mu_{ij}^p\right) \alpha^{-m_i p(p-1)/2}(E) = 1.$$

Hence if $m_i = 1$ then $\mu_{i,1}(E) = \alpha^{(p-1)/2}(E) = \pm 1$. Since \mathfrak{G} is not of type $L_2(p)$, $E \neq 1$. Thus for any k either $\alpha^k(E) \neq \alpha^{(p-1)/2}(E)$ or $\alpha^{k+1}(E) \neq \alpha^{(p-1)/2}(E)$. Consequently (4.5) and (4.6) imply that at most $\frac{p+1-2s}{2}$ of $m_i's$ are equal to 1.

Suppose first that 2s-1 < p-s=d. The minimality of d and (4.6) yield that $m_i \neq 0$ for $i=1,\ldots,s-1$. Thus by (4.6)

$$s-1 \leq \frac{p+1-2s}{2} + \frac{1}{2} \left\{ p-2s - \frac{(p+1-2s)}{2} \right\} = \frac{1}{4} (3p-6s+1).$$

Hence $s \le \frac{3p+5}{10}$ and so $d = p - s \ge \frac{7p}{10} - \frac{1}{2}$ as required.

Assume now that $2s-1 \ge p-s$. Thus $s \ge 5$. The minimality of d yields that $m_i \ne 0$ for $i=1,\ldots,s-2$.

Thus by (4.6)

$$s-2 \le \frac{p+1-2s}{2} + \frac{1}{2} \{p-2s - (p+1-2s)\} = \frac{1}{4} (3p-6s+1)$$

Therefore

$$10s < 3b + 9 = 9s + 6$$

Hence $s \le 6$ and $p \ne 13$ so $p \le 3s - 1 \le 17$. Thus s = 6 and p = 17. Furthermore $\dim_{\mathbb{K}} L_{\delta} = 11 = d$. Since \mathfrak{P} is in the kernel of L_{δ} it may be assumed L was chosen initially such that \mathfrak{P} is in the kernel of L. Hence since L is faithful it may be assumed that $\mathfrak{P} = \langle 1 \rangle$. Thus L is in the principal p-block. The minimality of d implies that L is an irreducible $K\mathfrak{P}$ -module. Therefore $|\langle E \rangle| = |\mathfrak{P}| : \mathfrak{P}| > 2$ by (2,3). Thus for any k either $\alpha^k(E) \ne \alpha^{(p-1)/2}(E)$ or $\alpha^{k+1}(E) \ne \alpha^{(p-1)/2}(E)$ or $\alpha^{k+2}(E) \ne \alpha^{(p-1)/2}(E)$. Thus by (4,9) at most $\frac{p+2-2s}{3} < 3$ of the m_i 's are equal to 1 and so by (4.6).

$$4 = s - 2 \le 2 + \frac{1}{2} (5 - 2) < 4.$$

This contradiction establishes Theorem 1 in all cases,

§ 5. Proof of Theorem 2

Throughout this section \mathfrak{G} is a group which satisfies the hypotheses but not the conclusion of Theorem 2. \mathfrak{P} is a $S_{\mathcal{P}}$ -subgroup of \mathfrak{G} and $\mathfrak{N} = \mathbf{N}_{\mathfrak{G}}(\mathfrak{P})$. ζ is an irreducible faithful complex character of degree d.

LEMMA 5.1.
$$\mathfrak{B}$$
 is simple. $|\mathfrak{P}| = p$ and $C_{\mathfrak{B}}(\mathfrak{P}) = \mathfrak{P}$

Proof. Let \mathfrak{G}_0 be the subgroup of \mathfrak{G} generated by all p-elements in \mathfrak{G} . Thus $\mathfrak{G}_0 \triangleleft \mathfrak{G}$. Let $\zeta_{\mid \mathfrak{G}_0} = \sum_{i=1}^n \omega_i$ where each ω_i is an irreducible character of \mathfrak{G}_0 . Since the ω_i are conjugate under the action of \mathfrak{G} they all have the same degree. Thus if n > 1, $\omega_i(1) < \frac{p-1}{2}$ for each i and so by [5] $\mathfrak{P} \triangleleft \mathfrak{G}$ contrary to assumption. Hence $\zeta_{\mid \mathfrak{G}_0} = \omega$ is irreducible. Thus $\mathbf{Z}(\mathfrak{G}_0) = \mathbf{Z}(\mathfrak{G}) = \langle 1 \rangle$.

Suppose that $|\mathfrak{P}| \neq p$. Then there exists $\mathfrak{P}_1 \triangleleft \mathfrak{G}$ with $|\mathfrak{P}: \mathfrak{P}_1| = p$ [4]. Hence $\mathfrak{P} \subseteq C_{\mathfrak{G}}(\mathfrak{P}_1) \triangleleft \mathfrak{G}$ and so $\mathfrak{G}_0 \subseteq C_{\mathfrak{G}}(\mathfrak{P}_1)$. Thus $\mathfrak{P}_1 \subseteq \mathbf{Z}(\mathfrak{G}_0) = \langle 1 \rangle$ and so $|\mathfrak{P}| = p$.

