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Abstract. Recently, a new equivalence relation between weak* closed operator
spaces acting on Hilbert spaces has appeared. Two weak* closed operator spaces U ,V
are called weak TRO equivalent if there exist ternary rings of operators Mi, i = 1, 2
such that U = [M2VM∗

1]−w∗
,V = [M∗

2UM1]−w∗
. Weak TRO equivalent spaces are

stably isomorphic, and conversely, stably isomorphic dual operator spaces have normal
completely isometric representations with weak TRO equivalent images. In this paper,
we prove that if U and V are weak TRO equivalent operator spaces and the space
of I × I matrices with entries in U , Mw

I (U), is hyperreflexive for suitable infinite I,
then so is Mw

I (V). We describe situations where if L1,L2 are isomorphic lattices, then
the corresponding algebras Alg(L1), Alg(L2) have the same complete hyperreflexivity
constant.

2010 Mathematics Subject Classification. 47L05, 47L35, 16D90.

1. Introduction. Recently, a new equivalence relation between weak* closed
operator spaces acting on Hilbert spaces has appeared:

DEFINITION 1.1 ([7]). Let Hi, Ki, i = 1, 2 be Hilbert spaces, and U ⊂
B(K1, K2),V ⊂ B(H1, H2) be weak* closed spaces. We call them weak TRO equivalent
if there exist ternary rings of operators (TRO’s) Mi ⊂ B(Hi, Ki), i = 1, 2, i.e., spaces
satisfying MiM∗

i Mi ⊂ Mi, i = 1, 2, such that

U = [M2VM∗
1]−w∗

, V = [M∗
2UM1]−w∗

.

Weak TRO equivalence is an equivalence relation. In [7] we called this relation,
simply, TRO equivalence. Recently in [5] appeared the notion of strong TRO
equivalence. Thus, throughout this paper we decided to call the notion in Definition 1.1
weak TRO equivalence in order to distinguish the two equivalences.

Weak TRO equivalence is related to the very important notion of stable
isomorphism of operator spaces:

THEOREM 1.1 ([7]). If U and V are weak TRO equivalent operator spaces then U
and V are weakly stably isomorphic. This means that there exists a cardinal I such that
the spaces U⊗̄B(l2(I)),V⊗̄B(l2(I)) are completely isometrically isomorphic through a
weak* continuous map. Here, ⊗̄ is the normal spatial tensor product. Conversely, if U and
V are weakly stably isomorphic, then they have completely isometric weak* continuous
representations φ and ψ such that φ(U) and ψ(V) are weak TRO equivalent.
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In Section 3 of this paper, we prove that if U and V are weak TRO equivalent
operator spaces, and if the weak* closed space of I × I matrices with entries in
U , Mw

I (U) is hyperreflexive for suitable infinite I, then so is Mw
I (V). In the case

of separably acting U and V , we have k(Mw
∞(U)) = k(Mw

∞(U)) where k(X ) is the
hyperreflexivity constant of X and ∞ is aleph 0. As a consequence, in Section 4
we prove that if A and B are stably isomorphic commutative subspace lattice (CSL)
algebras acting on separable Hilbert spaces and if A is completely hyperreflexive, then
B is also a completely hyperreflexive space with the same complete hyperreflexivity
constant. We also prove that ifLi ⊂ B(Hi), i = 1, 2 are separably acting reflexive lattices
and there exists a *-isomorphism θ : L′′

1 → L′′
2 such that θ (L1) = L2, then Alg(L1) is

completely hyperreflexive iff Alg(L2) is completely hyperreflexive. We also prove that if
Li ⊂ B(Hi), i = 1, 2 are totally atomic separably acting isomorphic CSL’s, then Alg(L1)
is completely hyperreflexive iff Alg(L2) is completely hyperreflexive. Finally, we prove
that separably acting von Neumann algebras with isomorphic commutants have the
same complete hyperreflexive constant.

In what follows, the symbol [S] denotes the linear span of S. If L ⊂ B(H), we
denote by L′ the set of operators which commute with the elements of L. The set of
projections in L is written as pr(L). If T is an operator and I is a cardinal, TI denotes
the I × I diagonal matrix with diagonal entries T. If X is a space of operators, we
define X I to be the space containing all operators of the form TI where T ∈ X .

