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Summary

The probability of fixation of a mutation with selective advantage s will be reduced by
substitutions at other loci. The effect of a single substitution, with selective advantage § > s, can
be approximated as a sudden reduction in the frequency of the favourable allele, by a fraction
w=1—(s/S)"" (where r is the recombination rate). An expression for the effect of a given
sequence of such catastrophes is derived. This also applies to the ecological problem of finding the
probability that a small population will survive, despite occasional disasters. It is shown that if
substitutions occur at a rate A, and are scattered randomly over a genetic map of length R, then
an allele is unlikely to be fixed if its advantage is less than a critical value,

Sorse = (M2/6) 2QAS/(Rlog (S/s))). This threshold depends primarily on the variance in fitness per
unit map length due to substitutions, var (W)/R = 2AS/R. With no recombination, the fixation
probability can be calculated for a finite population. If A > s, it is of the same order as for a
neutral allele (~ A/(2N(A —s))), whilst if A < s, fixation probability is much higher than for a
neutral allele, but much lower than in the absence of hitch-hiking (1/2N < 25/(4Ns)** < 25). These
results suggest that hitch-hiking may substantially impede the accumulation of weakly favoured

adaptations.

1. Imtroduction

Recent surveys have shown that DNA sequence
variation may be influenced by selection at linked loci.
Variation may be reduced by substitutions (‘hitch-
hiking’; Maynard Smith & Haigh, 1974), reduced by
deleterious mutations (‘background selection’;
Charlesworth et al. 1990; Charlesworth, 1994), or
increased by balancing selection (‘associative over-
dominance’; Ohta & Kimura, 1970). For example,
there is greater nucleotide diversity in the region
adjacent to the F/S polymorphism at the 4dk locus of
Drosophila melanogaster (Hudson et al. 1987), giving
evidence that this polymorphism is maintained by
balancing selection. Conversely, nucleotide diversity
is lower in regions of the Drosophila genome with
reduced crossing over (Aquadro & Begun, 1993). This
may be explained by either adaptive substitutions
(Kaplan et al. 1989) or deleterious mutations
(Charlesworth ez al. 1993; Charlesworth, 1994). As
well as reducing neutral diversity, hitch-hiking also
makes it less likely that favourable alleles will become
established (Fisher, 1930; Muller, 1932; Hill &
Robertson, 1966). This interference between selection
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at different loci impedes adaptation, and gives a long-
term advantage to sex and recombination (Felsenstein,
1974, 1988).

Barton (1994) sets out a method for finding the
probability of fixation of favourable alleles in a large
population which is subdivided into a variety of
genetic backgrounds. In particular, the favourable
allele might be associated with an advantageous allele
at another locus, increasing its chance of fixation, or
it might be associated with the deleterious allele,
decreasing its fixation probability. Overall, the fixation
probability is reduced. The effect is greatest when the
background substitution is driven by much stronger
selection than that favouring the rare allele whose
survival is in question. Then, hitch-hiking is equivalent
to a sudden catastrophe that reduces the frequency of
the rare allele by some factor which depends on the
relative rates of recombination and selection. Any one
event may have a small effect; however, a weakly
favoured allele is likely to be vulnerable to extinction
for many generations, and so may suffer from many
hitch-hiking events. (An allele with advantage s will be
vulnerable for &~ 1/s generations; Barton, 1994).
Thus, to find the net effect of a sequence of substitu-


https://doi.org/10.1017/S0016672300032857

N. H. Barton

tions at linked loci, the net effect of a sequence of
catastrophes must be calculated. This is also relevant
to ecological problems, where small populations may
be in greatest danger from occasional catastrophes,
rather than from demographic fluctuations (Mangel
& Tier, 1993). In this paper, analytic and numerical
results combine to show that the fixation probability
declines linearly with the rate of substitutions. There
is a threshold beyond which fixation becomes extreme-
ly unlikely in a large population. The case of complete
linkage is studied in more detail, and yields results for
large but finite populations.

2. Assumptions and general strategy

Suppose that a favourable allele with selective ad-
vantage s enters a very large population at r =0, in a
single copy (n,=1). It then segregates at low
frequency for some time, before either being lost, or
increasing exponentially to fixation. Substitutions
occur at other loci and involve alleles with advantage
S. The population is assumed to be extremely large
(Ns > 1), so that by the time these substitutions have
much effect on the allele in question, they are present
at appreciable frequency, and so increase deter-
ministically: we need not consider the stochastic
fluctuations which they themselves survived before
beginning their deterministic increase. Barton (1994)
sets out numerical results for the reduction in fixation
probability caused by substitutions at other loci. The
net reduction is substantial only if these are fixed by
relatively strong selection (S > s), and are moderately
tightly linked (r < §). In this case, substitutions can
be approximated by instantaneous jumps, which
reduce the numbers of the allele of interest from # to
wn (0 < w < 1). The factor w is given by:

w=1—(s/5)"° (1;eqn 7 of Barton, 1994).