Suppose that $\mathfrak{A} \triangleleft \mathfrak{G}_0$, $\mathfrak{A} \neq \mathfrak{G}_0$ Then \mathfrak{A} is a p'-group. Hence $\mathfrak{A} \triangleleft \mathfrak{A}\mathfrak{B}$ and $\mathfrak{A}\mathfrak{B}$ is p-solvable. Since $\mathfrak{A}\mathfrak{B}$ has a faithful complex representation of degree d < p-1 it follows that $\mathfrak{A}\mathfrak{B}$ has a K-representation whose kernel is in \mathfrak{F} for a suitable field K of characteristic p. Thus by Theorem B of Hall and Higman [7] (see also [11] for a simplification of part of the proof.) $\mathfrak{B}\subseteq \mathbf{C}_{\mathfrak{G}}(\mathfrak{A})\triangleleft \mathfrak{G}_0$. Thus $\mathfrak{A}\subseteq \mathbf{Z}(\mathfrak{G}_0)=\langle 1\rangle$. Therefore \mathfrak{G}_0 is simple.

By (2.2)

$$e = |\mathfrak{R} : \mathbf{C}(\mathfrak{P})| = p - \zeta(1) = p - \omega(1) = |\mathbf{N}_{\mathfrak{G}_0}(\mathfrak{P})| : \mathbf{C}_{\mathfrak{G}_0}(\mathfrak{P})|.$$

Since $\mathfrak{G} = \mathfrak{G}_0\mathfrak{N}$ this yields that $\mathfrak{G} = \mathfrak{G}_0\mathbf{C}_{\mathfrak{G}}(\mathfrak{P})$. If \mathfrak{G} is not of type $L_2(p)$ then Theorem 1 implies that $\mathfrak{G} = \mathfrak{G}_0$ and $\mathfrak{P} = \mathbf{C}_{\mathfrak{G}}(\mathfrak{P})$ completing the proof of the Lemma. Suppose that \mathfrak{G} is of type $L_2(p)$. Thus $\mathfrak{G}_0 \approx PSL_2(p)$. Since $PSL_2(p)$ admits no outer automorphism which leaves all the elements in a S_p -subgroup fixed it follows that $\mathfrak{G} = \mathfrak{G}_0 \approx PSL_2(p)$. Thus \mathfrak{G} is simple since p > 3 and $\mathbf{C}_{\mathfrak{G}}(\mathfrak{P}) = \mathfrak{P}$ as required.

Let F be a finite extension field of the field of p-adic numbers which is a splitting field for $\mathfrak S$ and all its subgroups and contains all the $|\mathfrak S|$ th roots of unity. Let R be the ring of local integers in F, let $\mathfrak p$ be the maximal ideal in R and let $K = R/\mathfrak p$. It is well known that there exists an $R\mathfrak S$ -module Z which affords the character ζ . Let $\overline{Z} = Z/\mathfrak p Z$.

Lemma 5,2. \overline{Z} is absolutely irreducible,

Proof. Since F contains all $|\mathfrak{G}|$ th roots of unity K is a splitting field of \mathfrak{G} . Thus it suffices to show that \overline{Z} is irreducible. By (2.2) and Lemma 5.1 every modular irreducible constituent of \overline{Z} is faithful. Hence if \overline{Z} is reducible then \mathfrak{G} has a faithful K-representation of degree at most $d/2 < \frac{p-1}{2}$. Hence by Theorem 1 \mathfrak{G} is of type $L_2(p)$ and so \mathfrak{G} is isomorphic to $PSL_2(p)$ by Lemma 5.1. In this case it is well known that $e = \frac{p-1}{2}$ and $p \equiv 1 \pmod{4}$ contrary to assumption.

Let $\mathfrak{R}=\mathfrak{PE}$ with $\mathfrak{P}\cap\mathfrak{E}=\langle 1\rangle$ and let $\mathfrak{E}=\langle E\rangle$. Let α be defined as in (3.1). Let ε be a primitive e^{th} root of unity in R such that the image of ε in R/\mathfrak{P} is $\alpha(E)$.

LEMMA 5.3. $\bar{Z}_{|\mathfrak{N}} \neq V_{p-e}^1$

Proof. Suppose that $\overline{Z}|_{\mathfrak{N}} \approx V_{\mathfrak{D}-e}^1$. Let $\left\{\zeta_i|i=1,\ldots,\frac{p-1}{e}\right\}$ be all the irreducible complex characters of \mathfrak{S} which are algebraically conjugate to ζ . Then by (2.2) the ζ_i are all equal as Brauer characters. Thus if U is an $R\mathfrak{S}$ -module affording the character \emptyset such that $\overline{U} = U/\mathfrak{p}U$ is the projective indecomposable $K\mathfrak{S}$ -module corresponding to \overline{Z} then $\emptyset = \sum_{i=1}^{p-1/e} \zeta_i + \theta$ for some character θ . Thus [11, Theorem 1] there exists an $R\mathfrak{S}$ -module M which affords the character $\sum_{i=1}^{p-1/e} \zeta_i$ such that $\overline{M} = M/\mathfrak{p}M$ is indecomposable. Since $\dim_K \overline{M} = \left(\frac{p-1}{e}-1\right)p+1$ Higman's theorem and Lemma 3.1 imply that