A set of projections of a Hilbert space is called a lattice if it contains the zero
and identity projections and is closed under arbitrary suprema and infima. If A is a
subalgebra of B(H) for some Hilbert space H, the set

Lat(A) = {L ∈ pr(B(H)) : L⊥AL = 0}

is a lattice. Dually, if L is a lattice, the space

Alg(L) = {A ∈ B(H) : L⊥AL = 0 ∀ L ∈ L}

is an algebra. A lattice L is called reflexive if Lat(Alg(L)) = L.

A CSLis a projection lattice L whose elements commute; the algebra Alg(L) is
called a CSL algebra. Two CSL’s L1,L2 are called isomorphic if there exists an order
preserving 1-1 and onto map from L1 onto L2.

Let H1, H2 be Hilbert spaces and U a subset of B(H1, H2). The reflexive hull of U
is defined to be the space

Ref(U) = {T ∈ B(H1, H2) : Tx ∈ [Ux] for each x ∈ H1}.

A subspace U is called reflexive if U = Ref(U).
Let U be a subspace of B(H, K). If T ∈ B(H, K), we call

d(T,U) = inf
X∈U

‖T − X‖

the distance from T to U . We also set

rU (T) = sup
‖ξ‖=‖η‖=1

{| 〈Tξ, η〉 | : 〈Uξ, η〉 = 0 ∀ U ∈ U}.
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Trivially, rU (T) ≤ d(T,U). We can see thatU is reflexive if rU (T) = 0 implies that T ∈ U ,
for T ∈ B(H, K). If there exists k > 0 such that

d(T,U) ≤ krU (T), T ∈ B(H, K),

we say that the space U is hypereflexive. The space U is called completely hyperreflexive
if U⊗̄B(H) is hyperreflexive, where H is a separable infinite dimensional Hilbert space.
It is not known if hyperreflexivity implies complete hyperreflexivity.

If U is a reflexive space, let

k(U) = sup
T �∈U

d(T,U)
rU (T)

be the hyperreflexivity constant of U . Clearly, U is hyperreflexive if and only if k(U) <

∞.

Throughout this paper, we shall use the following Lemma.

LEMMA 1.2. Let U ⊂ B(K1, K2) be a weak* closed space, K1, K2 Hilbert spaces, and
B and A von Neumann algebras such that BUA ⊂ U . Then for every T ∈ B(K1, K2),

rU (T) = sup{‖QTP‖ : Q ∈ pr(B′), P ∈ pr(A′), QUP = 0}.

Proof. Choose T ∈ B(K1, K2) and Q ∈ pr(B′), P ∈ pr(A′) such that QUP = 0. We
have

‖QTP‖ = sup
‖ξ‖=‖η‖=1

| 〈QTPξ, η〉 | = sup
‖ξ‖=‖η‖=1

| 〈TPξ, Qη〉 |.

Since, 〈UPξ, Qη〉 = 0,∀U ∈ U , ξ, η we have

| 〈TPξ, Qη〉 | ≤ rU (T)‖Pξ‖‖Qη‖ ≤ rU (T).

For the converse inequality, suppose ε > 0. Then, there exist unit vectors ξ, η such
that 〈Uξ, η〉 = 0, ∀ U ∈ U and

rU (T) − ε < | 〈Tξ, η〉 |.
Since 〈UAξ, Bη〉 = 0, ∀ A ∈ A, ∀ B ∈ B if P is the projection onto the space
generated by Aξ and Q is the projection onto the space generated by Bη, we have
QUP = 0 and Q ∈ pr(B′), P ∈ pr(A′). But

| 〈Tξ, η〉 | = | 〈QTPξ, η〉 | ≤ ‖QTP‖.
Since ε is arbitrary, the proof is complete. �

Now we present some concepts introduced in [8].
Let Pi = pr(B(Hi)), i = 1, 2. Let φ = Map(U) be the map φ : P1 → P2, which to

each P ∈ P1 associates the projection onto the subspace [TPy : T ∈ U , y ∈ H1]−. The
map φ is ∨−continuous (that is, it preserves arbitrary suprema) and is 0 preserving.

