FINITELY GENERATED SUBGROUPS AND THE CENTRE OF SOME FACTOR GROUPS OF FREE PRODUCTS

C.K. Gupta and N. Romanovski

Dedicated to Bernhard Neumann on his 90th birthday

For groups of the type $F /[R, R]$, where F is a free product, we prove a generalisation of a theorem of Karrass and Solitar on a finitely generated subgroup of a free product containing a nontrivial subnormal subgroup. We also describe the centre of the group $F /[R, R]$.

1. Introduction

We denote by

$$
\begin{equation*}
F=\left(\underset{i \in I}{*} A_{i}\right) * X \tag{1}
\end{equation*}
$$

the free product of nontrivial groups $A_{i}(i \in I)$ and a free group X with basis $\left\{x_{j} \mid\right.$ $j \in J\}$ such that $|I| \geqslant 1$ and $|J| \geqslant 1$. Define the rank of the decomposition (1) to be $\operatorname{rank} F=|I|+|J|$. Let R be a normal subgroup of F such that $R \cap A_{i}=1(i \in I)$. Let $A=F / R ; G=F /[R, R]$, and $N=R /[R, R]$.

Karrass and Solitar [1] proved that if a finitely generated subgroup H of the free product of two nontrivial groups contains a nontrivial subnormal subgroup of the free product then H is of finite index. We prove a generalisation of the above result to groups of the type $F /[R, R]$ modulo the subgroup $R /[R, R]$.

Theorem 1. Let rank $F \geqslant 2$. Let H be a finitely generated subgroup of the group G and let C be a nontrivial subgroup of H with a subnormal series:

$$
\begin{equation*}
G=G_{1} \triangleright G_{2} \triangleright \ldots \triangleright G_{m} \triangleright C . \tag{2}
\end{equation*}
$$

Then
(1) if $C \not \leq N$ then $|G: H N|<\infty$;
(2) if $C \leqslant N$ then $\left|G_{m} N:\left(H N \cap G_{m} N\right)\right|<\infty$.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/99 \$A2.00+0.00.

Our second result describes the centre of the group $F /[R, R]$. This generalises a result of Auslander and Lyndon [2] for the case $F=X$ which states that if R is a nontrivial normal subgroup of a non-cyclic free group $F(=X)$ then the centre of $F /[R, R]$ is trivial if and only if F / R is infinite.

Theorem 2. Let F be the free product (1) with rank $F \geqslant 2$ and $R \neq 1$. If either the group $A=F / R$ is infinite or, in the decomposition (1), the factor X is not present, then the centre of the group G is trivial. If, however, the group A is finite and X is nontrivial, then the centre of the group G is a free Abelian group of rank equal to the rank of the free group X.

The proofs of these theorems essentially use a generalisation of Magnus and Shmel'kin embeddings for groups of the type $F /[R, R]$ which is defined and studied in [3].

2. Notation and preliminaries

We use the following notation for a given group G : $[x, y]=x^{-1} y^{-1} x y, x^{y}=$ $y^{-1} x y, x^{\alpha_{1} y_{1}+\ldots+\alpha_{s} y_{s}}=\left(x^{\alpha_{1}}\right)^{y_{1}} \ldots\left(x^{\alpha_{s}}\right)^{y_{s}}$, for $x, y, y_{1}, \ldots, y_{s} \in G$ and $\alpha_{1}, \ldots, \alpha_{s} \in \mathbb{Z}$. We denote by $\langle U\rangle$ the subgroup generated by the set U and define $[U, V]=\langle[u, v]| u \in U$, $v \in V\rangle$.

We assume for simplicity that the sets I and J of indices are finite, although all our proofs are valid without this assumption. Let $I=\{1, \ldots, n\}, J=\{n+1, \ldots, n+l\}$. Denote by \bar{f} the canonical image in A of an element $f \in F$. As canonical epimorphisms $F \rightarrow A, F \rightarrow G$ yield embeddings of subgroups $A_{i}(i \in I)$, we identify these subgroups with their images in A and G respectively. Denote by π the canonical epimorphism $G \rightarrow A$.

