MULTIWAVELENGTH TEMPORAL BEHAVIOR OF GRS 1915+105

D. HANNIKAINEN Observatory, PO Box 14 00014 University of Helsinki, Finland

AND

PH.DUROUCHOUX C.E. Saclay, DSM, DAPNIA, Service d'Astrophysique 91191 Gif sur Yvette, Cedex France

GRS 1915+105

The transient X-ray source GRS 1915+105 was discovered in August 1992 with the *GRANAT*/WATCH all-sky monitor (Castro-Tirado *et al.* 1994). Subsequent VLA observations from March through April 1994 led to the discovery of apparent superluminal motion in a pair of radio condensations moving away from the compact radio core (Mirabel & Rodriguez 1994). These jet-like features are interpreted as a bipolar outflow with bulk velocity ~ 0.9c. Although no optical counterpart has been observed, due to the heavy extinction in the Galactic plane, and therefore not enabling measurements of the mass of the compact object, the hard X-ray spectrum and high luminosity (~ 10^{39} erg s⁻¹), extreme variability in the X-ray light curve and the relativistic jets make GRS 1915+105 a strong black hole candidate.

GRS 1915+105 has been extensively observed in the radio, X-ray and hard X-ray since its discovery. In all wavebands the emission is highly variable and complex, including very large amplitude flaring on timescales of minutes in the X-rays (e.g. Greiner, Morgan & Remillard 1996) and Pooley & Fender (1997) have identified three different types of behavior in the radio flux density following a one and a half years' monitoring at 15 GHz with the Ryle telescope. In Figure 1 we have gathered together a sample of light curves of GRS 1915+105, demonstrating flaring activity and periods of total quiescence in both the radio and X-ray domains. There is no obvious correlation between the radio and X-ray/gamma-ray behavior.

K. Koyama et al. (eds.), The Hot Universe, 396-397.

^{© 1998} IAU. Printed in the Netherlands.

Figure 1. References. BATSE: http://cossc.gsfc.nasa.gov/cossc/batse/hilev/occ.html; WATCH: Finoguenov et al. (1994); RXTE: http://space.mit.edu/XTE/ASM_lc.html; RYLE: R. Fender (priv. comm.); GBI: E. Waltman (priv. comm.) and http://www.gb.nrao.edu/gbint/GBINT.html; NANCAY: Rodriguez et al. (1995)

Acknowledgements.

The authors would like to thank Robert Fender, Craig Robinson, Elizabeth Waltman, William Heindl and Chris Schrader for their help in gathering the data. Public domain data from the NSF-NRAO-NASA Green Bank Interferometer. DH travelled to Kyoto on a grant from the Chancellor of the University of Helsinki.

References

Castro-Tirado, A. J. et al. 1994, ApJS 92, 469 Finoguenov, A. et al. 1994, ApJ 424, 940 Greiner, J., Morgan, E.H. & Remillard, R. A. 1996, ApJ 473, L107 Mirabel, I. F. & Rodriguez, L. F. 1994, Nature 371, 46 Pooley, G. & Fender, R. 1997, MNRAS, submitted Rodriguez, L. F. et al. 1995, ApJS 101, 173