Let φ∗ = Map(U∗),S1,φ = {φ∗(P)⊥ : P ∈ P2},S2,φ = {φ(P) : P ∈ P1} and observe
that S1,φ = S⊥

2,φ∗ . Erdos proved that S1,φ is ∧-complete and contains the identity
projection, S2,φ is ∨-complete and contains the zero projection, while φ|S1,φ

: S1,φ →
S2,φ is a bijection.
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In fact,

Ref(U) = {T ∈ B(H1, H2) : φ(P)⊥TP = 0 for each P ∈ S1,φ}.

When φ(I) = I and φ∗(I) = I , we call the space U essential.
In [9] it is proved that a TRO M is weak* closed if and only if it is wot closed if

and only if it is reflexive. In this case, if χ = Map(M),

M = {T ∈ B(H1, H2) : TP = χ (P)T for all P ∈ S1,χ }.

In the following theorem, we isolate some consequences of [9, Theorem 2.10].

THEOREM 1.3. (i) A TRO M is essential if and only if the algebras [M∗M]−w∗

[MM∗]−w∗
contain the identity operators.

(ii) If M is an essential TRO and χ = Map(M), then S1,χ = pr((M∗M)′),
S2,χ = pr((MM∗)′) and the map χ |S1,χ

: S1,χ → S2,χ is an ortholattice isomorphism
with inverse χ∗|S2,χ

.

If K1, K2 are Hilbert spaces, U ⊂ B(K1, K2) is a weak* closed operator space, and
I is a cardinal, then Mw

I (U) is the set of I × I matrices with entries in U whose finite
submatrices have uniformly bounded norm, [1]. We consider Mw

I (U) as a subspace
of the set of bounded operators from KI

1 to KI
2 . We can see that the space Mw

I (U)
is unitarily equivalent with U⊗̄B(l2(I)). Therefore, if U is a completely hyperreflexive
space, then k(U⊗̄B(l2(�))) = k(Mw

∞(U)). Also, Cw
I (U) is the subspace of I × 1 columns

with entries in U , or, equivalently, the space of bounded operators from K1 to KI
2 of

the form (Ui)i∈I , where every Ui belongs to U .

LEMMA 1.4.

k(Cw
I (U)) ≤ k(Mw

I (U)).

Proof. We denote by E = (Ei,j)i,j∈I the I × I matrix where Ei0,i0 = IK1 and Ei,j = 0
for (i, j) �= (i0, i0). Observe that Mw

I (U)E contains elements of the form (Ci)i∈I , where
Ci0 = Cw

I (U) and Ci is a zero column for i �= i0.
Lemma 6.2 in [2] implies that k(Mw

I (U)E) ≤ k(Mw
I (U)). Obviously

k(Cw
I (U)) ≤ k(Mw

I (U)E).

�
In this paper, we shall use the following lemma from 8.5.23 in [1].

LEMMA 1.5. If M ⊂ B(K1, K2) is an essential weak* closed TRO, and K1, K2 are
Hilbert spaces, and I is the cardinal of an orthonormal basis of K1, there exists a column
M = (Mi)i∈I ∈ Cw

I (M) where every Mi is a partial isometry such that M∗
i Mi is orthogonal

to M∗
j Mj for every i �= j and such that M∗M = IK1 .

2. Weak TRO equivalence of operator spaces. In this section, we fix Hilbert spaces
H1, H2, K1, K2 and essential reflexive operator spaces

U ⊂ B(K1, K2), V ⊂ B(H1, H2)
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which are weak TRO equivalent: i.e., there exist TRO’s Mi ⊂ B(Hi, Ki), i = 1, 2 such
that

U = [M2VM∗
1]−w∗

, V = [M∗
2UM1]−w∗

.

Observe that since U ,V are essential spaces, then M1 and M2 are essential too. We
assume that

φ = Map(U), ψ = Map(V), χi = Map(Mi), i = 1, 2,

Bi = S ′
i,φ ⊂ B(Ki),Ai = S ′

i,ψ ⊂ B(Hi), i = 1, 2.

In this section, we are going to find *-isomorphisms ζi : B′
i → A′

i, i = 1, 2 such that if

Ni = {T ∈ B(Hi, Ki) : Tζi(P) = PT ∀ P ∈ pr(B′
i)}, i = 1, 2,

then

U = [N2VN ∗
1 ]−w∗

,V = [N ∗
2 UN1]−w∗

.