Suppose that the favourable allele arises a time ¢
before the substitution at the other locus. (Time here
is counted from when that substitution reaches its
midpoint at equal allele frequencies). Its probability
of fixation is (from eqn A 1 of Barton, 1994):

P 25w
~ w4+ (1—w)exp(s?)

for St<0,5<S. 93}

The allele is vulnerable to interference from hitch-
hiking for a time ¢ ~ 1/s, which may be very long if
the allele has a slight advantage.

The above formula is an average over cases when
the new favourable allele arises in coupling or in
repulsion with the existing substitution. There is a
small chance that the weakly favoured allele will occur
in coupling with a highly favoured allele while the
latter is still at low frequency. This will greatly
increase its chance of fixation. However, this is always
outweighed by the greater chance that the alleles arise
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in repulsion. Overall, hitch-hiking always reduces the
chance that a favourable allele will be fixed.

On the approximation of eqns 1, 2, the net effect of
a sequence of hitch-hiking events at times ¢,, ..., 7,
reduces to the net effect of a sequence of catastrophes
at those times. The probability of fixation u(n,) can be
calculated as follows:

u(ng) = JYN Ung,ny, 1) fm Y(wyng,ng, t,—1) ...

N
xf Y(w,n,,2N,0)...dn,...dn,dn,. 3
0

Here, yr(n,, n,, t) is the chance that the allele is not lost,
and changes under selection and drift from s, to », in
time ¢. By using the diffusion approximation, it can be
calculated explicitly:

Y(ng,n,, 1)

= Eg-exp (— (1, +ny) coth (s2/2) +s(n, — n)) 1,(2), (4)

where

_ (23\/ (nony)
~ \sinh(st/2) )

3. The effects of a series of hitch-hiking events

The expression for the transition probability
Y(n,n,, o) given in eqn 4 can be substituted into eqn
3, to give the probability of fixation in the presence of
substitutions at other loci. For simplicity, I first
consider a single substitution, and then go on to find
an explicit formula for the effect of a series of
substitutions which occur at known times (z,), and
have known effects (w,). The final step is to average
over the distribution of times and effects.

(1) The effect of a single substitution

Suppose that the weakly advantageous allele is
introduced in n, copies; after ¢ generations, a rapid
substitution occurs at another locus, which reduces
the allele from n, copies to wn, copies. Since the
probability of ultimate fixation immediately after this
sequence of events is (1 —exp(—2swn,)), the net
probability is:

)= [ W) (1 —exp(=2own))dn,. o)

Substituting from eqn 4, assuming that 2N > 1, and
using the result in Abramowitz & Stegun (1965,
11.431):

(56

—2wnys )

u(ng) = 1—exp (w+(1 —w)exp (—st)
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This equation is exact, given the assumption that Ns
is large. If a single copy is introduced (n, = 1), then
since selection is assumed to be weak (s € 1), eqn 5b
reduces to eqn 2, which was derived by a different
route in eqn A 1 of Barton (1994). If the catastrophe
occurs just after the introduction of the allele,
exp(—st) = 1, and u(n,) = (1 —exp (—2swny)); this is
the same value as if it had been introduced in wn,
copies. If it occurs long after the introduction,
exp(—s?) = 0, and the probability of fixation is not
affected: u(n,) = (1 —exp (—2sn,)).

(i) The effect of a sequence of substitutions

As shown below, with a given set of one or
more hitch-hiking events, the fixation probability
must have the form u(n) = (1—exp(—2sn,/0)) =
1—[exp(—2s/0)]*. Alleles introduced at low fre-
quency are lost independently of each other; thus, the
probability that n; are all lost is the product of the
probabilities that each one is lost: 1—u(n,) =
(1—u(1))*. The factor € can be thought of as the
factor by which the effective selection pressure
favouring the allele is reduced; eqn 5b shows that a
single event changes 6 from 1 to

[+ /w—1)exp(—s1))]
=[(1 —exp(—st))+exp(—st)/w].

Because the fixation probability u(n,) retains the
same form for any number of hitch-hiking events, it
can be integrated repeatedly to give the effect of an
arbitrary series of substitutions. By induction:

6= ((1 —yx)ﬂyv_ll((l WH%(“ _y3)+;vv_i(_”))))
©

(where exp (—st,) = y,). If there are n events in all, the
series is terminated by setting y,, ., to 0 (corresponding
to the n+ 1th event occurring at ¢ = o0). For example,
suppose that one substitution occurs soon after the
weakly selected mutant arises (y, = exp(—st,) = 0-8),
but only reduces the mutant’s frequency by w, = 0-8.
A second substitution occurs much later (y, =
exp (—st,) = 0-8), but has a larger effect (w, = 0-5).
The probability of fixation is reduced by a factor
0=(02+(08/0-8)(009+01/0'5) =02+1-1=1-3,
Thus, the first substitution is twice as important as the
second in raising & above 1.

