EXTENSIONS OF SEMILATTICES BY LEFT TYPE- A SEMIGROUPS

by BERND BILLHARDT

(Received 31 May, 1995)
0. Introduction. On a semigroup S let the relation \mathscr{R}^{*}, sometimes denoted by \mathscr{R}_{S}^{*}, be defined by $x \mathscr{R}^{*} y \Leftrightarrow\left[\left(\forall s, t \in S^{1}\right) s x=t x \Leftrightarrow s y=t y\right]$. A semigroup S is called left type- A, iff the set E_{S} of idempotents of S forms a semilattice under multiplication, each element x of S is \mathscr{R}^{*} related to a (necessarily unique) idempotent x^{+}, and $x e=(x e)^{+} x$ for all $x \in S$, $e \in E_{S}$.

Left type- A semigroups are natural generalizations of inverse semigroups and have been the subject of a considerable amount of investigation in recent years (e.g. [2], [3], [7], [5], [4]).

By a left type- A congruence ρ on a left type- A semigroup S we mean a congruence ρ on (S, \cdot), satisfying the implication $x \rho y \Rightarrow x^{+} \rho y^{+}$and making S / ρ into a left type- A semigroup by $(s \rho)^{+}:=s^{+} \rho$.

The purpose of this paper is to generalize the results of [1] to left type- A semigroups.
In Section 2 we define the notions of λ-semidirect product and full restricted semidirect product. These notions are not given in full generality but rather as they are needed here (first (second) component a semilattice (left type- A semigroup)).

In Section 3 we prove that, given a left type- A semigroup S and a left type- A congruence ρ on S, satisfying $\rho \cap \mathscr{R}^{*}=\iota$, the identity relation, then S is isomorphic to a well determined subsemigroup T of a λ-semidirect product $A{ }_{\lambda} S / \rho$, with A a semilattice. Moreover $\mathscr{R}_{T}^{*} \subseteq \mathscr{R}_{A{ }_{*}{ }_{S} / \rho}^{*}$.

In particular, if S is proper, i.e. if $\sigma \cap \mathscr{R}^{*}=\iota$, where σ is the least right cancellative congruence on S, we obtain that S is isomorphic to an M-semigroup T, [2], which is embedded into a semidirect product of a semilattice by a right cancellative monoid. Regarding this we generalize Fountain's representation theorem for proper left type- A semigroups, as well as O'Carroll's embedding theorem for E-unitary inverse semigroups, [6].

A related result, which states that each proper left type- A semigroup is embeddable into a reverse semidirect product of a semilattice by a right cancellative monoid, was recently proven using the categorical approach in [4].

In Section 4 we apply our methods to a certain class of left type- A semigroups whose intersection with the class of inverse semigroups consists precisely of the E-reflexive ones, in the sense of [8].

The notation and terminology of [8] will be used throughout the paper, whenever possible. In particular, for any congruence, \bar{s} often denotes the congruence class containing s, and for $H, K \subseteq S, H K$ means the set product, i.e. $H K=\{h k \mid h \in H, k \in K\}$.

1. Preliminaries. The following basic results on left type- A semigroups and left type- A congruences are frequently used in the sequel without further reference.

Proposition 1.1. Let S be a left type-A semigroup. Then:
(i) $\left(x y^{+}\right)^{+}=(x y)^{+}$,

Glasgow Math. J. 39 (1997) 7-16.
(ii) $x^{+}(x y)^{+}=(x y)^{+}$,
(iii) $x y^{+}=\left(x y^{+}\right)^{+} x$.

Proposition 1.2. Let ρ be a left type-A congruence on a left type A-semigroup S. Then the following statements are equivalent:
(i) $\rho \cap \mathscr{R}^{*}=\iota$,
(ii) $x \rho y \Rightarrow x^{+} y=y^{+} x$.

Proof. (i) \Rightarrow (ii). Let $\rho \cap \mathscr{R}^{*}=\iota$ and $x \rho y$. It follows that $x^{+} \rho y^{+}$which implies $x^{+} y \rho y^{+} x$. Moreover, since \mathscr{R}^{*} is a left congruence on S, we obtain $x^{+} y \mathscr{R}^{*} x^{+} y^{+}=$ $y^{+} x^{+} \mathscr{R}^{*} y^{+} x$. Thus by assumption $x^{+} y=y^{+} x$ follows.
(ii) \Rightarrow (i). Let (ii) be satisfied and $x \rho \cap \mathscr{R}^{*} y$. It follows that $x^{+}=y^{+}$and $x^{+} y=y^{+} x$, implying $x=x^{+} x=y^{+} x=x^{+} y=y^{+} y=y$.

Proposition 1.3. Let ρ be a left type-A congruence on a left type-A semigroup S with $\rho \cap \mathscr{R}^{*}=\iota$. Then ρ is idempotent pure, i.e. ape $=e^{2}$ implies $a \in E_{S}$.

Proof. Let ape with $e \in E_{S}$. It follows that $a \rho a^{2}$, implying $a \rho a^{+}$, since ρ is left type- A, implying $a=a^{+}$by assumption.

Note that the converse of Proposition 1.3 is not true since there are E-unitary left type- A semigroups which are not proper [2].

2. λ-Semidirect products and full restricted semidirect products

Proposition 2.1. Let A be a semilattice and G be a left type-A semigroup acting on A by endomorphisms on the left, i.e. for each $g \in G, \alpha \rightarrow g \alpha$ is a homomorphism and $g(h \alpha)=(g h) \alpha$, for all $\alpha \in A, g, h \in G$. On $T:=\left\{(\alpha, g) \in A \times G \mid g^{+} \alpha=\alpha\right\}$ let a multiplication be defined by $(\alpha, g) \cdot(\beta, h):=\left((g h)^{+} \alpha \cap g \beta, g h\right)$. Then T is a left type- A semigroup with $E_{T}=\left\{\left(\alpha, g^{+}\right) \in A \times G \mid g^{+} \alpha=\alpha\right\}$ and $(\alpha, g)^{+}=\left(\alpha, g^{+}\right)$for $(\alpha, g) \in T$. (T is called a λ-semidirect product of A by G, denoted by $A *{ }_{\lambda} G$).

