EXTENSIONS OF SEMILATTICES BY LEFT TYPE-A SEMIGROUPS

by BERND BILLHARDT

(Received 31 May, 1995)

0. Introduction. On a semigroup S let the relation \mathscr{R}^* , sometimes denoted by \mathscr{R}^*_S , be defined by $\mathscr{R}^*_Y \Leftrightarrow [(\forall s, t \in S^1)sx = tx \Leftrightarrow sy = ty]$. A semigroup S is called *left type-A*, iff the set E_S of idempotents of S forms a semilattice under multiplication, each element x of S is \mathscr{R}^* related to a (necessarily unique) idempotent x^+ , and $xe = (xe)^+x$ for all $x \in S$, $e \in E_S$.

Left type-A semigroups are natural generalizations of inverse semigroups and have been the subject of a considerable amount of investigation in recent years (e.g. [2], [3], [7], [5], [4]).

By a left type-A congruence ρ on a left type-A semigroup S we mean a congruence ρ on (S, \cdot) , satisfying the implication $x\rho y \Rightarrow x^+ \rho y^+$ and making S/ρ into a left type-A semigroup by $(s\rho)^+ := s^+ \rho$.

The purpose of this paper is to generalize the results of [1] to left type-A semigroups.

In Section 2 we define the notions of λ -semidirect product and full restricted semidirect product. These notions are not given in full generality but rather as they are needed here (first (second) component a semilattice (left type-A semigroup)).

In Section 3 we prove that, given a left type-A semigroup S and a left type-A congruence ρ on S, satisfying $\rho \cap \Re^* = \iota$, the identity relation, then S is isomorphic to a well determined subsemigroup T of a λ -semidirect product $A *_{\lambda} S/\rho$, with A a semilattice. Moreover $\Re^*_T \subseteq \Re^*_{A*,S/\rho}$.

In particular, if S is proper, i.e. if $\sigma \cap \Re^* = \iota$, where σ is the least right cancellative congruence on S, we obtain that S is isomorphic to an *M*-semigroup T, [2], which is embedded into a semidirect product of a semilattice by a right cancellative monoid. Regarding this we generalize Fountain's representation theorem for proper left type-A semigroups, as well as O'Carroll's embedding theorem for *E*-unitary inverse semigroups, [6].

A related result, which states that each proper left type-A semigroup is embeddable into a *reverse* semidirect product of a semilattice by a right cancellative monoid, was recently proven using the categorical approach in [4].

In Section 4 we apply our methods to a certain class of left type-A semigroups whose intersection with the class of inverse semigroups consists precisely of the *E*-reflexive ones, in the sense of [8].

The notation and terminology of [8] will be used throughout the paper, whenever possible. In particular, for any congruence, \bar{s} often denotes the congruence class containing s, and for $H, K \subseteq S, HK$ means the set product, i.e. $HK = \{hk \mid h \in H, k \in K\}$.

1. Preliminaries. The following basic results on left type-A semigroups and left type-A congruences are frequently used in the sequel without further reference.

PROPOSITION 1.1. Let S be a left type-A semigroup. Then: (i) $(xy^+)^+ = (xy)^+$,

Glasgow Math. J. 39 (1997) 7-16.

BERND BILLHARDT

(ii) $x^+(xy)^+ = (xy)^+$,

(iii) $xy^+ = (xy^+)^+ x$.

PROPOSITION 1.2. Let ρ be a left type-A congruence on a left type A-semigroup S. Then the following statements are equivalent:

- (i) $\rho \cap \mathcal{R}^* = \iota$,
- (ii) $x\rho y \Rightarrow x^+ y = y^+ x$.

Proof. (i) \Rightarrow (ii). Let $\rho \cap \Re^* = \iota$ and $x\rho y$. It follows that $x^+\rho y^+$ which implies $x^+ y\rho y^+ x$. Moreover, since \Re^* is a left congruence on S, we obtain $x^+ y \Re^* x^+ y^+ = y^+ x^+ \Re^* y^+ x$. Thus by assumption $x^+ y = y^+ x$ follows.

(ii) \Rightarrow (i). Let (ii) be satisfied and $x \rho \cap \Re^* y$. It follows that $x^+ = y^+$ and $x^+ y = y^+ x$, implying $x = x^+ x = y^+ x = x^+ y = y^+ y = y$.

PROPOSITION 1.3. Let ρ be a left type-A congruence on a left type-A semigroup S with $\rho \cap \mathcal{R}^* = \iota$. Then ρ is idempotent pure, i.e. $a\rho e = e^2$ implies $a \in E_S$.

Proof. Let $a\rho e$ with $e \in E_s$. It follows that $a\rho a^2$, implying $a\rho a^+$, since ρ is left type-A, implying $a = a^+$ by assumption.

Note that the converse of Proposition 1.3 is not true since there are E-unitary left type-A semigroups which are not proper [2].

2. λ -Semidirect products and full restricted semidirect products

PROPOSITION 2.1. Let A be a semilattice and G be a left type-A semigroup acting on A by endomorphisms on the left, i.e. for each $g \in G$, $\alpha \to g\alpha$ is a homomorphism and $g(h\alpha) = (gh)\alpha$, for all $\alpha \in A$, g, $h \in G$. On $T := \{(\alpha, g) \in A \times G | g^+ \alpha = \alpha\}$ let a multiplication be defined by $(\alpha, g) \cdot (\beta, h) := ((gh)^+ \alpha \cap g\beta, gh)$. Then T is a left type-A semigroup with $E_T = \{(\alpha, g^+) \in A \times G | g^+ \alpha = \alpha\}$ and $(\alpha, g)^+ = (\alpha, g^+)$ for $(\alpha, g) \in T$. (T is called a λ -semidirect product of A by G, denoted by $A *_{\lambda} G$).