(iii) The distribution of times and effects

The next step is to average over the distribution of
possible hitch-hiking events (i.e. over their times and
effects, ¢+ and w). The simple form wu(n,) =
(1 —exp(—2sn,/6)) will now be lost: this is because
the chance that one allele will be lost becomes
correlated with the chance that others are lost: all are
affected by the same events. This correlation will
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reduce the fixation probability of alleles present in
large numbers, because these may all be lost if a strong
substitution occurs close by.

We assume that substitutions occur randomly and
independently; since substitutions may be clustered in
time (for example, around periods of environmental
change), this may underestimate the effects of hitch-
hiking. However, because only that small fraction of
substitutions which happen to be tightly linked (r < S)
to the locus of interest will significantly interfere with
it, this may not introduce much error. With this
assumption, the distribution of times between events
is Aexp(—Arf), where A is the total rate of sub-
stitutions anywhere in the genome. It will be con-
venient to change variables from ¢ to y = exp(—st);
the distribution of y is AyA™!, where A = A/s is the
expected number of events during the time 1/s when
the new allele is vulnerable to loss.

The effect of a strongly selected substitution is
equivalent to a catastrophe w=1—(s/5)™'* (eqn 1).
If there is a single short chromosome of map length
R, with the locus of interest at its centre, then r
will be uniformly distributed between 0 and R/2;
w is therefore distributed between 0 and 1—e¢,
with density ¢/(1—w) (where ¢ = 2S/(Rlog,(S/s)),
€ =exp(—1/¢)). This model of the genetic map is
quite unrealistic, since it neglects the cumulative effect
of unlinked loci, and so will underestimate the effect
of hitch-hiking. However, because the calculations
below show that only closely linked loci have a
significant effect, the configuration of distant loci
makes little difference.

The net fixation probability is given by a multiple
integral over y, = exp (—st,) and w,. This is intractable.
However, explicit results can be obtained for the
probability of fixation of a single mutant in two
extreme cases: where substitutions are rare (A < 1),
and where the selection driving each substitution is
weak relative to the map length (¢ < 1).

u(1)=2s[1—7\¢{%2—u2(e‘”¢)}] (7Ta; A<1)

u(1)=2s[1—1~\¢(%2)] (Tb; ¢p<1)

These are derived in the Appendix; Li, is the second
polylogarithm function, which decreases mono-
tonically. Li,(e™"/%) tends to zero as ¢ tends to zero,
showing that the two results are consistent. There
might be many substitutions at other loci while a
weakly selected allele is climbing to high frequency, so
that A may be large. However, the selection associated
with adaptive substitutions is likely to be small,
compared with the map length of sexually reproducing
higher organisms (¢ < 1). Thus, the most relevant
formula is the simplest one, eqn 7b.
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(iv) Numerical results for large K¢

To check the derivation of eqn 7, and to investigate
cases where hitch-hiking has large effects (A¢ ~ 1),
the fixation probability was calculated directly by
Monte Carlo integration. A series of catastrophes was
simulated, by drawing random values of t and w from
the appropriate distributions. These values were put
into eqn 6, giving the fixation probability for that
sequence of events. This procedure was repeated to
give the expected fixation probability. The results
agree well with the simple prediction from (754), up to
~ /~\¢ = 0-5 (Fig. 1). For small 1~\¢, the discrepancy is
most noticeable when ¢ = 0-4 (Fig. 15). Itis accounted
for by the second term in (74). The two straight lines
in Fig. 15 show the predictions of eqns 7a, 7b: the
upper line, which corresponds to the prediction
appropriate for large ¢ (eqn 75), fits best.

(@)

u(1)/2s

®)

u(1)/2s

00 1
Ag
Fig. 1. The reduction in fixation probability due to hitch-
hiking events at other loci. The graphs show the ratio by
which fixation probability is reduced («(1)/2s), as a
function of the product A¢ = (A/s) (2S/(Rlog, (S/s)).
Each point shows the mean for 100 random sequences;
the flanking lines show 95 % confidence intervals. Each
sequence consisted of k randomly generated hitch-hiking
events. For the main series, k was the larger of four or
10A; to give greater accuracy, k = 40A was used for the
lower series of three points near to the threshold. Each
graph also shows two straight lines. The lower is the
prediction from eqn 75, and the upper is the prediction
from eqn 7a. These are indistinguishable for ¢ = 0-2 (Fig.
1a), but differ slightly for ¢ = 0-4 (Fig. 15).
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The numerical results fit closely with the linear
predictions of eqn 7, even though these were derived
by asymptotic arguments valid only for small A or ¢.
This suggests that the fixation probability declines to
zero if hitch-hiking events occur more frequently than
a critical value close to A¢ = 6/7° =~ 0:61. For large
Adg, numerical estimates of the fixation probability are
inaccurate, because only a finite sequence was
simulated. However, if the number of catastrophes
used in the simulations is increased fourfold (from
10A to 40A), the fixation probability decreases
towards the prediction (sequence of three points at
lower right of Fig. 1).