Proof. Let $(\alpha, g),(\beta, h),(\gamma, k) \in T$. It follows that $(g h)^{+}\left((g h)^{+} \alpha \wedge g \beta\right)=(g h)^{+} \alpha \wedge$ $(g h)^{+} g \beta=(g h)^{+} \alpha \wedge g h^{+} \beta=(g h)^{+} \alpha \wedge g \beta$, proving that $(\alpha, g) .(\beta, h) \in T$. Moreover we obtain

$$
\begin{aligned}
((\alpha, g)(\beta, h)(\gamma, k) & =\left((g h k)^{+}\left((g h)^{+} \alpha \wedge g \beta\right) \wedge g h \gamma, g h k\right) \\
& =\left((g h k)^{+}(g h)^{+} \alpha \wedge(g h k)^{+} g \beta \wedge g h \gamma, g h k\right) \\
& =\left((g h k)^{+} \alpha \wedge g(h k)^{+} \beta \wedge g h \gamma, g h k\right) \\
& =\left((g h k)^{+} \alpha \wedge g\left((h k)^{+} \beta \wedge h \gamma\right), g h k\right) \\
& =(\alpha, g)((\beta, h)(\gamma, k)) .
\end{aligned}
$$

Thus T is a semigroup.
It remains to show that T is left type- A. Obviously $E_{T}=\left\{\left(\alpha, g^{+}\right) \mid(\alpha, g) \in T\right\}$. E_{T} is a semilattice, since $\left(\alpha, g^{+}\right)\left(\beta, h^{+}\right)=\left(g^{+} h^{+}(\alpha \wedge \beta), g^{+} h^{+}\right)=\left(h^{+} g^{+}(\beta \wedge \alpha), h^{+} g^{+}\right)=$ $\left(\beta, h^{+}\right)\left(\alpha, g^{+}\right)$.

Further, for $(\beta, h),(\gamma, k) \in T$ we obtain

$$
\begin{aligned}
(\beta, h)(\alpha, g)=(\gamma, k)(\alpha, g) & \Leftrightarrow\left((h g)^{+} \beta \wedge h \alpha, h g\right)=\left((k g)^{+} \gamma \wedge k \alpha, k g\right) \\
& \Leftrightarrow(h g)^{+} \beta \wedge h \alpha=\left(k g^{+}\right)^{+} \gamma \wedge k \alpha \text { and } h g^{+}=k g^{+} \\
& \Leftrightarrow(\beta, h)\left(\alpha, g^{+}\right)=(\gamma, k)\left(\alpha, g^{+}\right) .
\end{aligned}
$$

Consequently $\left(\alpha, g^{+}\right) \mathscr{R}^{*}(\alpha, g)$, and $\left(\alpha, g^{+}\right)$acts as $(\alpha, g)^{+}$on T. Finally

$$
\begin{aligned}
(\alpha, g)\left(\beta, h^{+}\right) & =\left((g h)^{+} \alpha \wedge g \beta, g h^{+}\right) \\
& =\left((g h)^{+} \alpha \wedge g \beta \wedge(g h)^{+} \alpha,(g h)^{+} g\right) \\
& =\left((\alpha, g)\left(\beta, h^{+}\right)\right)^{+}(\alpha, g)
\end{aligned}
$$

completing the proof.
It should be noted that if, in Proposition $2.1, G$ is a right cancellative monoid with identity 1 , and the action satisfies $1 \alpha=\alpha$, for all $\alpha \in A$, then $A *{ }_{\lambda} G$ becomes a semidirect product of A by G.

An important example of the above construction is the following:
Definition 2.2. Let A be a semilattice and G be a left type- A semigroup. Then $F:=A^{C}$ is a semilattice with respect to the multiplication given by $(x) f \wedge g:=(x) f \wedge(x) g$, $x \in G, f, g \in F$. For $t \in G, f \in F$, let $t f \in F$ be defined by $(x) t f:=(x t) f, x \in G$. This defines an action of G on F by endomorphisms on the left. Thus we can form the λ-semidirect product $W:=F *_{\lambda} G$ with respect to this action. W is called the standard λ-wreath product of A by G, denoted by $A W_{\lambda} G$.

In general, a semidirect product $A * G$ of a semilattice A by a left type- A semigroup G is not left type- A. However, if the action of G on A satisfies some additional properties, a left type- A subsemigroup T of $A * G$ can be determined with $\mathscr{R}_{T}^{*} \subseteq \mathscr{R}_{A * G}^{*}$.

Proposition 2.3. Let A be a semilattice and G be a left type- A semigroup acting on A on the left, such that for each $\alpha \in A$, there exists $e_{\alpha} \in E_{G}$, satisfying
(i) $e_{\alpha} \alpha=\alpha$, for all $\alpha \in A$,
(ii) $e_{\alpha \wedge \beta}=e_{\alpha} e_{\beta}$, for all $\alpha, \beta \in A$,
(iii) $e_{g \alpha}=\left(g e_{\alpha}\right)^{+}$, for all $\alpha \in A, g \in G$.

Then $T:=\left\{(\alpha, g) \in A \times G \mid e_{\alpha}=g^{+}\right\}$is a subsemigroup of $A * G$, which is left type- A, with $(\alpha, g)^{+}:=\left(\alpha, e_{\alpha}\right) . T$ is called a full restricted semidirect product of A by G, denoted by $A \otimes G$.

Proof. Let $(\alpha, g),(\beta, h) \in T$. It follows $e_{\alpha}=g^{+}, e_{\beta}=h^{+}$, and we obtain by (ii) and (iii) $e_{\alpha \wedge g \beta}=e_{\alpha}\left(g e_{\beta}\right)^{+}=g^{+}(g h)^{+}=(g h)^{+}$, implying $(\alpha, g)(\beta, h) \in T$. Further, $E_{T}=\left\{\left(\alpha, e_{\alpha}\right) \mid \alpha \in A\right\}$, and for $\left(\alpha, e_{\alpha}\right), \quad\left(\beta, e_{\beta}\right) \in E_{T}$, we have $\left(\alpha, e_{\alpha}\right)\left(\beta, e_{\beta}\right)=$ $\left(\alpha \wedge e_{\alpha} \beta, e_{\alpha} e_{\beta}\right) \stackrel{(\mathrm{i})}{(}\left(e_{\alpha}(\alpha \wedge \beta), \quad e_{\alpha} e_{\beta}\right) \stackrel{(\mathrm{ii)}}{=}\left(e_{\alpha} e_{\beta}(\alpha \wedge \beta), \quad e_{\alpha} e_{\beta}\right) \stackrel{(\mathrm{i})}{=}\left(\alpha \wedge \beta, e_{\alpha} e_{\beta}\right)=\left(\beta \wedge \alpha, e_{\beta} e_{\alpha}\right)=$ $\left(\beta, e_{\beta}\right)\left(\alpha, e_{\alpha}\right)$, by symmetry. Thus E_{T} is a semilattice. Moreover $(\alpha, g) \mathscr{R}^{*}\left(\alpha, e_{\alpha}\right)$ follows directly from the fact that G is left type- A. Finally we get $(\alpha, g)(\beta, h)^{+}=$ $\left(\alpha \wedge g \beta, g e_{\beta}\right)=\left(\alpha \wedge g \beta \wedge\left(g e_{\beta}\right)^{+}(\alpha \wedge g \beta), \quad\left(g e_{\beta}\right)^{+} g\right)=\left(\alpha \wedge g \beta \wedge\left(g e_{\beta}\right)^{+} \alpha, \quad\left(g e_{\beta}\right)^{+} g\right)=$ $((\alpha, g)(\beta, h))^{+}(\alpha, g)$, completing the proof.