Proof. Let (α, g) , (β, h) , $(\gamma, k) \in T$. It follows that $(gh)^+((gh)^+\alpha \wedge g\beta) = (gh)^+\alpha \wedge (gh)^+g\beta = (gh)^+\alpha \wedge gh^+\beta = (gh)^+\alpha \wedge g\beta$, proving that $(\alpha, g) \cdot (\beta, h) \in T$. Moreover we obtain

$$((\alpha, g)(\beta, h)(\gamma, k) = ((ghk)^{+}((gh)^{+}\alpha \wedge g\beta) \wedge gh\gamma, ghk)$$

= $((ghk)^{+}(gh)^{+}\alpha \wedge (ghk)^{+}g\beta \wedge gh\gamma, ghk)$
= $((ghk)^{+}\alpha \wedge g(hk)^{+}\beta \wedge gh\gamma, ghk)$
= $((ghk)^{+}\alpha \wedge g((hk)^{+}\beta \wedge h\gamma), ghk)$
= $(\alpha, g)((\beta, h)(\gamma, k)).$

Thus T is a semigroup.

It remains to show that T is left type-A. Obviously $E_T = \{(\alpha, g^+) | (\alpha, g) \in T\}$. E_T is a semilattice, since $(\alpha, g^+)(\beta, h^+) = (g^+h^+(\alpha \wedge \beta), g^+h^+) = (h^+g^+(\beta \wedge \alpha), h^+g^+) = (\beta, h^+)(\alpha, g^+)$.

8

Further, for (β, h) , $(\gamma, k) \in T$ we obtain

$$(\beta, h)(\alpha, g) = (\gamma, k)(\alpha, g) \Leftrightarrow ((hg)^+ \beta \wedge h\alpha, hg) = ((kg)^+ \gamma \wedge k\alpha, kg)$$
$$\Leftrightarrow (hg)^+ \beta \wedge h\alpha = (kg^+)^+ \gamma \wedge k\alpha \text{ and } hg^+ = kg^+$$
$$\Leftrightarrow (\beta, h)(\alpha, g^+) = (\gamma, k)(\alpha, g^+).$$

Consequently $(\alpha, g^+) \Re^*(\alpha, g)$, and (α, g^+) acts as $(\alpha, g)^+$ on T. Finally

$$(\alpha, g)(\beta, h^{+}) = ((gh)^{+}\alpha \wedge g\beta, gh^{+})$$
$$= ((gh)^{+}\alpha \wedge g\beta \wedge (gh)^{+}\alpha, (gh)^{+}g)$$
$$= ((\alpha, g)(\beta, h^{+}))^{+}(\alpha, g),$$

completing the proof.

It should be noted that if, in Proposition 2.1, G is a right cancellative monoid with identity 1, and the action satisfies $1\alpha = \alpha$, for all $\alpha \in A$, then $A *_{\lambda} G$ becomes a semidirect product of A by G.

An important example of the above construction is the following:

DEFINITION 2.2. Let A be a semilattice and G be a left type-A semigroup. Then $F := A^G$ is a semilattice with respect to the multiplication given by $(x)f \land g := (x)f \land (x)g$, $x \in G$, $f, g \in F$. For $t \in G$, $f \in F$, let $tf \in F$ be defined by (x)tf := (xt)f, $x \in G$. This defines an action of G on F by endomorphisms on the left. Thus we can form the λ -semidirect product $W := F *_{\lambda} G$ with respect to this action. W is called the *standard* λ -wreath product of A by G, denoted by $AW_{\lambda}G$.

In general, a semidirect product A * G of a semilattice A by a left type-A semigroup G is not left type-A. However, if the action of G on A satisfies some additional properties, a left type-A subsemigroup T of A * G can be determined with $\mathscr{R}_T^* \subseteq \mathscr{R}_{A*G}^*$.

PROPOSITION 2.3. Let A be a semilattice and G be a left type-A semigroup acting on A on the left, such that for each $\alpha \in A$, there exists $e_{\alpha} \in E_G$, satisfying

(i) $e_{\alpha}\alpha = \alpha$, for all $\alpha \in A$,

(ii) $e_{\alpha \wedge \beta} = e_{\alpha} e_{\beta}$, for all $\alpha, \beta \in A$,

(iii) $e_{g\alpha} = (ge_{\alpha})^+$, for all $\alpha \in A$, $g \in G$.

Then $T := \{(\alpha, g) \in A \times G | e_{\alpha} = g^+\}$ is a subsemigroup of A * G, which is left type-A, with $(\alpha, g)^+ := (\alpha, e_{\alpha})$. T is called a full restricted semidirect product of A by G, denoted by $A \otimes G$.