LEMMA 2.1.

Ai = [M∗
i BiMi]−w∗

,Bi = [MiAiM∗
i ]−w∗

, i = 1, 2.

Proof. Choose

Q ∈ pr(B(H1)) ⇒ ψ(Q) ∈ S2,ψ .

Since M2V ⊂ UM1, we have M2VQ ⊂ UM1Q. The projection onto the space
generated by VQ(H1) is ψ(Q) and the projection onto the space generated by
UM1Q(H1) is φ(χ1(Q)). Thus,

φ(χ1(Q))⊥M2ψ(Q) = 0. (1)

Since

M∗
2UM1Q ⊂ VQ,

we have

ψ(Q)⊥M∗
2φ(χ1(Q)) = 0. (2)

If B ∈ B2, M, N ∈ M2, then by using (1) we have

M∗BNψ(Q) = M∗Bφ(χ1(Q))Nψ(Q) = M∗φ(χ1(Q))BNψ(Q).

Using (2), the last operator is equal to ψ(Q)M∗BNψ(Q). Therefore,

ψ(Q)⊥M∗
2B2M2ψ(Q) = 0.

Since, B2 is a self-adjoint algebra, we also have

ψ(Q)M∗
2B2M2ψ(Q)⊥ = 0.
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Therefore,

M∗
2B2M2 ⊂ S ′

2,ψ = A2.

Similarly, we can prove that

M2A2M∗
2 ⊂ B2.

Proposition 2.1 in [3] implies that

A2 = [M∗
2B2M2]−w∗

,B2 = [M2A2M∗
2]−w∗

.

Similarly, we can prove

A1 = [M∗
1B1M1]−w∗

,B1 = [M1A1M∗
1]−w∗

.

�
By Proposition 2.8 in [3], and its proof we have that χ∗

i is an ortholattice
isomorphism from pr(B′

i) onto pr(A′
i), i = 1, 2 and if we denote

Ni = {T ∈ B(Hi, Ki) : Tχ∗
i (P) = PT ∀ P ∈ pr(B′

i)}, i = 1, 2,

then,

Ai = [N ∗
i Ni]−w∗

, Bi = [NiN ∗
i ]−w∗

.

If γi = Map(Ni) by Theorem 1.3, γ ∗
i is also an ortholattice isomorphism from

pr(B′
i) onto pr(A′

i), i = 1, 2. If P ∈ pr(B′
i) then, since TP = χ∗

i (P)T, ∀T ∈ N ∗
i the

projection onto the space generated by N ∗
i P(Ki) is dominated by χ∗

i (P). Thus,
γ ∗

i (P) ≤ χ∗
i (P). Similarly, γ ∗

i (P⊥) ≤ χ∗
i (P⊥). But γ ∗

i |pr(B′
i ) and χ∗

i |pr(B′
i ) are ortholattice

homomorphisms, thus γ ∗
i |pr(B′

i ) = χ∗
i |pr(B′

i ), i = 1, 2.

By Theorem 3.2 in [3] and its proof, there exist *-isomorphisms ζi : B′
i → A′

i, i =
1, 2 which extend γ ∗

i |pr(B′
i ) = χ∗

i |pr(B′
i ), such that

Ni = {T ∈ B(Hi, Ki) : Tζi(X) = XT ∀ X ∈ B′
i}, i = 1, 2, .

Since B2UB1 ⊂ U and A2VA1 ⊂ V, the spaces

B =
(
B2 U
0 B1

)
, A =

(
A2 V
0 A1

)

are algebras. These algebras are reflexive because U ,V,Ai,Bi, i = 1, 2 are reflexive
spaces. Their lattices are the following:

Lat(B) = {P2 ⊕ P1 : Pi ∈ pr(B′
i), P⊥

2 UP1 = 0},

and

Lat(A) = {Q2 ⊕ Q1 : Qi ∈ pr(A′
i), Q⊥

2 VQ1 = 0}.

LEMMA 2.2. The algebras A,B are weak TRO equivalent.
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Proof. We have
(
M∗

2 0
0 M∗

1

) (
B2 U
0 B1

) (
M2 0

0 M1

)
=

(
M∗

2B2M2 M∗
2UM1

0 M∗
1B1M1

)
⊂

(
A2 V
0 A1

)
= A.