The notions of λ-semidirect product and full restricted semidirect product are closely related as the following theorem shows.

Theorem 2.4. Let $S:=A *{ }_{\lambda} G$ be a λ-semidirect product of a semilattice A by a left type-A semigroup G. Then $A *_{\lambda} G$ can be embedded into a full restricted semidirect product $A^{\prime} \otimes G$ of a semilattice A^{\prime} by G.

Proof. Consider the semilatice $A^{\prime}:=E_{S}=\left\{(\alpha, e) \in S \mid e \in E_{G}\right\}$. For $g \in G,(\alpha, e) \in$ A^{\prime} let $g(\alpha, e):=\left(g \alpha,(g e)^{+}\right)$. A straightforward verification shows that this defines an action of G on A^{\prime} by endomorphisms on the left. For $(\alpha, f) \in A^{\prime}$ let $e_{(\alpha f)}:=f$. Then the conditions (i), (ii), (iii) of Proposition 2.3 are satisfied. Hence we may construct $A^{\prime} \otimes G$ in which S is embedded via $(\alpha, g) \rightarrow\left(\left(\alpha, g^{+}\right), g\right)$.

In the following proposition we determine a certain subsemigroup $A *_{\lambda} G$ which will be useful in view of the representation theorem in Section 3.

Proposition 2.5. Let $A *_{\lambda} G$ be as in Theorem 2.4. Let C be a nonempty subset of A, and $B:=C \cup\{g \alpha \mid g \in G, \alpha \in C\}$. Let ε be a fixed element of A and assume further that for each $\mu \in B$ there is an $e_{\mu} \in E_{G}$ such that
(i) $e_{\mu} \mu=\mu$, for all $\mu \in B$,
(ii) $\mu, v, \mu \wedge v \in B \Rightarrow e_{\mu \wedge \nu}=e_{\mu} e_{v}$,
(iii) $e_{g \mu}=\left(g e_{\mu}\right)^{+}$, for all $\mu \in B, g \in G$,
(iv) $\alpha \wedge e_{\alpha} \varepsilon=\alpha$, for all $\alpha \in C$,
(v) $\alpha, \beta \in C, e_{\alpha}=g^{+}$and $\alpha \wedge g \varepsilon=\alpha$ imply $\left(g e_{\beta}\right)^{+} \alpha \wedge g \beta \in C$,
(vi) for each $g \in G$, there is $\alpha \in C$ such that $e_{\alpha}=g^{+}$and $\alpha \wedge g \varepsilon=\alpha$.

Then $T:=\left\{(\alpha, g) \in C \times G \mid e_{\alpha}=g^{+}\right.$and $\left.\alpha \wedge g \varepsilon=\alpha\right\}$ is a left type- A subsemigroup of
 congruence on T, satisfying $\rho_{T} \cap \mathscr{R}_{T}^{*}=\iota$, and $T / \rho_{T} \cong G$.

Proof. Let $(\alpha, g),(\beta, h) \in T$. It follows that $e_{\alpha}=g^{+}, e_{\beta}=h^{+}, \alpha \wedge g \varepsilon=\alpha$, and $\beta \wedge h \varepsilon=\beta$. Thus $(\alpha, g)(\beta, h)=\left((g h)^{+} \alpha \wedge g \beta, g h\right)=\left(\left(g e_{\beta}\right)^{+} \alpha \wedge g \beta, g h\right) \in C \times G$, by (v), and $e_{\left(g e_{\beta}\right)^{+} \alpha \wedge \beta} \stackrel{\text { (ii) }}{=} e_{\left(g e_{\beta}\right)^{-} \alpha} e_{g \beta}{ }^{\text {(iii) }}=\left(\left(g e_{\beta}\right)^{+} e_{\alpha}\right)^{+}\left(g e_{\beta}\right)^{+}=\left(g e_{\beta}\right)^{+}=(g h)^{+}$. Further, $\left(g e_{\beta}\right)^{+} \alpha \wedge g \beta \wedge$ $g h \varepsilon=\left(g e_{\beta}\right)^{+} \alpha \wedge g(\beta \wedge h \varepsilon)=\left(g e_{\beta}\right)^{+} \alpha \wedge g \beta$. Consequently, T is a subsemigroup of $A *{ }_{\lambda} G$. Moreover, $\left(\alpha, e_{\alpha}\right) \in T$ by (iv), which implies that T is left type- A with $(\alpha, g)^{+}=\left(\alpha, e_{\alpha}\right)$. From this we directly obtain that ρ_{T} is left type- $A, \rho_{T} \cap \mathscr{R}_{T}^{*}=\iota$, and $R_{T}^{*} \subseteq \mathscr{R}_{A{ }_{*},} G$. Finally T / ρ_{T} is isomorphic to G via $(\alpha, g) \rightarrow g$, by (vi).

In connection with Theorem 2.4, Proposition 2.5 leads to a certain subsemigroup of a full restricted semidirect product, which will be described below.

Proposition 2.6. Let $A \otimes G$ be as in Proposition 2.3. Let B be a subsemilattice of A and ε an element of A, such that the following holds:
(i) $\alpha \wedge \varepsilon=\alpha$, for all $\alpha \in B$,
(ii) $\alpha, \beta \in A, e_{\alpha}=g^{+}$and $\alpha \wedge g \varepsilon=\alpha$ imply $\alpha \wedge g \beta \in B$,
(iii) for each $g \in G$, there is $\alpha \in B$, such that $e_{\alpha}=g^{+}$and $\alpha \wedge g \varepsilon=\alpha$.