Proof. Let $(\alpha, g), (\beta, h) \in T$. It follows $e_{\alpha} = g^+, e_{\beta} = h^+$, and we obtain by (ii) and (iii) $e_{\alpha \wedge g\beta} = e_{\alpha}(ge_{\beta})^+ = g^+(gh)^+ = (gh)^+$, implying $(\alpha, g)(\beta, h) \in T$. Further, $E_T = \{(\alpha, e_{\alpha}) \mid \alpha \in A\}$, and for $(\alpha, e_{\alpha}), (\beta, e_{\beta}) \in E_T$, we have $(\alpha, e_{\alpha})(\beta, e_{\beta}) = (\alpha \wedge e_{\alpha}\beta, e_{\alpha}e_{\beta})^{(i)} = (e_{\alpha}(\alpha \wedge \beta), e_{\alpha}e_{\beta})^{(i)} = (\alpha \wedge \beta, e_{\alpha}e_{\beta})^{(i)} = (\alpha \wedge \beta, e_{\alpha}e_{\beta})^{(i)} = (\beta \wedge \alpha, e_{\beta}e_{\alpha}) = (\beta, e_{\beta})(\alpha, e_{\alpha}), \text{ by symmetry. Thus } E_T \text{ is a semilattice. Moreover } (\alpha, g)\mathcal{R}^*(\alpha, e_{\alpha}) = (\alpha \wedge g\beta, ge_{\beta})^{(i)} = (\alpha \wedge g\beta \wedge (ge_{\beta})^+(\alpha \wedge g\beta), (ge_{\beta})^+g) = (\alpha \wedge g\beta \wedge (ge_{\beta})^+\alpha, (ge_{\beta})^+g) = ((\alpha, g)(\beta, h))^+(\alpha, g), \text{ completing the proof.}$

BERND BILLHARDT

The notions of λ -semidirect product and full restricted semidirect product are closely related as the following theorem shows.

THEOREM 2.4. Let $S := A *_{\lambda} G$ be a λ -semidirect product of a semilattice A by a left type-A semigroup G. Then $A *_{\lambda} G$ can be embedded into a full restricted semidirect product $A' \otimes G$ of a semilattice A' by G.

Proof. Consider the semilattice $A' := E_S = \{(\alpha, e) \in S \mid e \in E_G\}$. For $g \in G$, $(\alpha, e) \in A'$ let $g(\alpha, e) := (g\alpha, (ge)^+)$. A straightforward verification shows that this defines an action of G on A' by endomorphisms on the left. For $(\alpha, f) \in A'$ let $e_{(\alpha, f)} := f$. Then the conditions (i), (ii), (iii) of Proposition 2.3 are satisfied. Hence we may construct $A' \otimes G$ in which S is embedded via $(\alpha, g) \rightarrow ((\alpha, g^+), g)$.

In the following proposition we determine a certain subsemigroup $A *_{\lambda} G$ which will be useful in view of the representation theorem in Section 3.

PROPOSITION 2.5. Let $A *_{\lambda} G$ be as in Theorem 2.4. Let C be a nonempty subset of A, and $B := C \cup \{g\alpha \mid g \in G, \alpha \in C\}$. Let ε be a fixed element of A and assume further that for each $\mu \in B$ there is an $e_{\mu} \in E_G$ such that

(i) $e_{\mu}\mu = \mu$, for all $\mu \in B$,

(ii) $\mu, \nu, \mu \wedge \nu \in B \Rightarrow e_{\mu \wedge \nu} = e_{\mu}e_{\nu},$

(iii) $e_{g\mu} = (ge_{\mu})^+$, for all $\mu \in B$, $g \in G$,

(iv) $\alpha \wedge e_{\alpha} \varepsilon = \alpha$, for all $\alpha \in C$,

(v) $\alpha, \beta \in C, e_{\alpha} = g^{+} and \alpha \wedge g\varepsilon = \alpha imply (ge_{\beta})^{+} \alpha \wedge g\beta \in C$,

(vi) for each $g \in G$, there is $\alpha \in C$ such that $e_{\alpha} = g^+$ and $\alpha \wedge g\varepsilon = \alpha$.

Then $T := \{(\alpha, g) \in C \times G \mid e_{\alpha} = g^+ \text{ and } \alpha \wedge g\varepsilon = \alpha\}$ is a left type-A subsemigroup of $A *_{\lambda} G$ with $\mathcal{R}_T^* \subseteq \mathcal{R}_{A*_{\lambda}G}^*$. Moreover, ρ_T , defined by $(\alpha, g)\rho_T(\beta, h) \Leftrightarrow g = h$, is a left type-A congruence on T, satisfying $\rho_T \cap \mathcal{R}_T^* = \iota$, and $T/\rho_T \cong G$.

Proof. Let (α, g) , $(\beta, h) \in T$. It follows that $e_{\alpha} = g^+$, $e_{\beta} = h^+$, $\alpha \wedge g\varepsilon = \alpha$, and $\beta \wedge h\varepsilon = \beta$. Thus $(\alpha, g)(\beta, h) = ((gh)^+ \alpha \wedge g\beta, gh) = ((ge_{\beta})^+ \alpha \wedge g\beta, gh) \in C \times G$, by (v), and $e_{(ge_{\beta})^+ \alpha \wedge g\beta} = e_{(ge_{\beta})^- \alpha} e_{g\beta} = ((ge_{\beta})^+ e_{\alpha})^+ (ge_{\beta})^+ = (ge_{\beta})^+ = (gh)^+$. Further, $(ge_{\beta})^+ \alpha \wedge g\beta \wedge gh\varepsilon = (ge_{\beta})^+ \alpha \wedge g(\beta \wedge h\varepsilon) = (ge_{\beta})^+ \alpha \wedge g\beta$. Consequently, *T* is a subsemigroup of $A *_{\lambda} G$. Moreover, $(\alpha, e_{\alpha}) \in T$ by (iv), which implies that *T* is left type-*A* with $(\alpha, g)^+ = (\alpha, e_{\alpha})$. From this we directly obtain that ρ_T is left type-*A*, $\rho_T \cap \mathscr{R}^*_T = \iota$, and $R^*_T \subseteq \mathscr{R}^*_{A^*_{\lambda}G}$. Finally T/ρ_T is isomorphic to *G* via $(\alpha, g) \to g$, by (vi).