Let M denote the group of matrices $\left(\begin{array}{ll}A & 0 \\ T & 1\end{array}\right)$, where T is a right A-module with a basis $\left\{t_{1}, \ldots, t_{n}, t_{n+1}, \ldots, t_{n+l}\right\}$. It is proved in [3] that the kernel of the homomorphism $\tau: F \rightarrow M$. defined by the mapping

$$
a_{i} \rightarrow\left(\begin{array}{cc}
a_{i} & 0 \\
t_{i}\left(a_{i}-1\right) & 1
\end{array}\right), x_{j} \rightarrow\left(\begin{array}{cc}
\bar{x}_{j} & 0 \\
t_{j} & 1
\end{array}\right) \quad\left(a_{i} \in A_{i}, i \in I, j \in J\right)
$$

is $[R, R]$. So we identify the groups $G=F /[R, R]$ and $F \tau$. We shall also need the following criterion from [3] for a matrix from M to belong to the group G :

$$
\begin{align*}
& \left(\begin{array}{cc}
a & 0 \\
t_{1} u_{1}+\ldots+t_{n} u_{n}+\ldots+t_{n+l} u_{n+l} & 1
\end{array}\right) \in G \Leftrightarrow \\
& u_{1} \in\left(A_{1}-1\right) \cdot \mathbb{Z} A, \ldots, u_{n} \in\left(A_{n}-1\right) \cdot \mathbb{Z} A \\
& u_{1}+\ldots+u_{n}+\left(\bar{x}_{n+1}-1\right) u_{n+1}+\ldots+\left(\bar{x}_{n+l}-1\right) u_{n+l}=a-1 \tag{3}
\end{align*}
$$

Lemma 1. Let $c \in G \backslash N, a=c \pi, 1 \neq t \in N$. Suppose that a is an element of prime order p and $t^{c-1}=1$. Then $t \in\left\langle c^{p}\right\rangle \cdot N^{1+c+\ldots+c^{p-1}}$.

Proof: As the elements of N are represented in M by unitriangular matrices and $N \triangleleft M$, we can identify N with the corresponding submodule of the module T. We shall use the language of modules and instead of t^{c-1} write $t(a-1)$. If we consider T as an〈a〉-module then it is a free module with a basis consisting of elements of the form, for instance, $t_{i} y$ where $i \in I \cup J$ and y ranges over a fixed system of representatives of left cosets of the subgroup $\langle a\rangle$ in the group A. Hence, if $t(a-1)=0$ then the element t is divisible by $1+a+\ldots+a^{p-1}$ in the module T, but in the general case a quotient does not belong to N.

Let $f \in F$ and $f \tau=c$. Consider the subgroup $L=\langle f, R\rangle$ of the group F. Note that L / R is a subgroup of A and $L /[R, R]$ is a subgroup of G. By the Kurosh subgroup theorem the group L decomposes into a free product of some groups which are conjugates of A_{i} and a free group. As R has trivial intersection with any conjugate of a subgroup of A_{i}, we can replace the group F by the group L in our lemma.

So let $F=\langle f, R\rangle$. Then $A=F / R=\langle a\rangle$ is a cyclic group of prime order p. Consider an arbitrary element $h \in F \backslash R$ so that $\langle\bar{h}\rangle=A=\langle a\rangle$ and consequently, $(a-1) \cdot \mathbb{Z} A=(\bar{h}-1) \cdot \mathbb{Z} A$ and $\left(1+a+\ldots+a^{p-1}\right) \cdot \mathbb{Z} A=\left(1+\bar{h}+\ldots+(\bar{h})^{p-1}\right) \cdot \mathbb{Z} A$. Then $t(a-1)=0 \Leftrightarrow t(\bar{h}-1)=0$ and $N\left(1+a+\ldots+a^{p-1}\right)=N\left(1+\bar{h}+\ldots+(\bar{h})^{p-1}\right)$. Let $h=f^{s} r$, where $1 \leqslant s \leqslant p-1, r \in R$. We have $h^{p}=f^{s p} r^{\left(f^{s}\right)^{p-1}+\ldots+f^{\prime}+1}$. It follows from this equation that

$$
\left\langle(h \tau)^{p}\right\rangle \leqslant\left\langle c^{p}\right\rangle+N\left(1+\bar{h}+\ldots+(\bar{h})^{p-1}\right)=\left\langle c^{p}\right\rangle+N\left(1+a+\ldots+a^{p-1}\right) .
$$

Similarly, $\left\langle c^{p}\right\rangle \leqslant\left\langle(\bar{h})^{p}\right\rangle+N\left(1+\bar{h}+\ldots+(\bar{h})^{p-1}\right)$, and hence

$$
\left\langle(\bar{h})^{p}\right\rangle+N\left(1+\bar{h}+\ldots+(\bar{h})^{p-1}\right)=\left\langle c^{p}\right\rangle+N\left(1+a+\ldots+a^{p-1}\right) .
$$