Then $T:=\left\{(\alpha, g) \in B \times G \mid e_{\alpha}=g^{+}\right.$and $\left.\alpha \wedge g \varepsilon=\alpha\right\}$ is a left type- A subsemigroup of $A \otimes G$ with $\mathscr{R}_{T}^{*} \subseteq \mathscr{R}_{A \otimes G}^{*}$. Moreover, ρ_{T}, defined by $(\alpha, g) \rho_{T}(\beta, h) \Leftrightarrow g=h$, is a left type- A congruence on T, satisfying $\rho_{T} \cap \mathscr{R}_{T}^{*}=\iota$, and $T / \rho_{T} \cong G$.

Proof. Let $(\alpha, g), \quad(\beta, h) \in T$. It follows that $e_{\alpha}=g^{+}, e_{\beta}=h^{+}, \alpha \wedge g \varepsilon=\alpha$, and $\beta \wedge h \varepsilon=\beta$. We obtain $e_{\alpha \wedge g \beta}=e_{\alpha} e_{g \beta}=g^{+}\left(g h^{+}\right)^{+}=(g h)^{+}$, and $\alpha \wedge g \beta \wedge g h \varepsilon=\alpha \wedge$ $g(\beta \wedge h \varepsilon)=\alpha \wedge g \beta$. Further, by (ii), $\alpha \wedge g \beta \in B$. Consequently, T is a subsemigroup of $A \otimes G$. Moreover, $\alpha \wedge e_{\alpha} \varepsilon=\alpha \wedge \varepsilon=\alpha$ implies $\left(\alpha, e_{\alpha}\right) \in T$, and T is left type- A with $(\alpha, g)^{+}=\left(\alpha, e_{\alpha}\right)$. It follows directly that ρ_{T} is left type- $A, \rho_{T} \cap \mathscr{R}_{T}^{*}=\iota$, and $\mathscr{R}_{T}^{*} \subseteq \mathscr{R}_{A \otimes G}^{*}$. Finally T / ρ_{T} is isomorphic to G via $(\alpha, g) \rightarrow g$, by (iii).

According to [2], [7] we note the following results.
Corollary 2.7. If G is a right cancellative monoid in Proposition 2.6, then $(G, G B, B)$ is a left admissible triple and $T=M(G, G B, B)$.

Corollary 2.8. Let T be a semigroup constructed by Proposition 2.5. Assume further that G is a monoid with identity 1 and $1 \varepsilon=\varepsilon$. Then T is isomorphic to a semigroup constructed by Proposition 2.6.

Proof. Consider $A^{\prime} \otimes G$ as in Theorem 2.4. Note that by assumption $(\varepsilon, 1)$ belongs to A^{\prime}. Then T is embedded into $A^{\prime} \otimes G$ via ψ, defined by $\psi:(\alpha, g) \rightarrow\left(\left(\alpha, e_{\alpha}\right), g\right)$. Moreover $B^{\prime}:=\left\{\left(\alpha, e_{\alpha}\right) \mid \alpha \in C\right\}$ is a subsemilattice of A^{\prime}, and $T \psi$ is built up by B^{\prime} and $\varepsilon^{\prime}:=(\varepsilon, 1)$, as T is by B and ε in Proposition 2.6.
3. The representation theorem. Let S be a left type- A semigroup and ρ be a left type- A congruence on S satisfying $\rho \cap \mathscr{R}^{*}=\iota$. The aim of this section is to show that S is isomorphic to a semigroup constructed by Proposition 2.5 with $G=S / \rho$.

The following proposition is a generalization of Theorem 4 of [1].
Proposition 3.1. Let S be a left type-A semigroup and ρ be a left type-A congruence on S such that $\rho \cap \mathscr{R}^{*}=\iota$. Consider $C^{\prime}(S):=\left\{H \subseteq S \mid H \neq \phi, H \subseteq \bar{s}, \overline{s^{+}} H=H\right.$, for some $\bar{s} \in S / \rho\}$.
(i) $C^{\prime}(S)$ is a left type-A semigroup with multiplication given by $H \circ K:=\overline{(s t)^{+}} H K$, for $H, K \in C^{\prime}(S)$, with $H \subseteq \bar{s}, K \subseteq \bar{t}$, and $H^{+}:=\left\{h^{+} \mid h \in H\right\}$.
(ii) $S / \rho \subseteq C^{\prime}(S)$.
(iii) S is embedded into $C^{\prime}(S)$ via $s \rightarrow \hat{s}$, where $\hat{s}:=\overline{s^{\dagger}}\{s\}$, and the embedding respects \mathscr{R}^{*}, i.e. $\mathscr{R}_{S}^{*} \subseteq \mathscr{R}_{C^{\prime}(S)}^{*}$.
Proof. (i): Let $H, K, L \in C^{\prime}(S)$, with $H \subseteq \bar{s}, K \subseteq \bar{t}, L \subseteq \bar{u}$. We prove that $H \circ K$ is in $C^{\prime}(S)$. Obviously $H \circ K$ is uniquely defined and $H \circ K \subseteq \overline{s t}$. Moreover $\overline{(s t)^{+}}(H \circ K)=$ $\overline{(s t)^{+}} \overline{(s t)^{+}} H K=H \circ K$.

In what follows, we will use Proposition 1.1 several times without further reference. Next we show that \circ is associative. We have

$$
(H \circ K) \circ L=\overline{(s t u)^{+}} \overline{(s t)^{+}} H K L \subseteq \overline{(s t u)^{+}} H K L,
$$

and

$$
\overline{(s t u)^{+}} H K L \subseteq \overline{(s t u)^{+}} \overline{(s t)^{+}} H K L \text { imply }(H \circ K) \circ L=\overline{(s t u)^{+}} H K L .
$$

On the other hand we have

$$
H \circ(K \circ L)=\overline{(s t u)^{+}} \overline{H(t u)^{+}} K L \subseteq \overline{(s t u)^{+}} H K L,
$$

and

$$
\overline{(s t u)^{+}} H K L \subseteq \overline{(s t u)^{+}} \overline{H(t u)^{+}} K L, \text { implying } H \circ(K \circ L)=\overline{(s t u)^{+}} H K L .
$$

Consequently \circ is associative. Note that $E_{C^{\prime}(S)}=\left\{H \subseteq E_{S} \mid H \subseteq \bar{e}, \bar{e} H=H\right.$ for some $\left.e \in E_{S}\right\}$ since ρ is left type- A and idempotent pure by Proposition 1.3. Hence $E_{C^{\prime}(s)}$ is a semilattice.