In connection with Theorem 2.4, Proposition 2.5 leads to a certain subsemigroup of a full restricted semidirect product, which will be described below.

PROPOSITION 2.6. Let $A \otimes G$ be as in Proposition 2.3. Let B be a subsemilattice of A and ε an element of A, such that the following holds:

(i) $\alpha \wedge \varepsilon = \alpha$, for all $\alpha \in B$,

(ii) $\alpha, \beta \in A, e_{\alpha} = g^+$ and $\alpha \wedge g\varepsilon = \alpha$ imply $\alpha \wedge g\beta \in B$,

(iii) for each $g \in G$, there is $\alpha \in B$, such that $e_{\alpha} = g^+$ and $\alpha \wedge g\varepsilon = \alpha$.

Then $T := \{(\alpha, g) \in B \times G \mid e_{\alpha} = g^+ \text{ and } \alpha \wedge g\varepsilon = \alpha\}$ is a left type-A subsemigroup of $A \otimes G$ with $\mathcal{R}_T^* \subseteq \mathcal{R}_{A \otimes G}^*$. Moreover, ρ_T , defined by $(\alpha, g)\rho_T(\beta, h) \Leftrightarrow g = h$, is a left type-A congruence on T, satisfying $\rho_T \cap \mathcal{R}_T^* = \iota$, and $T/\rho_T \cong G$.

Proof. Let (α, g) , $(\beta, h) \in T$. It follows that $e_{\alpha} = g^+$, $e_{\beta} = h^+$, $\alpha \wedge g\varepsilon = \alpha$, and $\beta \wedge h\varepsilon = \beta$. We obtain $e_{\alpha \wedge g\beta} = e_{\alpha}e_{g\beta} = g^+(gh^+)^+ = (gh)^+$, and $\alpha \wedge g\beta \wedge gh\varepsilon = \alpha \wedge g(\beta \wedge h\varepsilon) = \alpha \wedge g\beta$. Further, by (ii), $\alpha \wedge g\beta \in B$. Consequently, *T* is a subsemigroup of $A \otimes G$. Moreover, $\alpha \wedge e_{\alpha}\varepsilon = \alpha \wedge \varepsilon = \alpha$ implies $(\alpha, e_{\alpha}) \in T$, and *T* is left type-*A* with $(\alpha, g)^+ = (\alpha, e_{\alpha})$. It follows directly that ρ_T is left type-*A*, $\rho_T \cap \mathcal{R}_T^* = \iota$, and $\mathcal{R}_T^* \subseteq \mathcal{R}_{A \otimes G}^*$. Finally T/ρ_T is isomorphic to *G* via $(\alpha, g) \to g$, by (iii).

According to [2], [7] we note the following results.

COROLLARY 2.7. If G is a right cancellative monoid in Proposition 2.6, then (G, GB, B) is a left admissible triple and T = M(G, GB, B).

COROLLARY 2.8. Let T be a semigroup constructed by Proposition 2.5. Assume further that G is a monoid with identity 1 and $1\varepsilon = \varepsilon$. Then T is isomorphic to a semigroup constructed by Proposition 2.6.

Proof. Consider $A' \otimes G$ as in Theorem 2.4. Note that by assumption $(\varepsilon, 1)$ belongs to A'. Then T is embedded into $A' \otimes G$ via ψ , defined by $\psi:(\alpha, g) \rightarrow ((\alpha, e_{\alpha}), g)$. Moreover $B':=\{(\alpha, e_{\alpha}) \mid \alpha \in C\}$ is a subsemilattice of A', and $T\psi$ is built up by B' and $\varepsilon':=(\varepsilon, 1)$, as T is by B and ε in Proposition 2.6.

3. The representation theorem. Let S be a left type-A semigroup and ρ be a left type-A congruence on S satisfying $\rho \cap \Re^* = \iota$. The aim of this section is to show that S is isomorphic to a semigroup constructed by Proposition 2.5 with $G = S/\rho$.

The following proposition is a generalization of Theorem 4 of [1].

PROPOSITION 3.1. Let S be a left type-A semigroup and ρ be a left type-A congruence on S such that $\rho \cap \Re^* = \iota$. Consider $C'(S) := \{H \subseteq S \mid H \neq \phi, H \subseteq \overline{s}, \overline{s^+}H = H, \text{ for some } \overline{s} \in S/\rho\}$.

- (i) C'(S) is a left type-A semigroup with multiplication given by $H \circ K := \overline{(st)^+}HK$, for $H, K \in C'(S)$, with $H \subseteq \overline{s}, K \subseteq \overline{t}$, and $H^+ := \{h^+ | h \in H\}$.
- (ii) $S/\rho \subseteq C'(S)$.
- (iii) S is embedded into C'(S) via $s \to \hat{s}$, where $\hat{s} := \overline{s^+}\{s\}$, and the embedding respects \mathcal{R}^* , i.e. $\mathcal{R}^*_S \subseteq \mathcal{R}^*_{C'(S)}$.

Proof. (i): Let $H, K, L \in C'(S)$, with $H \subseteq \overline{s}, K \subseteq \overline{t}, L \subseteq \overline{u}$. We prove that $H \circ K$ is in $\underline{C'(S)}$. Obviously $H \circ K$ is uniquely defined and $H \circ K \subseteq \overline{st}$. Moreover $\overline{(st)^+}(H \circ K) = \overline{(st)^+}(st)^+HK = H \circ K$.