(v) The threshold

This threshold behaviour can be understood by
considering the increase of the favourable allele in the
long term. Suppose that the favourable allele is
present in large enough numbers that it increases
deterministically (= exp(s?)), but is still rare
(1/s € n < 2N). After some long period T, the number
of hitch-hiking events will converge to k = A7, and
numbers will have increased by a factor

k&
exp (sT+ > log (w,)) .

{=1
By the central limit theorem, the sum will approach
a normal distribution around the expectation
kE (log(w)), and with variance var(log(w))/k. The
long-term rate of increase will therefore converge to
exp(T(s+AE(log(w))). Averaging over the distri-
bution of w gives:

(s+AE(log(w)) = s—A¢ {1';_“2 (e""”)}. (8)

The two terms in eqn 8 correspond to the rate of
increase due to the selective advantage, s, and the rate
of decrease caused by a random sequence of hitch-
hiking events. If the selective advantage is less than
some critical value, s, the number of copies of the
allele are expected to decrease, and fixation becomes
impossible. This argument confirms the threshold
suggested by eqn 7b, and by the numerical results.
One can also show by a similar argument that if
§ < 8,4, the denominator of eqn 6 tends to infinity.

These arguments show that eqn 75 is correct for
small A and for small ¢, and that it also correctly
predicts a threshold beyond which fixation is im-
possible. The numerical results suggest that eqn 75 is
in fact correct for all A, ¢, and is always equal to twice
its long-term expected rate of increase, as given by eqn
8. It is tempting to justify this by a simple branching-
process argument. However, this would not be valid,
because alleles are not lost independently of each
other: catastrophes eliminate many together.

The case of most interest is where the genetic map
is long (¢ < 1), but substitutions are frequent relative
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to the selection on the allele of interest (A > 1). Then,
eqn. 7a is accurate, and the threshold value is:

m? m? AS

Sern = _6~A¢ ~ 3 Rlog,(S/s)’

(a)
The net variance in fitness associated with adaptive
substitutions is var (W) = 2AS (Crow, 1970), and so:

s __77_2 var (W)
6 Rlog,(S/s)’

This critical value only depends only logarithmically
on the relative selection coeflicients on substitutions
and on the allele in question. It therefore depends
primarily on (var(W)/R), the variance in fitness
associated with the substitution of new mutants, per
unit map length.

(9b)

4. No recombination

The results derived above suggest that with complete
linkage (¢ — o0), the probability of fixation should
become very small. In this section, I derive an
expression for this probability which applies to large
but finite populations, and which is exact, given the
diffusion approximation and the assumption that Ns
is large. As well as being relevant to strictly asexual
organisms, this will give some insight into the way the
fixation probability tends to zero as population size
tends to infinity when 5 < s,,,.

Much of the previous work on the effects of hitch-
hiking on the rate of adaptation has dealt with the
limit of no recombination. However, most authors
have considered the mutual interference between
substitutions at different loci, with each having a
similar selective advantage: this is the most obvious
representation of Fisher’s (1930) and Muller’s (1932)
argument. Hill & Robertson (1966) gave a wide range
of simulation results for two loci; they explained these
using some heuristic arguments for the limit of no
recombination. Maynard Smith (1971) compares the
rates of evolution of sexual and asexual populations,
assuming that favourable alleles all have the same
advantage. Felsenstein (1974) simulated substitutions
at many loci, and extended previous work by Crow &
Kimura (1965) to find a rough analytic approximation
to the fixation probability. More recently, he has
given a simple formula for the case where two mutants
arise in the same generation (Felsenstein, 1988).
Keightley (1991) gives analytic and simulation results
using a model where the selective effects of new
mutations are chosen at random. Here, I consider the
influence of strongly selected substitutions on a weakly
selected allele. This greatly simplifies the analysis,
since one need only consider the influence of strong
substitutions on the locus of interest, thus avoiding
consideration of interactions among potentially large

numbers of Segrnncﬁnn oenes. It ig also biolo

14t UVL O WV r‘gll

regating genes. It ig also biclo gically
reasonable: only weakly selected alleles are sub-

stantially affected by hitch-hiking, and only strongly
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selected alleles substantially contribute to hitch-
hiking.