We continue proving that $C^{\prime}(S)$ is left type- A. For this, let $H \in C^{\prime}(S)$ with $H \subseteq \bar{s}$. Let $H^{+}:=\left\{h^{+} \mid h \in H\right\}$. Then clearly $H^{+} \subseteq \overline{s^{+}}$. Further, for $e \in \overline{s^{+}}, h^{+} \in H^{+}$, we obtain $e h^{+} \mathscr{R}{ }^{*} e h \mathscr{R}^{*}(e h)^{+}$implying $e h^{+}=(e h)^{+} \in H^{+}$since $e h \in H$. Consequently $\bar{s}^{+} H^{+} \subseteq H^{+}$ and $H^{+} \in E_{C^{\prime}(S)}$. Next we show that H^{+}is \mathscr{R}^{*}-related to H : Consider $K, L \in C^{\prime}(S)$ with $K \subseteq \bar{t}, L \subseteq \bar{u}$ and $K \circ H=L \circ H$, i.e. $\overline{(t s)^{+}} K H=\overline{(u s)^{+}} L H$.

Note that this implies $\overline{t s}=\overline{u s}$ and $\overline{t s^{+}}=\overline{u s^{+}}$since ρ is left type- A. Let now $x \in K \circ H^{+}=\overline{(t s)^{+}} K H^{+}$. Then $x=e k h^{+}$with $e \in \overline{\left(t s^{+}\right)}, k \in K, h^{+} \in H^{+}$. We obtain $\underline{x=e} e\left(\underline{k h^{+}}\right)^{+} k=e\left(f l h_{1}^{+}\right)^{+} k=f\left(l h_{1}^{+}\right)^{+} e k$, for suitable $f \in \overline{\left(u s^{+}\right)}, l \in L, h_{1} \in H$. Since $\overline{l h_{1}^{+}}=\overline{u s^{+}}=t s^{+}=\overline{e k}$, we get by Proposition 1.2 that $x=f(e k)^{+} l h_{1}^{+} \in(u s)^{+} L H^{+}=L \circ H^{+}$. Analogously, it follows that $L \circ H^{+} \subseteq K \circ H^{+}$, whence $K \circ H^{+}=L \circ H^{+}$. Finally, since for arbitrary $M, N \in C^{\prime}(S), M \circ H=H$ (rsp. $H=N \circ H$) implies $M \circ H=H^{+} \circ H$ (rsp. $H^{+} \circ$ $N=N \circ H$), we obtain by the above $M \circ H^{+}=H^{+}$(rsp. $H^{+}=N \circ H^{+}$). Summarizing, we have proven that H^{+}is \mathscr{R}^{*}-related to H.

To complete the proof we have to show that for arbitrary $H, K \in C^{\prime}(S)$ the equation $H \circ K^{+}=\left(H \circ K^{+}\right)^{+} \circ H$ is valid. Let $H \subseteq \bar{s}, K \subseteq \bar{t}$. We must verify the equality $A:=$ $\left.\overline{(s t)^{+}} H K^{+}=\overline{(s t)^{+}} \overline{\left((s t)^{+}\right.} H K\right)^{+} H=: B$. Let $x \in A$. Then $x=e h k^{+}$with $e \in \overline{(s t)^{+}}, h \in H$, $k^{+} \in K^{+}$. It follows that $x=e(h k)^{+} h \in B$. On the other hand, let $x \in B$. Then $x=$ $e\left(f h_{1} k\right)^{+} h_{2}$, with $e, f \in \overline{(s t)^{+},} h_{1}, h_{2} \in H, k \in K$. We get $x=e f\left(h_{1} k\right)^{+} h_{2}=e f\left(h_{1} k\right)^{+} h_{1}^{+} h_{2}=$ $e f\left(h_{1} k\right)^{+} h_{2}^{+} h_{1}$, by Proposition 1.2. Thus $x=e f h_{2}^{+}\left(h_{1} k\right)^{+} h_{1}=e f h_{2}^{+} h_{1} k^{+} \in A$, and $A=B$ follows.
(ii): The assertion is obvious from the fact that $\bar{s}=\bar{s}^{+} \bar{s}$ for each $\bar{s} \in S / \rho$.
(iii): By definition of $C^{\prime}(S)$ each \hat{s} lies in $C^{\prime}(S)$. Further, $\hat{s}=\hat{t}$ implies $s=e t$ and $t=f s$, for some $e, f \in E_{s}$, which implies $e s=s$. Thus $s=e t=e f s=f e s=f s=t$ follows.

We prove $\hat{s} \circ \hat{t}=\widehat{s t}$. Let $x \in \hat{s} \circ \hat{t}$. Then $x=c d$ set with $\bar{c}=\overline{(s t)^{+}}, \bar{d}=\bar{s}^{+}$and $\bar{e}=\overline{t^{+}}$. It follows that $x=c d(s e)^{+} s t \in \widehat{s t}$ since $\overline{c d(s e)^{+}}=\overline{(s t)^{+} s^{+}\left(s t^{+}\right)^{+}}=\overline{(s t)^{+}}$. Consequently, $\hat{s} \circ \hat{t} \subseteq$ $\widehat{s t}$. Since $\widehat{s t} \subseteq \hat{s} \circ \hat{t}$ evidently holds, the assertion is proven.

Finally, the embedding respects \mathscr{R}^{*}, since $s^{+}=t^{+}$implies $\hat{s}^{+}=\left(\overline{s^{+}}\{s\}\right)^{+}=\left(\overline{t^{+}}\{t\}\right)^{+}=\hat{t}^{+}$.
Note that S / ρ is a subset of $C^{\prime}(S)$ but not a subsemigroup in general. To avoid confusion, \bar{s}^{+}always means the element of $E_{C^{\prime}(s)}$ which is \mathscr{R}^{*}-related to \bar{s} in $C^{\prime}(S)$, whereas for the idempotent which is \mathscr{R}^{*}-related to \bar{s} in S / ρ we use exclusively the term $\bar{s}{ }^{+}$.

Lemma 3.2. Let $H, K \in C^{\prime}(S)$ such that $H \subseteq \bar{s}, K \subseteq \bar{t}$ and $\overline{(s t)^{+}}=\overline{s^{+}}$. Then: $H \circ K=$ $H K$.