In what follows, we will use Proposition 1.1 several times without further reference. Next we show that \circ is associative. We have

$$(H \circ K) \circ L = \overline{(stu)^+} \,\overline{(st)^+} HKL \subseteq \overline{(stu)^+} HKL,$$

and

$$\overline{(stu)^+}HKL \subseteq \overline{(stu)^+} \overline{(st)^+}HKL \text{ imply } (H \circ K) \circ L = \overline{(stu)^+}HKL.$$

On the other hand we have

$$H \circ (K \circ L) = \overline{(stu)^+} H \overline{(tu)^+} K L \subseteq \overline{(stu)^+} H K L,$$

and

$$\overline{(stu)^+}HKL \subseteq \overline{(stu)^+}H(\overline{tu)^+}KL, \text{ implying } H \circ (K \circ L) = \overline{(stu)^+}HKL$$

Consequently \circ is associative. Note that $E_{C'(S)} = \{H \subseteq E_S \mid H \subseteq \overline{e}, \overline{e}H = H \text{ for some } e \in E_S\}$ since ρ is left type-A and idempotent pure by Proposition 1.3. Hence $E_{C'(S)}$ is a semilattice.

We continue proving that C'(S) is left type-A. For this, let $\underline{H} \in C'(S)$ with $H \subseteq \overline{s}$. Let $H^+ := \{h^+ \mid h \in H\}$. Then clearly $H^+ \subseteq \overline{s^+}$. Further, for $e \in \overline{s^+}$, $h^+ \in H^+$, we obtain $eh^+ \Re^* eh \Re^* (eh)^+$ implying $eh^+ = (eh)^+ \in H^+$ since $eh \in H$. Consequently $\overline{s^+}H^+ \subseteq H^+$ and $H^+ \in E_{C'(S)}$. Next we show that $\underline{H^+}$ is \Re^* -related to H: Consider $K, L \in C'(S)$ with $K \subseteq \overline{i}, L \subseteq \overline{u}$ and $K \circ H = L \circ H$, i.e. $(ts)^+ K \underline{H} = (us)^+ LH$.

Note that this implies $\overline{ts} = \overline{us}$ and $\overline{ts^+} = \overline{us^+}$ since ρ is left type-A. Let now $x \in K \circ H^+ = (\overline{ts})^+ KH^+$. Then $x = ekh^+$ with $e \in (\overline{ts^+})$, $\underline{k} \in K$, $h^+ \in H^+$. We obtain $x = e(\underline{kh^+})^+ \underline{k} = e(\underline{flh_1^+})^+ \underline{k} = f(lh_1^+)^+ ek$, for suitable $f \in (\overline{us^+})$, $l \in L$, $h_1 \in H$. Since $\overline{lh_1^+} = \overline{us^+} = \overline{ts^+} = \overline{ek}$, we get by Proposition 1.2 that $x = f(ek)^+ lh_1^+ \in (\overline{us})^+ LH^+ = L \circ H^+$. Analogously, it follows that $L \circ H^+ \subseteq K \circ H^+$, whence $K \circ H^+ = L \circ H^+$. Finally, since for arbitrary $M, N \in C'(S)$, $M \circ H = H$ (rsp. $H = N \circ H$) implies $M \circ H = H^+ \circ H$ (rsp. $H^+ \circ N \circ H$), we obtain by the above $M \circ H^+ = H^+$ (rsp. $H^+ = N \circ H^+$). Summarizing, we have proven that H^+ is \Re^* -related to H.

To complete the proof we have to show that for arbitrary $H, K \in C'(S)$ the equation $H \circ K^+ = (H \circ K^+)^+ \circ H$ is valid. Let $H \subseteq \overline{s}, K \subseteq \overline{t}$. We must verify the equality $A := (\overline{st})^+ HK^+ = \overline{(st)^+}((\overline{st})^+ HK)^+ H =: B$. Let $x \in A$. Then $x = ehk^+$ with $e \in (\overline{st})^+$, $h \in H$, $k^+ \in K^+$. It follows that $x = e(hk)^+ h \in B$. On the other hand, let $x \in B$. Then $x = e(fh_1k)^+h_2$, with $e, f \in (\overline{st})^+$, $h_1, h_2 \in H$, $k \in K$. We get $x = ef(h_1k)^+h_2 = ef(h_1k)^+h_1^+h_2 = ef(h_1k)^+h_2^+h_1$, by Proposition 1.2. Thus $x = efh_2^+(h_1k)^+h_1 = efh_2^+h_1k^+ \in A$, and A = B follows.

(ii): The assertion is obvious from the fact that $\overline{s} = \overline{s^+ s}$ for each $\overline{s} \in S/\rho$.

(iii): By definition of C'(S) each \hat{s} lies in C'(S). Further, $\hat{s} = \hat{t}$ implies s = et and t = fs, for some $e, f \in E_s$, which implies es = s. Thus s = et = efs = fes = fs = t follows.

We prove $\hat{s} \circ \hat{t} = \hat{st}$. Let $x \in \hat{s} \circ \hat{t}$. Then x = cdset with $\bar{c} = (st)^+$, $\bar{d} = \bar{s}^+$ and $\bar{e} = \bar{t}^+$. It follows that $x = cd(se)^+ st \in \hat{st}$ since $cd(se)^+ = (st)^+ s^+ (st^+)^+ = (st)^+$. Consequently, $\hat{s} \circ \hat{t} \subseteq \hat{st}$. Since $\hat{st} \subseteq \hat{s} \circ \hat{t}$ evidently holds, the assertion is proven.

Finally, the embedding respects \Re^* , since $s^+ = t^+$ implies $\hat{s}^+ = (\overline{s^+}\{s\})^+ = (\overline{t^+}\{t\})^+ = \hat{t}^+$.