Suppose that the first substitution occurs ¢, genera-
tions after the weakly favoured mutant arises: that
mutation has by then reached a frequency p, = n,/2N.
If the strongly selected mutation occurs on a chromo-
some carrying the previous mutant, then it will carry
that mutant to fixation; otherwise, it will displace it.
Since the probability that the new mutation arises in
coupling with the old is p,, the probability of fixation,
u(1), is just the expectation of p,. If substitutions are
common (A > s), this will be close to its initial value
of 1/2N when the first strong substitution occurs; u(1)
will therefore be close to that for a neutral variant. If
substitutions are rare (A < s), then by that time, the
weakly favoured allele will either have been lost
already, or will have approached 1 with probability
2s. The net fixation probability will thus be 2s, and
hitch-hiking will have a negligible effect.

During its early life, the weakly selected mutant is
likely to be rare, and so selection will act as a linear
force (Ap = sp). Since drift does not change the
expected frequency, the net expectation (including
cases of both fixation and loss) is just exp (st)/2N. The
fixation probability is the expectation of exp (st,)/2N,
taken over the distribution of times, ¢,, of the first
hitch-hiking event:

1 A 1 A
2NA—s 2NA-1

u(l) = 2—1ﬁfo Ae™Metdr = . (10)
As hitch-hiking events become very frequent (A/s =
A > 1), u(1) tends to the neutral value, 1/2N.

The approximation that E(p,) = exp (s¢t,)/2Nbreaks
down completely when A < 1, since then, it is likely
that the allele will have risen to high frequency before
the first hitch-hiking event occurs. This is true even if
Ns is extremely large. The expected frequency for
arbitrarily long times can be found in the same way as
above, with the difference that instead of approxi-
mating by an exponential, the logistic increase of the
favourable allele is followed. Deterministic increase
from an initial frequency of (1/2N) gives p=
1/(1+2Nexp(—st)) after ¢ generations. However,
random sampling drift during the establishment of the
allele accelerates or delays the eventual increase
(p =1/(14+2Nexp(—s(t+71)))). Given that an allele
has increased to high frequency despite drift, the
increase tends to be accelerated: exp(s7) is expo-
nentially distributed with mean 1/2s (from eqn 4).
Taking into account those cases where the allele is lost
while rare, the expected frequency after ¢ generations
is the expectation of 2s/(1+2Nexp (—s(t+1))):

E 2s )
((1 +2Nexp(—s(t+71)))
[ 2s
" Jree 1 +2Nexp (—s(t+7)))
x exp (—2sexp (s7)) d(2sexp (s7)).
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Fig. 2. The left-hand curve shows the expected frequency

of an advantageous allele that is destined to be fixed (eqn

11). This is compared with the deterministic prediction,

shown on the right. In this example, N = 100000 and

s = 0-001.

Substituting z = 2sexp (s7), C = 4Nse™

- L zzsiec dz = 25[1 — Ce® E(C)] (11)
(where E,(x) is the exponential integral, [ e™*/zdz).
This expected frequency is plotted as the leftmost
curve in Fig. 2, for Ns = 100. It has almost the same
form as the deterministic curve to the right, but is
accelerated by 7 ~ log(1/2s)/s. When ¢ is small (so
that C » 1), it reduces to e* /2N, which agrees with the
value derived above. Equation 11 therefore applies for
all ¢.

This expectation must now be averaged over the
distribution of 7, Ae™4. It is convenient to change
variables from ¢, to C = 4Nse™™, whose distribution
is (4Ns)™A ACA1. Integrating eqn 11 across this
distribution gives:

ze‘ZAC"1
u(l) = (4Ns)"J f —dzdC. 12)

This can be written as the difference between the
integral from C =0 to oo, and the integral from
C = 4Ns to oo. The first can be evaluated explicitly,
whilst the second gives an asymptotic expansion
which will be accurate for large Ns:

ze? A CA?
“(1) (4N)AUJ o) ¥

ze A CM?
————dzdC
J:leJ‘O (Z+C) :I

_BSATAPTA-A) & 2sklA
= (ANs)~ E(4N Ytk—A) 13)

Note that this is an asymptotic series: the sum does
not converge, but for a fixed number of terms, it gives
an increasingly accurate approximation as Ns becomes
large. When A < 1, the first term dominates, whilst
when A > 1, the first term in the sum dominates; this
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Fig. 3. The reduction in fixation probability when there is
no recombination. The ratio x(1)/2s is plotted on a log
scale, against A = A/s, for Ns = 10, 100, and 1000 (top
to bottom). The asymptote at the right is

(1/2N)/2s = 1/4Ns.

is the same as the formula derived by considering only
rare alleles (eqn 10). Thus:

_ 2s[ATA)PTA—A) 1 .
u(l) = aNS 0(4—Ns) A <1)(14a)
2s -
= N )A+0(A)+0< ) A <1), (14b)
A 1 1 ~
¥ =s5a=n 9 ((4NS)A) +0 ((4Ns)2) (A>1).
(14¢)

Figure 3 shows the proportion by which the
probability of fixation is reduced (u(1)/2s), as a
function of the rate of hitch-hiking events, A/s = A
These curves were calculated using two terms from the
sum in eqn 13, which gives essentially the same values
as those found by numerical integration of eqn 11.
However, the approximations of eqn 144, c are very
accurate, except near to A=1.