Similarly, we can prove that

(M2 ⊕ M1)A(M2 ⊕ M1)∗ ⊂ B.

Proposition 2.1 in [3] implies that

[(M2 ⊕ M1)A(M2 ⊕ M1)∗]−w∗ = B,

and

[(M2 ⊕ M1)∗B(M2 ⊕ M1)]−w∗ = A.

�
If χ = Map(M2 ⊕ M1), we can see that

χ (P ⊕ Q) = χ2(P) ⊕ χ1(Q) ∀P ∈ pr(A′
2), Q ∈ pr(A′

1),

χ∗(P ⊕ Q) = χ∗
2 (P) ⊕ χ∗

1 (Q) ∀P ∈ pr(B′
2), Q ∈ pr(B′

1),

Also by Lemma 2.6 in [3], χ (Lat(A)) = Lat(B). Since, χ∗
i |pr(B′

i ) extends to a *-
isomorphism ζi : B′

i → A′
i, i = 1, 2, see the discussion above Lemma 2.2 , χ∗|pr(B′

2)⊕pr(B′
1)

extends to a *-isomorphism

ζ = ζ2 ⊕ ζ1 : B′
2 ⊕ B′

1 → A′
2 ⊕ A′

1,

satisfying ζ (Lat(B)) = Lat(A). By Theorem 3.3 in [3], and its proof if

N = {T : Tζ (X) = XT ∀ X ∈ (B′
2 ⊕ B′

1)},

then

[NAN ∗]−w∗ = B, [N ∗BN ]−w∗ = A.

Observe that N = N2 ⊕ N1.

THEOREM 2.3.

U = [N2VN ∗
1 ]−w∗

, V = [N ∗
2 UN1]−w∗

.

Proof. We have
(
N2 0
0 N1

) (
0 V
0 0

)(
N ∗

2 0
0 N ∗

1

)
⊂ B.

https://doi.org/10.1017/S0017089515000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000154


212 G. K. ELEFTHERAKIS

Thus,

N2VN ∗
1 ⊂ U .

Similarly,

N ∗
2 UN1 ⊂ V ⇒ N2N ∗

2 UN1N ∗
1 ⊂ N2VN ∗

1 .

Since the algebras [NiN ∗
i ]−w∗

contain the identity operators, the last relation implies
that

U ⊂ [N2VN ∗
1 ]−w∗ ⇒ U = [N2VN ∗

1 ]−w∗
.

Similarly, we can prove

V = [N ∗
2 UN1]−w∗

.

�

3. Hyperreflexivity and weak TRO equivalence. In this section, we fix Hilbert
spaces H1, H2, K1, K2 and essential weak* closed spaces

U ⊂ B(K1, K2), V ⊂ B(H1, H2)

that are weak TRO equivalent. We fix an infinite cardinal I greater than or equal to
the maximum of Ii, i = 1, 2 where Ii is the cardinal of an orthonormal basis of Hi.

We are going to prove that k(Mw
I (V)) ≤ k(Mw

I (U)). If k(Mw
I (U)) = ∞, the inequality is

obvious. So we assume throughout this section that k(Mw
I (U)) < ∞. From the results

of Section 2, there exist von Neumann algebras Bi ⊂ B(Ki),Ai ⊂ B(Hi), i = 1, 2 and
*-isomorphisms ζi : B′

i → A′
i, i = 1, 2 such that if

Ni = {T ∈ B(Hi, Ki) : Tζi(P) = PT ∀ P ∈ pr(B′
i)}, i = 1, 2,

then,

U = [N2VN ∗
1 ]−w∗

,V = [N ∗
2 UN1]−w∗

,Ai = [N ∗
i Ni]−w∗

,Bi = [NiN ∗
i ]−w∗

, i = 1, 2.

We also recall the algebras A,B defined in Section 2. Since U is a hyperreflexive space,
B is a reflexive algebra and thus by 2.7.i in [3], A is also a reflexive algebra. Therefore,
V is a reflexive space.

LEMMA 3.1.

V = {T ∈ B(H1, H2) : Pi ∈ pr(B′
i), i = 1, 2, P2UP1 = 0 ⇒ ζ2(P2)Tζ1(P1) = 0}.