Note that S/ρ is a subset of C'(S) but not a subsemigroup in general. To avoid confusion, \bar{s}^+ always means the element of $E_{C'(S)}$ which is \mathcal{R}^* -related to \bar{s} in C'(S), whereas for the idempotent which is \mathcal{R}^* -related to \bar{s} in S/ρ we use exclusively the term \bar{s}^+ .

LEMMA 3.2. Let $H, K \in C'(S)$ such that $H \subseteq \overline{s}, K \subseteq \overline{t}$ and $\overline{(st)^+} = \overline{s^+}$. Then: $H \circ K = HK$.

Proof. By definition of \circ and the assumption we obtain

$$H \circ K = \overline{(st)^+} HK = \overline{s^+} HK = HK.$$

Proposition 3.1 enables us to embed S into a standard λ -wreath product of a semilattice by S/ρ .

THEOREM 3.3. Let S be a left type-A semigroup and ρ be a left type-A congruence on

S such that $\rho \cap \Re^* = \iota$. Then the mapping $\varphi: S \to E_{C'(S)} W_\lambda S / \rho$ defined by $s \to (f_s, \tilde{s})$, where $(\tilde{u})f_s:=(\overline{us^+}\circ \hat{s})^+$, $\bar{u} \in S / \rho$, is an \Re^* -respecting embedding.

Proof. Obviously ϕ is uniquely defined. Note that by Lemma 3.2 we have $(\bar{u})f_s = \overline{(us^+ \circ s^+ \{s\})^+} = (us^+ s^+ \{s\})^+$, since $(us^+ s)^+ = (us^+)^+$.

We prove that ϕ is injective. Let $(f_s, \overline{s}) = (f_t, \overline{t})$ for some $s, t \in S$. Then $f_s = f_t$ and $\overline{s} = \overline{t}$. We obtain $(\overline{s^+})f_s = (\overline{s^+})f_t$, implying $(s^+\{s\})^+ = (\overline{s^+t^+}, \overline{t^+}\{t\})^+$, implying $s^+ = (dt)^+ = dt^+$, for some $d \in E_s$. On the other hand from $(\overline{t^+})f_s = (\overline{t^+})f_t$ we have $t^+ = es^+$, for some $e \in E_s$. Thus we get $s^+ = t^+$, implying $s\rho \cap \Re^* t$, implying s = t.

Next we prove that ϕ is a homomorphism. All we have to show is that $L := (\overline{u(st)^+})f_s \circ (\overline{us})f_t = (\overline{u})f_{st} = :R$ holds for all $s, t, u \in S$.

From Lemma 3.2 we obtain $L = (\overline{u(st)^+ s^+ \{s\}})^+ (\overline{ust^+ t^+ \{t\}})^+$, $R = (\overline{u(st)^+ (st)^+ \{st\}})^+$. Let $z \in L$. Then $z = (xes)^+ (yft)^+$, with $x \in u(st)^+$, $e \in s^+$, $y \in ust^+$, $f \in t^+$. We conclude that $z\Re^*(xes)^+yft = (yf)^+xest$, by Lemma 1.2, since xespyf, implying $z\Re^*(yf)^+(xest)^+ = (((yf)^+xe)(st)^+st)^+ \in R$ since $(yf)^+xepu(st)^+$. Consequently $z \in R$ since \Re^* is the identity relation on E_s . Now let $z \in R$. Then $z = (xest)^+$ with $x \in u(st)^+$, $e \in (st)^+$. We may write $z = (xes)^+(xest)^+ = ((xe)s^+s)^+(xest^+)t^+t)^+$, implying $z \in L$ since $xepu(st)^+$ and $xest^+pust^+$.

Finally ϕ respects \Re^* since $(f_s, \bar{s})^+ = (f_s, \bar{s}^+)$ in $E_{C'(\bar{s})} W_{\lambda} S / \rho$.

COROLLARY 3.4. Let S be a left type-A semigroup and ρ be a left type-A congruence on S such that $\rho \cap \Re^* = \iota$. Then S is embeddable into some $A_*{}_{\lambda}G$, where A is a semilattice, $G = S/\rho$, and \Re^* is respected.

Recall that a left type-A semigroup S is called proper, if $\sigma \cap \Re^* = \iota$, where σ is the least right cancellative congruence on S, (see [2]). In view of the remark following Proposition 2.1, Theorem 3.3 yields:

COROLLARY 3.5. Each proper left type-A semigroup is embeddable into a semidirect product of a semilattice by a right cancellative monoid such that \Re^* is respected.

Now we are ready to formulate the main result of this section.

THEOREM 3.6. Let S and ρ be as in Theorem 3.3. Then S is isomorphic to a subsemigroup of some $A *_{\lambda} G$, constructed by Proposition 2.5, where $A = E_{C}^{S/\rho}$ and $G = S/\rho$.

Proof. Consider the embedding $\varphi: s \to (f_s, \bar{s})$ of Theorem 3.3. Let $A := E_{C'(S)}^{S/\rho}$, $B := \{\bar{t}f_s \mid s, t \in S\}$, $C := \{f_s \mid s \in S\}$, and $G := S/\rho$. Note that $C \subseteq B$ since $\bar{s}^+ f_s = f_s$ for each $s \in S$. Let $\varepsilon \in A$ be defined by $(\bar{u})\varepsilon := \bar{u}^+$, $\bar{u} \in G$, and for each $\bar{t}f_s \in B$ let $e_{\bar{t}f_s} := (\bar{t}s)^+$. Then $e_{\bar{t}f_s}$ is uniquely defined since $\bar{t}f_s = \bar{q}f_p$ implies $(\bar{t})f_s = (\bar{t}^+q)f_p$ and $(\bar{q})f_p = (q^+t)f_s$, implying $(\bar{t}s)^+ = (\bar{t}^+qp)^+$.