Therefore. if required, in our lemma we can replace the element $c=f \tau$ by any element $h \tau(h \in F \backslash R)$.
(a) We first consider the case when $F \neq X$, that is, the factors A_{i} are present in the decomposition (1). Then every group $A_{i}(i \in I)$ must be cyclic of prime order p and its canonical image in A coincides with A. We may assume that $f=a \in A_{1}$. It is then possible to change the group X by multiplying its basis elements by suitable powers of the element a such that X is contained in R. Let $t=t_{1} u_{1}+\ldots+t_{n+l} u_{n+l}$, where $u_{1}, \ldots, u_{n+l} \in \mathbb{Z} A$. As $t(a-1)=0$, every element $u_{i}(i=1, \ldots, n+l)$ is divisible by $1+a+\ldots+a^{p-1}$. Moreover, we know that

$$
u_{1} \in\left(A_{1}-1\right) \cdot \mathbb{Z} A=(A-1) \cdot \mathbb{Z} A, \ldots, u_{n} \in\left(A_{n}-1\right) \cdot \mathbb{Z} A=(A-1) \cdot \mathbb{Z} A
$$

Therefore, the elements u_{1}, \ldots, u_{n} are divisible by $a-1$. But then $u_{1}=0, \ldots, u_{n}=0$. Let

$$
u_{n+1}=v_{n+1}\left(1+a+\ldots+a^{p-1}\right), \ldots, u_{n+l}=v_{n+l}\left(1+a+\ldots+a^{p-1}\right)
$$

The element $t^{\prime}=t_{n+1} v_{n+1}+\ldots+t_{n+l} v_{n+l}$ satisfies the criterion (3):

$$
\left(\bar{x}_{n+1}-1\right) v_{n+1}+\ldots+\left(\bar{x}_{n+l}-1\right) v_{n+l}=0 \cdot v_{n+1}+\ldots+0 \cdot v_{n+l}=0
$$

It follows that $t^{\prime} \in N$ and consequently, $t \in N\left(1+a+\ldots+a^{p-1}\right)$.
(b) Next, we consider the case when $F=X=\left\langle x_{1}, \ldots, x_{l}\right\rangle$ is a free group. By changing the basis of F and the element f, if necessary, we may assume that $f=x_{1}$ and the remaining generators $x_{2}, \ldots, x_{l} \in R$. Then $R=\left\langle x_{1}^{p}, x_{2}, \ldots, x_{l}\right\rangle \cdot[F, F]$. Let $t=t_{1} u_{1}+\ldots+t_{l} u_{l}$. It follows from the condition $t(a-1)=0$ that

$$
u_{1}=k_{1}\left(1+a+\ldots+a^{p-1}\right), \ldots, u_{l}=k_{l}\left(1+a+\ldots+a^{p-1}\right)
$$

for some integers k_{1}, \ldots, k_{1}. Then we have

$$
\begin{aligned}
& t_{1} u_{1}=t_{1} k_{1}\left(1+a+\ldots+a^{p-1}\right)=\left(x_{1} \tau\right)^{p k_{1}}=c^{p k_{1}} \\
& \quad t_{2} u_{2}+\ldots+t_{l} u_{l}=\left(t_{2} k_{2}+\ldots+t_{l} k_{l}\right)\left(1+a+\ldots+a^{p-1}\right) \in N\left(1+a+\ldots+a^{p-1}\right)
\end{aligned}
$$

We conclude that $t \in\left\langle c^{p}\right\rangle+N\left(1+a+\ldots+a^{p-1}\right)$. This completes the proof of Lemma 1. [] Proof of Theorem 1. Based on the theorem of Karrass and Solitar [1], we assume that $R \neq 1$. For a given element $t^{\prime} \in T$ denote by $\sigma\left(t^{\prime}\right)$ the support of t^{\prime}, that is, the set of all elements of A on which t^{\prime} depends. Let $B=H \pi$. Because the group H is finitely generated, there is a finite system $\left\{y_{1} B, \ldots, y_{s} B\right\}$ of left cosets of the subgroup B in the group A such that for every matrix $\left(\begin{array}{cc}b & 0 \\ t^{\prime} & 1\end{array}\right) \in H$ the following inclusion holds:

$$
\begin{equation*}
\sigma\left(t^{\prime}\right) \subseteq \Sigma=y_{1} B \cup \ldots \cup y_{s} B \tag{4}
\end{equation*}
$$