Proof. We denote by � the space

{T ∈ B(H1, H2) : Pi ∈ pr(B′
i), i = 1, 2, P2UP1 = 0 ⇒ ζ2(P2)Tζ1(P1) = 0}.

Fix Pi ∈ pr(B′
i), i = 1, 2 such that P2UP1 = 0. We recall ζ,A,B from Section 2. We have

that P⊥
2 ⊕ P1 ∈ Lat(B). Since ζ (Lat(B)) = Lat(A), we take ζ2(P2)⊥ ⊕ ζ1(P1) ∈ Lat(A).

Therefore, ζ2(P2)Vζ1(P1) = 0. It follows that V ⊂ �.
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Conversely, if T ∈ � and P⊥
2 UP1 = 0 for Pi ∈ pr(B′

i), i = 1, 2, then

(
ζ2(P2)⊥ 0

0 ζ1(P1)⊥

) (
0 T
0 0

) (
ζ2(P2) 0

0 ζ1(P1)

)
= 0, ∀ P2 ⊕ P1 ∈ Lat(B).

Therefore,

ζ (Q)⊥
(

0 T
0 0

)
ζ (Q) = 0 ∀ Q ∈ Lat(B).

But ζ (Lat(B)) = Lat(A). Thus

Q⊥
(

0 T
0 0

)
Q = 0 ∀ Q ∈ Lat(A).

Therefore,
(

0 T
0 0

)
∈ A ⇒ T ∈ V.

We have thus proved � ⊂ V ⇒ � = V. �
We define the space

W = [VN ∗
1 ]−w∗ ⊂ B(K1, H2).

LEMMA 3.2.

W = {T ∈ B(K1, H2) : Pi ∈ pr(B′
i), i = 1, 2, P2UP1 = 0 ⇒ ζ2(P2)TP1 = 0}.

Proof. Define

� = {T ∈ B(K1, H2) : Pi ∈ pr(B′
i), i = 1, 2, P2UP1 = 0 ⇒ ζ2(P2)TP1 = 0}.

Fix Pi ∈ pr(B′
i), i = 1, 2 such that P2UP1 = 0 and fix V ∈ V, S ∈ N1. We have,

ζ2(P2)VS∗P1 = ζ2(P2)Vζ1(P1)S∗.

By Lemma 3.1, ζ2(P2)Vζ1(P1) = 0. Thus, ζ2(P2)VS∗P1 = 0. We have thus proved
W ⊂ �.

For the converse, fix A ∈ � and S ∈ N1. If Pi ∈ pr(B′
i), i = 1, 2 such that P2UP1 =

0 we have

ζ2(P2)ASζ1(P1) = ζ2(P2)AP1S = 0S = 0.

Thus,

�N1 ⊂ V ⇒ �N1N ∗
1 ⊂ W.

But [N1N ∗
1 ]−w∗

contains the identity operator. Therefore, � ⊂ W. The proof is
complete. �
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LEMMA 3.3.

k(W) ≤ k(Mw
I (U)).

Proof. Suppose that I2 is the cardinal of an orthonormal basis of H2. We have
I2 ≤ I. By Lemma 1.5, there exists a column N = (Ni)i∈I2 such that and Ni ∈ N2 for
all i, and N∗N = IH2 . Adding zeros, if necessary, we may assume that N = (Ni)i∈I . We
claim that

W = N∗Cw
I (U).

Indeed,

N ∗
2 U = [N ∗

2 N2VN ∗
1 ]−w∗ ⊂ [VN ∗

1 ]−w∗ = W.

Thus,

N∗Cw
I (U) ⊂ W.

Since NW ⊂ Cw
I (U), we have

N∗NW ⊂ N∗Cw
I (U) ⇒ W ⊂ N∗Cw

I (U).

So the claim holds. In the sequel, we use the fact

k(Cw
I (U)) ≤ k(Mw

I (U)).

Fix A ∈ B(K1, H2). We have

d(A,W) = inf
W∈W

‖A − W‖ = inf
U∈Cw

I (U)
‖A − N∗U‖ =

inf
U∈Cw

I (U)
‖N∗NA − N∗U‖ ≤ inf

U∈Cw
I (U)

‖NA − U‖ =

d(NA, Cw
I (U)) ≤ k(Mw

I (U))rCw
I (U)(NA).