We show that the conditions (i) to (vi) of Proposition 2.5 are satisfied with respect to C, B, G, ε , and that $S\phi$ is equal to $T := \{(f_s, \overline{t}) \in C \times G \mid \overline{s^+} = \overline{t^+} \text{ and } f_s \wedge \overline{t\varepsilon} = f_s\}$, where \wedge denotes the operation in A.

(i): holds, since $(u(ts)^+t)f_s = (uts^+)f_s = (ut)f_s$, for all s, t, $u \in S$.

(ii): Let $\bar{t}f_s \wedge \bar{q}f_p = \bar{y}f_x$, for some $p, q, s, t, x, y \in S$. It follows that $(\overline{y^+t})f_s \circ (\overline{y^+q})f_p =$

 $(\overline{y})f_x$ implying $y^+(ts)^+(qp)^+ = (y^+ts)^+(y^+qp)^+p(yz)^+$. On the other hand we have $\overline{t}f_s \circ (\overline{t^+q})f_p = (t^+y)f_x$, implying $(ts)^+(qp)^+ = (ts)^+(t^+qp)^+\rho(t^+yx)^+ = t^+(yx)^+$. Summarizing, we obtain $(ts)^+(qp)^+\rho(yx)^+$ and (ii) is established.

(iii): straightforward, by definition.

Before establishing (iv) to (vi) we show that $S\varphi$ equals T.

Let $(f_s, \bar{s}) \in S\varphi$. By a direct calculation we get $(\bar{u})f_s \circ (\bar{us})\varepsilon = (\bar{us^+}\bar{s^+}\{s\})^+ \circ \bar{us^+} = (\bar{us^+}\bar{s^+}\{s\})^+ u\bar{us^+} = (\bar{us^+}\bar{s^+}\{s\})^+ = (\bar{u})f_s$, implying $(f_s, \bar{s}) \in T$. Note that obviously $f_s = f_{s^+}$, for all $s \in S$.

Now let $(f_s, \overline{t}) \in T$. It follows that $\overline{s^+} = \overline{t^+}$ and $f_s \wedge \overline{t\varepsilon} = f_s$. We obtain $(\overline{s^+})f_s \circ (\overline{s^+}t)\varepsilon = (\overline{s^+})f_s$, implying $(\overline{s^+}\{s\})^+ \circ \overline{s^+}t^+ = (\overline{s^+}\{s\})^+$, implying $\overline{s^+t^+}(\overline{s^+}\{s\})^+\overline{s^+}t^+ = (\overline{s^+}\{s\})^+$. Thus we have $s^+ = e(fs)^+x^+$, for some $e \in \overline{s^+t^+}$, $f \in \overline{s^+}$, $x \in \overline{s^+t} = \overline{t}$. Let $p := s^+x$. Then $\overline{p} = \overline{t}$ and $p^+ = (s^+x)^+ = s^+x^+ = s^+$. Consequently $f_p = f_{p^+} = f_{s^+} = f_s$, and we obtain $(f_s, \overline{t}) = (f_p, \overline{p}) \in S\varphi$.

(iv): follows from the fact that $(f_s, \overline{s^+}) \in T$ for all $s \in S$.

(v): follows from the embedding, since f_s , $f_p \in C$, $\overline{t} \in G$ with $\overline{s^+} = \overline{t^+}$, and $f_s \wedge \overline{t}\varepsilon = f_s$ imply $(f_s, \overline{t})(f_p, \overline{p^+}) = ((\overline{tp^+})^+ f_s \wedge \overline{t}f_p, \overline{tp^+}) \in T$, which implies $(\overline{tp^+})^+ f_s \wedge \overline{t}f_p = f_{sp^-} \in C$. (vi): is clear.

According to Corollary 2.8 we get:

COROLLARY 3.7. Let S and ρ be as in Theorem 3.3. Assume further that S/ρ is a monoid. Then S is isomorphic to a semigroup constructed by Proposition 2.6.

COROLLARY 3.8. [2]. Each proper left type-A semigroup is isomorphic to an M-semigroup M(G, GB, B).

If S and ρ are as in Theorem 3.3 and $G := S/\rho$ is not a monoid, then S is not a monoid too and we may consider S^1 and $\bar{\rho} := \rho \cup \{(1, 1)\}$. Obviously S^1 is a left type-A semigroup and $\bar{\rho}$ is a left type-A congruence on S^1 satisfying $\bar{\rho} \cap \mathcal{R}^*_{S^1} = \iota$ and $S^1/\bar{\rho} = G^1$. By the above, S^1 is isomorphic to a submonoid T of some $A \otimes G^1$, constructed by Proposition 2.6, and $T \setminus \{1\}$ is a representation for S.

4. E-Reflexive left type-A semigroups. In this section we consider left type-A semigroups, which admit a left type-A congruence ρ , satisfying $\rho \cap \mathcal{R}^* = \iota$ and xepex, for all $x \in S$, $e \in E_S$. In this case S/ρ is a left type-A semigroup with central idempotents. Such semigroups where investigated by Fountain [3] who proved that they are precisely the strong semilattices of right cancellative monoids.