(1) Suppose, by way of contradiction, that the index $|G: H N|=|A: B|$ is infinite. Let $c \in C \backslash N$ and $a=c \pi$. We can assume that the element a has either infinite order or its order is equal to a prime number p. As in Lemma 1 we identify N with a corresponding submodule of the module T. Let $0 \neq t \in N, \sigma(t)=\left\{z_{1}, \ldots, z_{q}\right\}$. There is an element $y \in A$ such that $y \notin z_{j}^{-1} y_{i} B(j=1, \ldots, q ; i=1, \ldots, s)$. Then $\sigma(t y) \cap \Sigma=\emptyset$. Replacing t by $t y$ we get $\sigma(t) \cap \Sigma=\emptyset$. It follows from the subnormality of the series (2) that $t(a-1)^{m} \in C$ so that $\sigma\left(t(a-1)^{m}\right) \cap \Sigma=\emptyset$. If $t(a-1)^{m} \neq 0$ we get a contradiction to inclusion (4).

So we may assume $t(a-1)^{m}=0$. Now T is a free module over the group ring $\mathbb{Z}\langle a\rangle$. It then follows from the equation $t(a-1)^{m}=0$, that the element a has finite order. We may assume that a has order a prime number p and that $t(a-1)=0$. Using the criterion (3), if the element t is divisible in the module T by some natural number then the quotient also belongs to N. So, we can assume that the element t is not divisible by p. As $t(a-1)=0$, by Lemma 1 the element t can be written in the form $t=\left(c^{p}\right) k+t^{\prime}\left(1+a+\ldots+a^{p-1}\right)$,
where $k \in \mathbb{Z}, t^{\prime} \in N$. Let, for instance, $t=t_{1}(y u+\ldots)+\ldots$, where y is a representative of a left coset of $\langle a\rangle$ in A and the element $u \in \mathbb{Z}\langle a\rangle$ is not divisible by p. The coset $y B$ differs from $y_{1} B, \ldots, y_{s} B$ and $\sigma\left(c^{p}\right) \subseteq \Sigma$. Then $t^{\prime}=t_{1}(y v+\ldots)+\ldots$, where $v \in \mathbb{Z}\langle a\rangle, v\left(1+a+\ldots+a^{p-1}\right)=u$. Since $\left(1+a+\ldots+a^{p-1}\right)^{2}$ is divisible by p, the element v is not divisible by $1+a+\ldots+a^{p-1}$. Hence, $v(a-1) \neq 0$, so that $v(a-1)^{m} \neq 0$ and $\sigma\left(t^{\prime}(a-1)^{m}\right) \nsubseteq \Sigma$. This is contrary to the condition $t^{\prime}(a-1)^{m} \in C \leqslant H$.
(2) If $C \leqslant N$ we can identify C with the corresponding additive subgroup of the module T. Let $0 \neq t \in C$. Assume that the index

$$
\left|G_{m} N:\left(G_{m} N \cap H N\right)\right|=\left|G_{m} \pi:\left(G_{m} \pi \cap B\right)\right|
$$

is infinite. Then there is an element $a \in G_{m} \pi$ such that $\sigma(t a) \nsubseteq \Sigma$. Since C is normal in G_{m} it follows that $t(a-1) \in C$. On the other hand $\sigma(t(a-1)) \nsubseteq \Sigma$, contrary to (3). This completes the proof of Theorem 1.
Proof of Theorem 2.
Lemma 2. Let $C(G)$ be the centre of G. Then $C(G) \leqslant N$.
Proof: Suppose $c \in G \backslash N$. We shall prove that the element c does not commute with some element of N and so $c \notin C(G)$. Let $a=c \pi$. If $|a|=\infty$ then for every nontrivial element $t \in N$ we have $t(a-1) \neq 0$, that is, the elements t and c do not commute. So, we can assume that the order of c is finite and equal to a prime number p. Let $f \in F$ and $f \tau=c$. It follows from the conditions rank $F \geqslant 2, R>1$, and $R \cap A_{i}=1(i \in I)$, that R is a free nonabelian group. Therefore, if we consider the Kurosh subgroup decomposition of the subgroup $\langle f, R\rangle$ of F into a free product, then its rank is at least 2 , and we can assume in our lemma that $F=\langle f, R\rangle$. Then $F / A=A=\langle a\rangle$ is a cyclic group of prime order p.
(a) Let the groups A_{i} be present in the decomposition (1), that is, $F \neq X$. In this case we can assume that $f=c=a \in A_{1}$ and $X \leqslant R$. Then each A_{i} must be cyclic of order p and its canonical image in A must coincide with A. Let $n \geqslant 2$ and $A_{1}=\left\langle a_{1}\right\rangle, A_{2}=\left\langle a_{2}\right\rangle, \bar{a}_{1}=\bar{a}_{2}=a$. Consider the element $t=\left[a_{1} \tau, a_{2} \tau\right]=\left(t_{1}-t_{2}\right)(a-1)^{2}$. We have $t(a-1) \neq 0$. If $n=1$, that is, $F=A_{1} * X$, then $\operatorname{rank} X \geqslant 1$. Let $t=x_{2} \tau=t_{2}$. We have again $t(a-1) \neq 0$.
(b) Let $F=\left\langle x_{1}, \ldots, x_{l}\right\rangle$ be a free group. Then it is possible to assume that $f=x_{1}$ and $x_{2}, \ldots, x_{l} \in R$. Let $t=x_{2} \tau=t_{2}$. Then $t(a-1) \neq 0$. Lemma 2 is proved.