Since U is a B2 − B1 bimodule, Cw
I (U) is a Mw

I (B2) − B1 bimodule. Therefore, by
Lemma 1.2 for any ε > 0, there exist Pi ∈ pr(B′

i) such that P2UP1 = 0 and

rCw
I (U)(NA) − ε <‖PI

2NAP1‖ = ‖Nζ2(P2)AP1‖ ≤
‖ζ2(P2)AP1‖.

By Lemma 3.2, ζ2(P2)WP1 = 0, thus

‖ζ2(P2)AP1‖ ≤ rW (A).

Since ε is arbitrary,

rCw
I (U)(NA) ≤ rW (A).

We have thus proved that

d(A,W) ≤ k(Mw
I (U))rW (A).

The proof is complete. �
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LEMMA 3.4.

k(Mw
I (W)) ≤ k(Mw

I (U)).

Proof. We can see that the spaces Mw
I (U), Mw

I (V) are weak TRO equivalent:

Mw
I (U) = [Mw

I (N2)Mw
I (V)Mw

I (N1)∗]−w∗
,

Mw
I (V) = [Mw

I (N2)∗Mw
I (U)Mw

I (N1)]−w∗
.

Following the above arguments from the beginning to Lemma 3.3, the space

Mw
I (W) = [Mw

I (V)Mw
I (N1)∗]−w∗

has hyperreflexivity constant less than or equal to the hyperreflexivity constant of
Mw

I (Mw
I (U)) which, since I is infinite, is equal to the hyperreflexivity constant of

Mw
I (U). �

LEMMA 3.5.

k(V) ≤ k(Mw
I (U)).

Proof. Let I1 be the cardinal of an orthonormal basis of H1. We can find an infinite
column M = (Mi)i∈I1 , Mi ∈ N1 such that M∗M = IH1 , (Lemma 1.5). Adding zeros if
necessary, we may assume that M = (Mi)i∈I . We have

VN ∗
1 N1 ⊂ V ⇒ N ∗

1 N1V∗ ⊂ V∗ ⇒ N ∗
1 W∗ ⊂ V∗.

Therefore,

M∗Cw
I (W∗) ⊂ V∗.

On the other hand, V∗ = M∗MV∗. Since MV∗ ⊂ Cw
I (W∗), we have

V∗ ⊂ M∗Cw
I (W∗) ⇒ V∗ = M∗Cw

I (W∗).

Choose T ∈ B(H2, H1). Using Lemma 3.4, we have

d(T,V∗) = inf
V∈V

‖T − V∗‖ = inf
S∈Cw

I (W∗)
‖T − M∗S‖ = inf

S∈Cw
I (W∗)

‖M∗MT − M∗S‖ ≤

inf
S∈Cw

I (W∗)
‖MT − S‖ ≤ k(Mw

I (U))rCw
I (W∗)(MT).

Fix ε > 0. Since W is an A2 − B1 bimodule, there exist P ∈ pr(A′
2), Q ∈ pr(B′

1) such
that QW∗P = 0 and

rCw
I (W∗)(MT) − ε < ‖QI MTP‖ = ‖Mζ1(Q)TP‖ ≤ ‖ζ1(Q)TP‖.

We have

PWQ = 0 ⇒ PVN ∗
1 Q = 0 ⇒ PVζ1(Q) = 0 ⇒ ζ1(Q)V∗P = 0.
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Therefore,

rCw
I (W∗)(MT) − ε < rV∗(T).

Since ε is arbitrary, we have

rCw
I (W∗)(MT) ≤ rV∗(T) ⇒ d(T,V∗) ≤ k(Mw

I (U))rV∗(T).

Therefore V∗, and hence V has hyperreflexivity constant less than k(Mw
I (U)).

�
THEOREM 3.6. Let U ,V, H1, H2, K1, K2, I be as in the beginning of this section.

Then

k(Mw
I (V)) ≤ k(Mw

I (U)).

In the special case that H1, H2, K1, K2 are separable, we have

k(Mw
∞(V)) = k(Mw

∞(U)).