This analysis shows that when Ns is large, there are
two qualitatively different regimes. When substitutions
are common, relative to the rate of increase of the new
allele (A > s, or A > 1), the probability of fixation is
equal to the neutral value (1/2N), multiplied by a
factor which depends only on A, and is of order 1.
Thus, the probability of fixation becomes extremely
small in a large population. When substitutions are
relatively rare (A <s, or A < 1), the probability of
fixation is very much larger than the neutral value, but
very much smaller than in the absence of hitch-hiking
((1/2N) < 25/(4Ns)* < 2s). These relations are illus-
trated in Fig. 4, which shows the probability of
fixation of an allele with advantage s, in a population
of 108, If other loci were not evolving, or if there were
free recombination, alleles with extremely small
advantages (~ 107%) could accumulate (albeit slowly).
However, if substitutions occur at a rate A, alleles
with s < A will be effectively neutral. If s is larger than
A (more precisely, larger than Alog(4Ns)), then
hitch-hiking has little effect (eqn 14¢, Fig. 4).
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logol)

1 logo(x)

J 1-8

Fig. 4. The fixation probability, u(1), in the absence of
recombination, as a function of selective advantage, s.
Both are plotted on a log,, scale, for a population size of
N = 108. The leftmost curve applies when there is no
hitch-hiking; the subsequent curves are for A = 107%,
1074, 10~3, 1072, These were calculated from the series in
eqn 13, using two terms in the sum.

5. Discussion

The effect of sporadic substitutions on the probability
of fixation of a favourable mutation depends primarily
on the variance in fitness which they produce, per unit
map length. If the advantage of a new mutation is
smaller than this, then its chance of fixation is
substantially reduced, and tends to zero as population
size increases (eqn 95). If there is no recombination at
all, the fixation probability depends critically on
whether a substitution is likely to occur at another
locus before the new allele has reached high frequency:
if it is, the probability is reduced to not much more
than that for a neutral allele (=~ (1/2N)(A/(A—s)) if
A > 5; eqns 10, 14¢).

The above analysis can be applied to ecological as
well as genetical questions: it gives the probability
that a small population will become established (that
is, will rise above some threshold size) despite the twin
hazards of demographic fluctuations and ecological
catastrophes. Mangel & Tier (1993) review the
considerable literature on this topic, and set out a
general algorithm for finding the expected time to
extinction, and the probability of establishment.
However, this algorithm assumes that the number of
individuals which die in a catastrophe approaches a
definite limit when the population is small. It therefore
does not apply to the case analysed here, where
catastrophes eliminate a fixed proportion of individuals.
It is this assumption which leads to a threshold
growth rate, s,,,, below which extinction is certain.
This is the growth rate which just balances the
proportion lost through catastrophes. If a constant
number were culled, the proportion culled would
decrease as the population grew, so that establishment
would become almost certain if the population were
sufficiently large.

The key approximation in the analysis of genetic
hitch-hiking was that only the influence of sub-
stitutions of large effect on those of small effect need
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be considered. In fact, there must be a continuous
range of selection coefficients. However, this is not
restrictive. First, the actual rate of substitution, A, has
been taken as given; this may have itself been reduced
by interference between loci, but that does not affect
calculations of the effects of those substitutions that
do occur. Secondly, the analysis in Barton (1994)
applies to alleles of arbitrary selective effect, but
showed that there is only a substantial net effect when
the selection on the vulnerable allele is much weaker
than on the substitution which interferes with it. In
that case, hitch-hiking can be approximated by a
sudden catastrophe that culls a certain fraction of
individuals. Thirdly, the effect of a substitution
depends on its contribution to the variance in fitness:
alleles with advantages weak enough to be influenced
by hitch-hiking will make a negligible contribution to
this variance, and so will not themselves have a
significant effect on other loci. Thus, there will be a
group of alleles which are selected strongly enough for
them to be little affected by other loci, but not so
strongly that they themselves cause hitch-hiking
effects. These moderately selected alleles separate the
two classes of loci which are considered in this paper.