Proof. By definition of o and the assumption we obtain

$$
H \circ K=\overline{(s t)^{+}} H K=\overline{s^{\dagger}} H K=H K .
$$

Proposition 3.1 enables us to embed S into a standard λ-wreath product of a semilattice by S / ρ.

Theorem 3.3. Let S be a left type-A semigroup and ρ be a left type-A congruence on
S such that $\rho \cap \mathscr{R}^{*}=\iota$. Then the mapping $\varphi: S \rightarrow E_{C^{\prime}(S)} W_{\lambda} S / \rho$ defined by $s \rightarrow\left(f_{s}, \tilde{s}\right)$, where $(\bar{u}) f_{s}:=\left(\overline{u s^{+}} \circ \hat{s}\right)^{+}, \bar{u} \in S / \rho$, is an \mathscr{R}^{*}-respecting embedding.

Proof. Obviously ϕ is uniquely defined. Note that by Lemma 3.2 we have $\left.(\bar{u}) f_{s}=\overline{\left(u s^{+}\right.} \circ \bar{s}^{+}\{s\}\right)^{+}=\left(\overline{u s^{+}} s^{+}\{s\}\right)^{+}$, since $\left(u s^{+} s\right)^{+}=\left(u s^{+}\right)^{+}$.

We prove that ϕ is injective. Let $\left(f_{s}, \vec{s}\right)=\left(f_{t}, \bar{t}\right)$ for some $s, t \in S$. Then $f_{s}=f_{t}$ and $\bar{s}=\bar{t}$. We obtain $\left(\overline{s^{+}}\right) f_{s}=\left(\overline{s^{+}}\right) f_{t}$, implying $\left.\left(s^{+}\{s\}\right)^{+}=\overline{\left(s^{+} t^{+}\right.} \overline{t^{+}}\{t\}\right)^{+}$, implying $s^{+}=(d t)^{+}=$ $d t^{+}$, for some $d \in E_{S}$. On the other hand from $\left(\overline{t^{+}}\right) f_{s}=\left(\overline{t^{+}}\right) f_{t}$ we have $t^{+}=e s^{+}$, for some $e \in E_{s}$. Thus we get $s^{+}=t^{+}$, implying $s \rho \cap \mathscr{R}^{*} t$, implying $s=t$.

Next we prove that ϕ is a homomorphism. All we have to show is that $L:=\left(\overline{u(s t)^{+}}\right) f_{s} \circ(\overline{u s}) f_{t}=(\bar{u}) f_{s t}=: R$ holds for all $s, t, u \in S$.

From Lemma 3.2 we obtain $L=\left(\overline{u(s t)^{+}} \overline{s^{+}}\{s\}\right)^{+}\left(\overline{u s t^{+}} \overline{t^{+}}\{t\}\right)^{+}, R=\left(\overline{u(s t)^{+}} \overline{(s t)^{+}}\{s t\}\right)^{+}$. Let $z \in L$. Then $z=(x e s)^{+}(y f t)^{+}$, with $x \in \overline{u(s t)^{+}}, e \in \overline{s^{+}}, y \in u s t^{+}, f \in \bar{t}^{+}$. We conclude that $z \mathscr{R}^{*}(x e s)^{+} y f t=(y f)^{+} x e s t$, by Lemma 1.2, since xespyf, implying $z \mathscr{R}^{*}(y f)^{+}(x e s t)^{+}=$ $\left(\left((y f)^{+} x e\right)(s t)^{+} s t\right)^{+} \in R$ since $(y f)^{+} x e \rho u(s t)^{+}$. Consequently $z \in R$ since \mathscr{R}^{*} is the identity relation on E_{s}. Now let $z \in R$. Then $z=(x e s t)^{+}$with $x \in \overline{u(s t)^{+}}, e \in \overline{(s t)^{+}}$. We may write $\left.z=(x e s)^{+}(x e s t)^{+}=\left((x e) s^{+} s\right)^{+}\left(x e s t^{+}\right) t^{+} t\right)^{+}$, implying $z \in L$ since $x e \rho u(s t)^{+}$and xest ${ }^{+}$oust ${ }^{+}$.

Finally ϕ respects \mathscr{R}^{*} since $\left(f_{s}, \bar{s}^{+}=\left(f_{s}, \overline{s^{+}}\right)\right.$in $E_{C^{\prime}(s)} W_{\lambda} S / \rho$.
Corollary 3.4. Let S be a left type-A semigroup and ρ be a left type-A congruence on S such that $\rho \cap \mathscr{R}^{*}=\iota$. Then S is embeddable into some $A{ }_{\lambda} G$, where A is a semilattice, $G=S / \rho$, and \mathscr{R}^{*} is respected.

Recall that a left type- A semigroup S is called proper, if $\sigma \cap \mathscr{R}^{*}=\iota$, where σ is the least right cancellative congruence on S, (see [2]). In view of the remark following Proposition 2.1, Theorem 3.3 yields:

Corollary 3.5. Each proper left type-A semigroup is embeddable into a semidirect product of a semilattice by a right cancellative monoid such that \mathscr{R}^{*} is respected.

Now we are ready to formulate the main result of this section.
Theorem 3.6. Let S and ρ be as in Theorem 3.3. Then S is isomorphic to a subsemigroup of some $A *_{\lambda} G$, constructed by Proposition 2.5 , where $A=E_{C}^{S / \rho}{ }_{(S)}$ and $G=S / \rho$.

Proof. Consider the embedding $\varphi: s \rightarrow\left(f_{s}, \bar{s}\right)$ of Theorem 3.3. Let $A:=E_{C}^{S / \rho}(s)$, $B:=\left\{\overline{t_{s}} \mid s, t \in S\right\}, C:=\left\{f_{s} \mid s \in S\right\}$, and $G:=S / \rho$. Note that $C \subseteq B$ since $\overline{s^{+}} f_{s}=f_{s}$ for each $s \in S$. Let $\varepsilon \in A$ be defined by $(\bar{u}) \varepsilon:=\bar{u}^{+}, \bar{u} \in G$, and for each $\bar{t} f_{s} \in B$ let $e_{\overline{i n}}:=\overline{(t s)^{+}}$. Then $\frac{e_{\overline{j_{s}}}}{}$ is uniquely defined since $\bar{t} f_{s}=\bar{q} f_{p}$ implies $(\bar{t}) f_{s}=\left(\overline{t^{+} q}\right) f_{p}$ and $(\bar{q}) f_{p}=\left(\bar{q}^{+} t\right) f_{s}$, implying $\overline{(t s)^{+}}=\overline{\left(t^{+} q p\right)^{+}}$and $(\overline{q p})^{+}=\overline{\left(q^{+} t s\right)^{+}}$, implying $\overline{(t s)^{+}}=\overline{(q p)^{+}}$.