$$\overline{M}|_{\mathfrak{N}} \approx V_1^{\alpha^k} + \sum_{j=1}^{(p-1)/e-1} V_p^{\alpha^{\alpha(j)}}$$

for suitable k and a(j). Let ψ be the Brauer character afforded by \overline{M} . Then Lemma 3.3 implies that

$$\psi(E) = \varepsilon^k + \sum_{j=1}^{(\nu-1)/e-1} \varepsilon^{a(j)} \left(\sum_{t=0}^{\nu-1} \varepsilon^{-t} \right) = \varepsilon^k + \sum_{j=1}^{(\nu-1)/e-1} \varepsilon^{a(j)}$$

$$\zeta_i(E) = \sum_{t=0}^{\nu-e-1} \varepsilon^{-t} = 1$$

Since $\psi(E) = \sum_{i=1}^{(p-1)/e} \zeta_i(E)$ this yields that k=1 and a(j)=1 for all j. Hence $\overline{M}_{|\mathfrak{N}} \approx V_1^1 + A$ for some projective $K\mathfrak{N}$ -module A. Let L_0 be the trivial 1-dimensional $K\mathfrak{G}$ -module. Then $L_0|_{\mathfrak{N}} \approx V_1^1 + B$ for some projective $K\mathfrak{N}$ -module B. Hence by Higman's Theorem \overline{M} and L_0 are both direct summands of $(V_1^1)^{\mathfrak{G}}$ contrary to the Mackey decomposition. This contradiction establishes the lemma.

Lemma 5.4. $e \equiv 0 \pmod{2}$, $\overline{Z}_{|\Re} \approx V_{p-1}^{\alpha^{e/2}}$ and $\frac{p-1}{e} \equiv 0 \pmod{2}$

Proof. Let $\overline{Z}_{|\mathfrak{N}} \approx V_{\mathcal{D}-e}^{a^k}$. By Lemma 3.3 $\zeta(E) = \varepsilon^k$. Since $C_{\mathfrak{S}}(\mathfrak{P}) = \mathfrak{P}$ (2.2) implies that $\zeta(E)$ is rational. Hence $\varepsilon^k = \pm 1$. If $\varepsilon^k = 1$ then $e \mid k$ and so $\overline{Z}_{|\mathfrak{N}} \approx V_{\mathcal{D}-e}^1$ contrary to Lemma 5.3. Hence $\varepsilon^k = -1$. Therefore $e \equiv 0 \pmod{2}$ and $\overline{Z}_{|\mathfrak{N}} \approx V_{\mathcal{D}-e}^{a^{e/2}}$.

Since \mathfrak{G} is simple $\det_{p-s}^{a^{e/2}}(E) = 1$. Thus by Lemma 3.3

$$1 = \alpha^{e/2(p-e)} \alpha^{-(p-e)(p-e-1)/2}(E) = -\alpha^{-(p-e)(p-e-1)/2}(E) = -\alpha^{-(p-e-1)/2}(E).$$

Thus $\frac{p-e-1}{2} \equiv e/2 \pmod{e}$ and so $\frac{p-1}{2} \equiv 0 \pmod{e}$. Hence $\frac{p-1}{e} \equiv 0 \pmod{2}$ as required.

Theorem 2 now follows from Lemmas 5.1 and 5.4.

References

- [1] Brauer, R., Investigations on group characters, Ann. of Math. 42 (1941), 936-958.
- [2] Brauer, R., On groups whose order contains a prime number to the first power I, II, Am. J. Math. 64 (1942), 401-420, 421-440.
- [3] Curtis and Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience 1962.
- [4] Feit, W., Groups which have a faithful representation of degree less than p-1, Trans. of A.M.S. 112 (1964), 287-303.
- [5] Feit, W. and Thompson, J. G., Groups which have a faithful representation of degree less than $\frac{p-1}{2}$. Pacific J. Math. 11 (1961), 1257-1262.
- [6] Green, J. A., The modular representation algebra of a finite group, Ill. J. Math. 6 (1962), 607-619.
- [7] Hall, P. and Higman, G., On the p-length of p-soluble groups and reduction theorems for Burnside's problem, Proc. London Math. Soc. 6 (1956), 1-42.
- [8] Janko, Z., A new finite simple group with abelian 2-Sylow subgroups (to appear).
- [9] Schur, I., Über die darstellung der symmetrischen und der alternierenden gruppen durch gebrochene lineare Substitutionen, J. Für Math. 139 (1911), 155-250.
- · [10] Swan, R. G., Periodic resolutions for finite groups, Ann. of Math. 72 (1960), 267-291.
 - [11] Thompson, J. G., Vertices and Sources (to appear).
 - [12] Tuan, H. F., On groups whose orders contain a prime to the first power. Ann. of Math. 45 (1944), 110-140.

Yale University