Whether hitch-hiking of the sort analysed here
significantly impedes adaptation depends primarily
on the variance in relative fitness per unit map length
caused by substitutions. There is almost no direct
evidence on the net rate of adaptive substitutions, or
their selective effect. However, Haldane (1957) sug-
gested that the ‘substitution load’ sets an upper limit
of one substitution every 30 generations for mammals
(A < 1/30). A similar value is obtained if one assumes
that most amino-acid substitutions are adaptive
(Gillespie, 1992, p. 41). If S averages 5 %, the variance
in fitness is var (W) = 2AS8 =0-0033; spread over a
map of length 10 Morgans, eqn 9 gives s, =
0-85 x 10™*. While such weakly selected alleles cannot
be responsible for the recently evolved adaptations
that distinguish related species, they may contribute
to long-term molecular adaptations such as codon
usage bias. This issue is discussed in more detail in
Barton (1994).

The effect of hitch-hiking on the probability of
fixation differs qualitatively from the effect of neutral
heterozygosity, and hence could not be derived by
defining a ‘variance-effective’ population size (Crow
& Kimura, 1970). The variance-effective size is only
useful for calculating the variance in allele frequency,
and statistics such as the average heterozygosity which
depend on that variance. It is misleading when applied
to find other quantities. Using the diffusion ap-
proximation, one would calculate the probability of
fixation in a large population as 2s(N,/N), where N, is
defined as the population size that would produce the
same variance in allele frequency as does hitch-hiking.
Hitch-hiking can reduce the probability of fixation of
a favourable allele to indefinitely small values, and yet
does not cause an indefinite increase in the rate of drift
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of neutral alleles, or an indefinite reduction in neutral
heterozygosity (Maynard Smith & Haigh, 1974;
Birky & Walsh, 1988; Kaplan et al. 1989; Stephan et
al. 1992). Moreover, the effect on fixation probability
depends on the ratio of selection coefficients (s/S),
whereas the effect on neutral heterozygosity depends
on 2NS (Stephan et al. 1992). The effects differ
because hitch-hiking produces occasional catas-
trophes, which cannot be adequately modelled using
the diffusion approximation alone.

DNA sequence variation gives good evidence of
hitch-hiking (e.g. Hudson ez al. 1987; Aquadro &
Begun, 1993; Kaplan et al. 1989; Charlesworth ez al.
1993). However, hitch-hiking has different effects on
neutral diversity and on fixation probabilities. Stephan
et al. (1992, eqn 17) show that a single substitu-
tion reduces neutral heterozygosity by a factor
@2r/S)RNSY ¥ST(—2r/S,1/2NS), where

T'(a,x) = J exp(—tde
is the incomplete gamma function. If the population is
large (NS > 1), this approximates to 1 —(2NS) /5.
In contrast, hitch-hiking reduces fixation probability
by a factor 1 —(S/s)™"/%. Since we consider alleles with
a substantial advantage (s > 1/2N), and since the
exponents differ (2r/S vs. r/S), fixation probability
must always be reduced more than neutral hetero-
zygosity. For example, consider a substitution
favoured by S = 10%, which occurs r = 1 cM from
the locus in question; the population size is N = 10°.
Hitch-hiking reduces neutral heterozygosity by a
factor ~ 1 —(2NS)*"® = 0-91, but reduces the prob-
ability of fixation by =~ 1—(S/s)™""S = 0-50. Thus, the
observation that hitch-hiking has a substantial effect
on neutral diversity implies a substantially greater
effect on the accumulation of weakly favoured alleles.

Successive substitutions make it very unlikely that
alleles with selective advantage below some threshold
will be fixed. (More precisely, as the population size
increases, the fixation probability tends to zero for
alleles with s < s,,,,). The critical selective advantage
below which hitch-hiking overwhelms natural selec-
tion is proportional to the additive genetic variance in
fitness due to substitutions, per unit map length
(var (W)/R; eqn 25). The scanty evidence on fitness
variation is discussed in more detail in Barton (1994).
However, arguments based either on the substitution
load (Haldane, 1957), or on the total number of
amino-acid substitutions (Gillespie, 1992, p. 41)
suggest the number of adaptive substitutions per
generation must be low (A < 1/30 say). Assuming
(arbitrarily) an average selective advantage S = 0-05,
then the variance in fitness would be 2AS = 0-0033.
Over a map of length 10 Morgans, eqn 25 gives the
critical selection pressure s, = 0:85x 107 Thus,
hitch-hiking is unlikely to thwart those alleles which
confer a moderate advantage in outcrossing popula-
tions. However, it might well impede adaptations
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which involve detailed molecular adjustments (for
example, bias in codon usage), and so sets a limit on
the power of natural selection.

This work was supported by the SERC (GR/E/08507) and
by the Darwin Trust. Thanks are due to W. G. Hill, K. S.
Gale, M. Slatkin, J. Maynard Smith and M. Turelli for their
helpful comments.