We show that the conditions (i) to (vi) of Proposition 2.5 are satisfied with respect to C, B, G, ε, and that $S \phi$ is equal to $T:=\left\{\left(f_{s}, \bar{t}\right) \in C \times G \mid \overline{s^{+}}=\overline{t^{+}}\right.$and $\left.f_{s} \wedge \bar{\varepsilon}=f_{s}\right\}$, where \wedge denotes the operation in A.
(i): holds, since $\overline{\left(u(t s)^{+} t\right)} f_{s}=\overline{\left(u t s^{+}\right)} f_{s}=\left(\overline{u t)} f_{s}\right.$, for all $s, t, u \in S$.
(ii): Let $\bar{f} f_{s} \wedge \bar{q} f_{p}=\bar{y} f_{x}$, for some $p, q, s, t, x, y \in S$. It follows that $\left(\overline{\left.y^{+} t\right)} f_{s} \circ\left(\overline{\left.y^{+} q\right)} f_{p}=\right.\right.$
$(\bar{y}) f_{x}$ implying $y^{+}(t s)^{+}(q p)^{+}=\left(y^{+} t s\right)^{+}\left(y^{+} q p\right)^{+} p(y z)^{+}$. On the other hand we have $\bar{t} f_{s} \circ\left(t^{+} q\right) f_{p}=\left(t^{+} y\right) f_{x}$, implying $(t s)^{+}(q p)^{+}=(t s)^{+}\left(t^{+} q p\right)^{+} \rho\left(t^{+} y x\right)^{+}=t^{+}(y x)^{+}$. Summarizing, we obtain $(t s)^{+}(q p)^{+} \rho(y x)^{+}$and (ii) is established.
(iii): straightforward, by definition.

Before establishing (iv) to (vi) we show that $S \varphi$ equals T.
$\underline{\text { Let }}\left(f_{s}, \bar{s}\right) \in S \varphi$. By a direct calculation we get $\left.(\bar{u}) f_{s} \circ(\overline{u s}) \varepsilon=\overline{\left(u s^{+}\right.} \overline{s^{+}}\{s\}\right)^{+} \circ \overline{u s^{+}}=$ $\left.\left.\overline{\left(u s^{+}\right.} \frac{s^{+}}{s^{\prime}}\{s\}\right)^{+} \overline{u s^{+}}=\overline{\left(u s^{+}\right.} \overline{s^{+}}\{s\}\right)^{+}=(\overline{\bar{u}}) f_{s}$, implying $\left(f_{s}, \bar{s}\right) \in T$. Note that obviously $f_{s}=f_{s^{+}}$, for all $s \in S$.

Now let $\left(f_{s}, \bar{t}\right) \in T$. It follows that $\overline{s^{+}}=\overline{t^{+}}$and $f_{s} \wedge \bar{t} \varepsilon=f_{s}$. We obtain $\left(\overline{s^{+}}\right) f_{s} \circ\left(\overline{s^{+} t}\right) \varepsilon=$ $\overline{\left(s^{+}\right)} f_{s}$, implying $\left.\left(\overline{s^{+}}\{s\}\right)^{+} \circ \overline{s^{+} t^{+}}=\overline{\left(s^{+}\{s\}\right.}\right)^{+}$, implying $\overline{s^{+} t^{+}}\left(\overline{s^{+}}\{s\}\right)^{+} \overline{s^{+} t^{+}}=\overline{\left(s^{+}\{s\}\right)^{+} \text {. Thus we }}$ have $s^{+}=e(f s)^{+} x^{+}$, for some $e \in \overline{s^{+} t^{+}}, f \in \overline{s^{+}}, x \in \overline{s^{+} t}=\bar{t}$. Let $p:=s^{+} x$. Then $\bar{p}=\bar{t}$ and $p^{+}=\left(s^{+} x\right)^{+}=s^{+} x^{+}=s^{+}$. Consequently $f_{p}=f_{p^{+}}=f_{s^{+}}=f_{s}$, and we obtain $\left(f_{s}, \bar{t}\right)=\left(f_{p}, \bar{p}\right) \in$ $S \varphi$.
(iv): follows from the fact that $\left(f_{s}, \overline{s^{+}}\right) \in T$ for all $s \in S$.
(v): follows from the embedding, since $f_{s}, f_{p} \in C, \bar{t} \in G$ with $\overline{s^{+}}=\overline{t^{+}}$, and $f_{s} \wedge \bar{t} \varepsilon=f_{s}$ imply $\left(f_{s}, \bar{t}\right)\left(f_{p}, \bar{p}^{+}\right)=\left(\left(\overline{\left.t p^{+}\right)^{+}} f_{s} \wedge \overline{t_{p}}, \overline{t p^{+}}\right) \in T\right.$, which implies $\overline{\left(t p^{+}\right)^{+}} f_{s} \wedge \bar{t}_{p}=f_{s p^{-}} \in C$.
(vi): is clear.

According to Corollary 2.8 we get:
Corollary 3.7. Let S and ρ be as in Theorem 3.3. Assume further that S / ρ is a monoid. Then S is isomorphic to a semigroup constructed by Proposition 2.6.

Corollary 3.8. [2]. Each proper left type-A semigroup is isomorphic to an M-semigroup $M(G, G B, B)$.

If S and ρ are as in Theorem 3.3 and $G:=S / \rho$ is not a monoid, then S is not a monoid too and we may consider S^{1} and $\bar{\rho}:=\rho \cup\{(1,1)\}$. Obviously S^{1} is a left type- A semigroup and $\bar{\rho}$ is a left type- A congruence on S^{1} satisfying $\bar{\rho} \cap \mathscr{R}_{S^{1}}^{*}=\imath$ and $S^{1} / \bar{\rho}=G^{1}$. By the above, S^{1} is isomorphic to a submonoid T of some $A \otimes G^{1}$, constructed by Proposition 2.6, and $T \backslash\{1\}$ is a representation for S.
4. \boldsymbol{E}-Reflexive left type-A semigroups. In this section we consider left type- A semigroups, which admit a left type- A congruence ρ, satisfying $\rho \cap \mathscr{R}^{*}=\iota$ and xe $\rho e x$, for all $x \in S, e \in E_{S}$. In this case S / ρ is a left type- A semigroup with central idempotents. Such semigroups where investigated by Fountain [3] who proved that they are precisely the strong semilattices of right cancellative monoids.