The following concept seems to be appropriate:

DEFINITION 4.1. Let s be a left type-A semigroup. S is called E-reflexive if

 $(u(xy)^{+}v)^{+}z = z^{+}u(xy)^{+}v \Leftrightarrow (ux^{+}y^{+}v)^{+}z = z^{+}ux^{+}y^{+}v, u, v, x, y, z \in S.$ (ER)

PROPOSITION 4.2. Let S be a left type-A semigroup. Let τ be a binary relation on S, defined by

 $x \tau y : \Leftrightarrow [(uxv)^+ z = z^+ (uxv) \Leftrightarrow (uyv)^+ z = z^+ (uyv)], \text{ for all } u, v \in S^1, z \in S.$

Then τ is a congruence on (S, \cdot) satisfying $\tau \cap \Re^* = \iota$.

Proof. That τ is a congruence on (S, \cdot) is straightforward. Let $x\tau \cap \mathcal{R}^* y$. By

definition of τ and $(1 \cdot x \cdot 1)^+ x = x^+ (1 \cdot x \cdot 1)$ we get $y^+ x = x^+ y$. Moreover $x \mathcal{R}^* y$ implies $x^+ = y^+$. Thus $x = y^+ x = x^+ y = y$.

THEOREM 4.3. Let S be an E-reflexive left type-A semigroup. Then ρ defined by $x\rho y : \Leftrightarrow x\tau y$ and $x^+\tau y^+$, is a left type-A congruence on S, which satisfies $\rho \cap \Re^* = \iota$ and xepex, for all $x \in S$, $e \in E_S$.

Proof. Obviously ρ is an equivalence relation on S. Let $x\rho y, a \in S$. It follows that $x\tau y$ and $x^+\tau y^+$, implying $ax\tau ay$. Further $(u(ax)^+v)^+z = z^+(u(ax)^+v)$ iff $(ua^+x^+v)^+z = z^+(ua^+x^+v)$, by (ER), iff $(ua^+y^+v)^+z = z^+(ua^+y^+v)$, since $x^+\tau y^+$, iff $(u(ay)^+v)^+z = z^+(u(ay)^+v)$, by (ER). Consequently, $(ax)^+\tau(ay)^+$ and $ax\rho ay$ follows. By duality we obtain that ρ is a congruence on (S, \cdot) .

We show next that *xepex*, for all $x \in S$, $e \in E_S$. Note first that by (ER) and the definition of ρ , $x\rho y$ implies $x^+\rho y^+$ and $(xw)^+\rho x^+w^+$, for all $w, x, y \in S$. We infer

 $xe = (xe)^+ xe\rho x^+ exe = exe = e(xe)^+ x\rho ex^+ ex = ex.$

We continue, showing that ρ is left type-A. Let $xw\rho yw$. It follows that $x^+w^+\rho y^+w^+$ and by the proof of Proposition 4.2 $(xw)^+yw = (yw)^+xw$, implying $(xw)^+yw^+ = (yw)^+xw^+$. We conclude that

$$xw^{+}\rho xx^{+}w^{+}\rho xy^{+}w^{+}\rho (yw)^{+}xw^{+} = (xw)^{+}yw^{+}\rho yx^{+}w^{+}\rho yy^{+}w^{+}\rho yw^{+},$$

proving the assertion.

Finally from Proposition 4.2 we get $\iota \subseteq \rho \cap \mathcal{R}^* \subseteq \tau \cap \mathcal{R}^* = \iota$.

Taking into account Theorem 3.3 we immediately obtain the following equivalences:

COROLLARY 4.4. Let S be a left type-A semigroup. Then the following statements are equivalent:

(i) S is E-reflexive.

- (ii) S has a left type-A congruence ρ , satisfying $\rho \cap \Re^* = \iota$ and xepex, $x \in S$, $e \in E_S$.
- (iii) S admits an \Re^* -respecting embedding into some $A *_{\lambda} G$ with A a semilattice and G a strong semilattice of right cancellative monoids.

Proof. (i) \Rightarrow (ii) by Theorem 4.3.

(ii) \Rightarrow (iii) by Theorem 3.3.

(iii) \Rightarrow (i) is straightforward.

Further, (if we replace the expressions gg^{-1} in the proof by g^+), [1, Corollary 14] yields the following.

COROLLARY 4.5. Each E-reflexive left type-A semigroup admits an \Re^* -respecting embedding into a strong semilattice of proper left type-A semigroups, which are semidirect products of semilattices by right cancellative monoids.

For inverse semigroups our concept of *E*-reflexivity coincides with that of [8, III.8.1], since ρ is an idempotent pure Clifford congruence in this case, and an inverse semigroup is *E*-reflexive iff it has an idempotent pure Clifford congruence [8, III, 8.3. Theorem].

REFERENCES

1. B. Billhardt, On a wreath product embedding and idempotent pure congruences on inverse semigroups, Semigroup Forum 45 (1992) 45-54.

BERND BILLHARDT

2. J. Fountain, A class of right PP monoids, Quart. J. Math. Oxford, Ser. 2 28 (1977) 285-330.
3. J. Fountain, Right PP monoids with central idempotents, Semigroup Forum 13 (1977) 229-237.

4. J. Fountain and G. M. S. Gomes, Proper left type-A monoids revisited, *Glasgow Math. J.* 35 (1993) 293-306.

5. M. V. Lawson, The structure of type-A semigroups, Quart. J. Math. Oxford Ser. 2 37 (1986) 279–298.

6. L. O'Carroll, Embedding theorems for proper inverse semigroups, J. Algebra 42 (1976) 26-40.

7. A. Palmer, Proper right type-A semigroups, M. Phil. Thesis, York, 1982.

8. M. Petrich, Inverse semigroups (Wiley, 1984).

UNIVERSITÄT-GESAMTHOCHSCHULE KASSEL

FACHBEREICH 17 MATHEMATIK/INFORMATIK

HOLLÄNDISCHE STR. 36

D-34109 Kassel

Germany

16