Appendix

The probability of fixation of a single mutation is
u(1) = 2s5/6. For any particular sequence of events, 6
is given by eqn 6 ; the problem is to find the expectation
of 25/6, taken over the distribution of y, = exp (—s¢)
and w,. (These were derived above, and are, respective-
ly AyA " (0 <y < 1), and ¢/(1—w) (0 <w<1—¢;
¢ = exp(—1/¢))). Here, the expectation is derived in
two limits: where few substitutions occur during the
lifetime of the weakly selected allele (A = A/s—0),
and where the effect of each substitution is small

(¢ =25/(Rlog(S/s))=0).

() Infrequent substitutions: A—0

For a specific sequence of events, the fixation
probability is reduced by a factor:

u(1) _ 1

25 6

1 1
= 1/1+y1(——1+——(1+y2(—1+—
w,

X(Hys(_HWgU+...>)))))V.V2

Write 6 as 1/(1 +y, C,), and integrate over the time of
the first event y,:

1 1 /~\y{‘“1 dy,
El=]= | ==L, A2
(6) A+Cyy) (42)
In the limit A -0, this reduces to:
1—Alog(1+ C)+O(A?). (A 3)

The next step is to average over the distribution of
effects of the first event, w,. (14 C,) can be rewritten
as w,/(1+y, C,). The expectation over w, is thus:
1 [lOg (w1) - 10g (1 + Vs Cz)] dwl
0 (1 - Wl)

=1-Ag{Lir(1)~ Lir(e)}~ Alog(1+,Cy), (A4)
Li,(e) is the dilogarithm function, defined by

' log(1/2)

dz.

jl—e (1 _Z)

The formula still includes the effects of the second and
subsequent events through y,C,; however, when

1-A¢ +0(A?
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hitch-hiking events are rare (A - 0), the distribution
of y = exp(—st) clusters around zero, and the last
term in eqn A 4 can be neglected. (Formally, the
expectation of Alog(1+y,C,) is of order A?, and so
can be ignored). Since Li,(1) = #%/6, the expectation
over the whole sequence is given by eqn 74. As one
might expect, this is the same formula as would be
obtained by considering only a single event: when A
is small, it is unlikely that two hitch-hiking events will
occur while the weakly selected allele is on its way to
fixation.

(ii) Substitutions with small effects: ¢~ 0

If A is large, an allele is likely to be influenced by
many events, and so the calculation is somewhat more
complicated. However, a simple formula can be
obtained when the expected effect of any one event is
small. Equation A 1 can be rewritten:

u(l) 1 1

e N AS
2s 8 a,+B/w,’ (A 35)
where

y
oo, =1-y,8 = yl(l—yz 2( —y3+

W,

i—z(...))).

First, average over the effect of the first event, w,:
1 1 #h ( a,(1— 6))
—= - log(1+

0 (+p8) oo+ B B

(¢, +f,) can be rewritten as a,+pf,/w, Where
a,=1=(y,p,...y,), and

(A 6)

Bi=(1~a) (1 —JVin1 +)’1+1 (1 —Vite +yi+2 (.- )))

i+1 i+
The first term can therefore be integrated as before.
The process can be repeated: each time the first term
is integrated, it produces another term proportional to
¢. Because the product (y, y, ... y,) tends to zero for
large k, a, + 3, tends to 1 as k— o0. Hence we obtain:

B a(1— ))
21 %+ By) B

So far, the equation is exact: it still depends on the w,
and y, through «, and f,. However, because the
second term is proportional to ¢, we can evaluate the
sum by taking the expectation over w in the limit
¢ — 0. This is equivalent to setting w, = 1 throughout;

—¢ E log(l + (AT

then, 8, = (¥, ¥, ... ¥,), and a, = 1 — B, .¢also tends to

zero in this limit, and so:

1—g 3 B log(ﬂ)+0(¢2). As)
k=1 (1 _/))k)

It now remains to average over the times of the events.
Now, f. = (¥, ¥, ... y,) = exp(—s(t, + t,... +t,)). The
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sum of k exponentially distributed variables has a
gamma distribution; thus, g, can be shown to have
the distribution:

_ AklOg(l/ﬂk)k !
v(B) = G 1)!

(A 9a)

This can be rewritten as the kth differential of a
generating function:

— (= Ay YN

The expectation of eqn A 8 is therefore:
(’ j\)k o ﬁ?log (1 /ﬁk) 2
P e
(A 10)

This is a Taylor’s series. If the term in square brackets
is denoted f{A), then the whole sum is AA—A) =
0) = #%/6. Thus, the fixation probability is given by
eqn 7b in this limit. It is remarkable that when
substitutions have small average effects (¢ —0), the
change in fixation probability is directly proportional
to the rate of substitution, A.
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