The following concept seems to be appropriate:
Definition 4.1. Let s be a left type-A semigroup. S is called E-reflexive if

$$
\begin{equation*}
\left(u(x y)^{+} v\right)^{+} z=z^{+} u(x y)^{+} v \Leftrightarrow\left(u x^{+} y^{+} v\right)^{+} z=z^{+} u x^{+} y^{+} v, u, v, x, y, z \in S \tag{ER}
\end{equation*}
$$

Proposition 4.2. Let S be a left type-A semigroup. Let τ be a binary relation on S, defined by

$$
x \tau y: \Leftrightarrow\left[(u x v)^{+} z=z^{+}(u x v) \Leftrightarrow(u y v)^{+} z=z^{+}(u y v)\right], \text { for all } u, v \in S^{1}, z \in S .
$$

Then τ is a congruence on (S, \cdot) satisfying $\tau \cap \mathscr{R}^{*}=\iota$.
Proof. That τ is a congruence on (S, \cdot) is straightforward. Let $x \tau \cap \mathscr{R}^{*} y$. By
definition of τ and $(1 \cdot x \cdot 1)^{+} x=x^{+}(1 \cdot x \cdot 1)$ we get $y^{+} x=x^{+} y$. Moreover $x \mathscr{R}^{*} y$ implies $x^{+}=y^{+}$. Thus $x=y^{+} x=x^{+} y=y$.

Theorem 4.3. Let S be an E-reflexive left type-A semigroup. Then ρ defined by $x \rho y: \Leftrightarrow x \tau y$ and $x^{+} t y^{+}$, is a left type-A congruence on S, which satisfies $\rho \cap \mathscr{R}^{*}=\iota$ and xepex, for all $x \in S, e \in E_{S}$.

Proof. Obviously ρ is an equivalence relation on S. Let $x \rho y, a \in S$. It follows that $x \tau y$ and $x^{+} \tau y^{+}$, implying ax $a y$. Further $\left(u(a x)^{+} v\right)^{+} z=z^{+}\left(u(a x)^{+} v\right)$ iff $\left(u a^{+} x^{+} v\right)^{+} z=$ $z^{+}\left(u a^{+} x^{+} v\right)$, by (ER), iff $\left(u a^{+} y^{+} v\right)^{+} z=z^{+}\left(u a^{+} y^{+} v\right)$, since $x^{+} \tau y^{+}$, iff $\left(u(a y)^{+} v\right)^{+} z=$ $z^{+}\left(u(a y)^{+} v\right)$, by (ER). Consequently, $(a x)^{+} \tau(a y)^{+}$and axpay follows. By duality we obtain that ρ is a congruence on (S, \cdot).

We show next that xepex, for all $x \in S, e \in E_{S}$. Note first that by (ER) and the definition of $\rho, x \rho y$ implies $x^{+} \rho y^{+}$and $(x w)^{+} \rho x^{+} w^{+}$, for all $w, x, y \in S$. We infer

$$
x e=(x e)^{+} x e \rho x^{+} e x e=e x e=e(x e)^{+} x \rho e x^{+} e x=e x .
$$

We continue, showing that ρ is left type- A. Let $x w \rho y w$. It follows that $x^{+} w^{+} \rho y^{+} w^{+}$ and by the proof of Proposition $4.2(x w)^{+} y w=(y w)^{+} x w$, implying $(x w)^{+} y w^{+}=$ $(y w)^{+} x w^{+}$. We conclude that

$$
x w^{+} \rho x x^{+} w^{+} \rho x y^{+} w^{+} \rho(y w)^{+} x w^{+}=(x w)^{+} y w^{+} \rho y x^{+} w^{+} \rho y y^{+} w^{+} \rho y w^{+},
$$

proving the assertion.
Finally from Proposition 4.2 we get $\iota \subseteq \rho \cap \mathscr{R}^{*} \subseteq \tau \cap \mathscr{R}^{*}=\iota$.
Taking into account Theorem 3.3 we immediately obtain the following equivalences:
Corollary 4.4. Let S be a left type-A semigroup. Then the following statements are equivalent:
(i) S is E-reflexive.
(ii) S has a left type-A congruence ρ, satisfying $\rho \cap \mathscr{R}^{*}=\iota$ and xepex, $x \in S, e \in E_{S}$.
(iii) S admits an \mathscr{R}^{*}-respecting embedding into some $A *{ }_{\lambda} G$ with A a semilattice and G a strong semilattice of right cancellative monoids.
Proof. (i) \Rightarrow (ii) by Theorem 4.3.
(ii) \Rightarrow (iii) by Theorem 3.3.
(iii) \Rightarrow (i) is straightforward.

Further, (if we replace the expressions $g g^{-1}$ in the proof by g^{+}), [1, Corollary 14] yields the following.

Corollary 4.5. Each E-reflexive left type-A semigroup admits an \mathscr{R}^{*}-respecting embedding into a strong semilattice of proper left type-A semigroups, which are semidirect products of semilattices by right cancellative monoids.

For inverse semigroups our concept of E-reflexivity coincides with that of [8, III.8.1], since ρ is an idempotent pure Clifford congruence in this case, and an inverse semigroup is E-reflexive iff it has an idempotent pure Clifford congruence [8, III, 8.3. Theorem].

REFERENCES

1. B. Billhardt, On a wreath product embedding and idempotent pure congruences on inverse semigroups, Semigroup Forum 45 (1992) 45-54.
2. J. Fountain, A class of right PP monoids, Quart. J. Math. Oxford, Ser. 228 (1977) 285-330.
3. J. Fountain, Right PP monoids with central idempotents, Semigroup Forum 13 (1977) 229-237.
4. J. Fountain and G. M. S. Gomes, Proper left type-A monoids revisited, Glasgow Math. J. 35 (1993) 293-306.
5. M. V. Lawson, The structure of type-A semigroups, Quart. J. Math. Oxford Ser. 237 (1986) 279-298.
6. L. O'Carroll, Embedding theorems for proper inverse semigroups, J. Algebra 42 (1976) 26-40.
7. A. Palmer, Proper right type-A semigroups, M. Phil. Thesis, York, 1982.
8. M. Petrich, Inverse semigroups (Wiley, 1984).

Universität-Gesamthochschule Kassel
Fachbereich 17 Mathematik/Informatik
Holländische Str. 36
D-34109 Kassel
Germany