Lemma 3. Let A be an infinite group. Then $C(G)=1$.
Proof: Based on the previous lemma, it is sufficient to prove that for every nontrivial element $t \in N$ there is an element $a \in A$ such that $t(a-1) \neq 0$. As A is infinite we can choose an element a such that $\sigma(t) \neq \sigma(t a)$. Then $t(a-1) \neq 0$. Lemma 3 is proved.

Now we assume that the group A is finite and let d denote the sum of all elements of A.

Lemma 4. If A is a finite group, then $C(G)=T d \cap N$.
Proof: It is obvious that $T d$ is contained in the centre of the group M, therefore $C(G) \geqslant T d \cap N$. Assume that some element $t \in T$ does not belong to $T d$. Let, for example, $t=t_{1}\left(k_{1} b_{1}+k_{2} b_{2}+\ldots\right)+\ldots$, where k_{1}, k_{2}, \ldots are integers, b_{1}, b_{2}, \ldots are different elements of A and $k_{1} \neq k_{2}$. If $a=b_{1}^{-1} b_{2}$, then $t a \neq t$. This means that the element t does not centralise the group G. Hence, $C(G) \leqslant T d \cap N$. This proves Lemma 4.

The proof of Theorem 2 follows from Lemma 3 and the following lemma.
Lemma 5. Let A be a finite group. Then the centre of the group G coincides with an additive subgroup of the module T generated by the elements $t_{n+1} d, \ldots, t_{n+1} d$.

Proof: Let

$$
t=t_{1} u_{1}+\ldots+t_{n} u_{n}+t_{n+1} u_{n+1}+\ldots+t_{n+l} u_{n+l} \in C(G)=T d \cap N
$$

As every element $u_{i}(i=1, \ldots, n+l)$ is divisible by d, it is possible to represent it in the form $u_{i}=k_{i} d, k_{i} \in \mathbb{Z}$. It follows from the criterion (3) that $u_{1}, \ldots, u_{n} \in(A-1) \cdot \mathbb{Z} A$. Then $u_{1}=\ldots=u_{n}=0$. So $C(G)$ is contained in the additive subgroup of the module T generated by the elements $t_{n+1} d, \ldots, t_{n+l} d$. On the other hand, every element $t_{j} d(j \in J)$ which centralises G and belongs to G satisfies the criterion (3): $\left(\bar{x}_{j}-1\right) d=0$. This completes the proof of Lemma 5 and, in turn, the proof of Theorem 2.

References

[1] A. Karrass and D. Solitar, 'On finitely generated subgroups of a free product', Math. Z. 108 (1969), 285-287.
[2] M. Auslander and R.C. Lyndon, 'Commutator subgroups of free groups', Amer. J. Math. 77 (1955), 929-931.
[3] N. Romanovski, 'On Shmel'kin embeddings for abstract and profinite groups', Algebra and Logic 38 (1999), 482-494.

Department of Mathematics University of Manitoba Winnipeg, Manitoba R3T 2N2 Canada
e-mail: cgupta@cc.umanitoba.ca

[^1]
[^0]: Received 5th May, 1999

[^1]: Institute of Mathematics
 Novosibirsk 630090
 Russia
 e-mail: rmnvski@math.nsc.ru