Proof. The spaces Mw
I (U), Mw

I (V) are weak TRO equivalent:

Mw
I (U) = [Mw

I (N2)Mw
I (V)Mw

I (N1)∗]−w∗
,

Mw
I (V) = [Mw

I (N2)∗Mw
I (U)Mw

I (N1)]−w∗
.

Following the arguments from the beginning to Lemma 3.5, Mw
I (V) has hyperreflexivity

constant less than or equal to k(Mw
I (Mw

I (U)) = k(Mw
I (U)).

If U ,V are separably acting spaces, then by the first part of the proof,

k(Mw
∞(V)) ≤ k(Mw

∞(U)).

By symmetry,

k(Mw
∞(U)) ≤ k(Mw

∞(V)).

�

4. Isomorphisms and complete hyperreflexivity. In this section, for each reflexive
space X we write kc(X ) for its complete hyperreflexivity constant, k(Mw

∞(X ).

THEOREM 4.1. Let B,A be stably isomorphic CSL algebras acting on the separable
Hilbert spaces K, H respectively. If B is completely hyperreflexive, then A is also
completely hyperreflexive and kc(B) = kc(A).

Proof. By Theorem 3.2 in [4] and the main result of [6], the algebras B and A are
weak TRO equivalent. The conclusion comes from Theorem 3.6. �

COROLLARY 4.2. Let B,A be CSL algebras acting on the separable Hilbert spaces
K, H respectively. We assume that B is completely hyperreflexive. If either

(i) A is not completely hyperreflexive, or
(ii) A is completely hyperreflexive, but kc(A) �= kc(B),

then B and A cannot be stably isomorphic.
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REMARK 4.3. In view of Theorem 4.1, we remark that two stably isomorphic
completely hyperreflexive spaces need not have the same complete hyperreflexivity
constant. For example, take H = l2(�), IH the corresponding identity operator, X =
�IH and Y = B(H). Since, the space X ⊗̄B(H) is isomorphic as a dual operator space
with Y⊗̄B(H),X and Y are stably isomorphic. But kc(Y) = 1 and kc(X ) > 1. (See
Lemma 6.11 in [2]).

THEOREM 4.4. Let Li ⊂ B(Hi), i = 1, 2 be separably acting reflexive lattices. If
there exists a *-isomorphism θ : L′′

1 → L′′
2 such that θ (L1) = L2, then the algebras

Alg(L1), Alg(L2) are weak TRO equivalent, (Theorem 3.3 in [3]). Therefore, by
Theorem 3.6, kc(Alg(L1)) = kc(Alg(L2)).

COROLLARY 4.5. Let Li ⊂ B(Hi), i = 1, 2 be separably acting totally atomic CSL’s.
If these lattices are isomorphic as CSL’s, then the algebras Alg(L1), Alg(L2) are weak
TRO equivalent, (Theorem 5.3 in [3]). Therefore, by Theorem 3.6, kc(Alg(L1)) =
kc(Alg(L2)).

THEOREM 4.6. Let A,B be von Neumann algebras acting on the Hilbert spaces K
and H respectively. If π : A′ → B′ is a ∗-isomorphism and I is an infinite cardinal greater
than or equal to the cardinal of an orthonormal basis of H, then

k(Mw
I (B)) ≤ k(Mw

I (A)).

In the special case where A,B are separably acting, we have

k(Mw
∞(B)) = k(Mw

∞(A)).

Proof. We define the following TRO:

M = {M ∈ B(K, H) : MA = π (A)M ∀ A ∈ A′}.
By Theorem 3.2 in [3], we have

[M∗AM]−w∗ = B, [MBM∗]−w∗ = A.

Thus, A,B are weak TRO equivalent. The conclusion comes from Theorem 3.6. �
THEOREM 4.7. Let A be a separably acting von Neumann algebra for which the

commutant is stable, i.e., A′ and Mw
∞(A′) are isomorphic. Then, A is completely

hyperreflexive and kc(A) ≤ 9.

Proof. The algebra Mw
∞(A∞) is unitarily equivalent to Mw

∞(A)∞. The last algebra
is hyperreflexive with constant less than nine, [10]. Thus, k(Mw

∞(A∞)) ≤ 9. Since by
hypothesis the commutants (A∞)′ and A′ are isomorphic, Theorem 4.6 implies that

k(Mw
∞(A)) = k(Mw

∞(A∞)) ≤ 9.

�
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