
Preface

Analysis and geometry on infinite-dimensional spaces is an active research
field with many applications in mathematics and physics. Examples for appli-
cations arise naturally even when one is interested in problems that on first
sight seem genuinely finite dimensional. You might have heard that it is im-
possible to accurately predict the weather over a long time. It turns out that
this can be explained by studying the curvature of certain infinite-dimensional
manifolds (Arnold, 1966). This example shows that everyday phenomena are
intricately linked to geometric objects residing on infinite-dimensional man-
ifolds. In recent years the list of novel applications for infinite-dimensional
(differential) geometry has broadened considerably. Among the more surpris-
ing novelties are applications in stochastic and rough analysis (rough path the-
ory à la T. Lyons leads to spaces of paths in infinite-dimensional groups; see
Friz and Hairer, 2020) and renormalisation of stochastic partial differential
equations via Hairer’s regularity structures (see Bogfjellmo and Schmeding,
2018).

The aim of this book is to give an introduction to infinite-dimensional (dif-
ferential) geometry. Differential geometry in infinite dimensions comes in many
flavours, such as Riemannian and symplectic geometry. One can study Lie
groups and their actions as well as Kähler manifolds, or Finsler geometry. As
should already be apparent from this very incomplete list, it is simply not pos-
sible to cover a sizeable portion of the diverse topics subsumed under the la-
bel (infinite-dimensional) differential geometry. Hence the present book will
focus on two main areas: Riemannian geometry and Lie groups. These topics
are arguably the most prominent and well studied of the above list. Moreover,
certain basic but important examples in both topics can be approached based
on basic results on manifolds of (differentiable) mappings. However, it is im-
portant to stress that the focus of this book is introductory in nature. We will
usually refrain from discussing results in their most general form if this allows
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viii Preface

Figure 1 (a) Motion capturing using active markers to animate a figure.
Based on the Wikimedia commons picture Activemarker2, public domain; see
https://commons.wikimedia.org/wiki/File:Activemarker2.PNG, accessed:
07.12.21. (b) Removing discontinuities from animations via geometric methods.
Reproduced from Celledoni et al. (2016) with permission of AIMS.

us to avoid lengthy technical discussions. Before we outline the programme
of the book further, let us highlight two applications of infinite-dimensional
geometric structures.

Shape analysis. Shapes are unparametrised curves in a vector space/on a man-
ifold. Mathematically these are modelled by considering spaces of differen-
tiable functions and quotienting out an appropriate action of a diffeomorphism
group (modelling the reparametrisation). Spaces of differentiable functions can
only be modelled using infinitely many parameters, whence they are prime
examples of infinite-dimensional spaces. Notice that when talking about spaces
of differentiable functions, the functions themselves are thought of as points in
the infinite-dimensional space. This is a subtle point as a path between two
points (aka functions) in this space will be a curve of curves. The aim of shape
analysis is now to compare and transform shapes. For the comparison task one
is interested in computing shortest distances between shapes. In the language
of Riemannian geometry, one thus wants to compute geodesics (curves that
are locally of shortest length) in these spaces. From the geometric formulation,
a plethora of applications ranging from medical imaging to computer graph-
ics can be dealt with. As a sample application we would like to highlight the
processing of motion capturing data.

The data from the motion capturing process leads to a skeletal wireframe.
Since motion capturing is, in general, expensive, one would like to create algo-
rithms that interpolate between different movements or remove discontinuities
occuring in the looping of motions (see Figure 1 for a graphical example of the
problem and its (numerical) solution).
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Preface ix

Current groups and diffeomorphism groups. Groups arising from problems
related to differential geometry, fluid dynamics and the symmetry of evolu-
tion equations are often naturally infinite-dimensional manifolds with smooth
group operations. Prime examples are the diffeomorphism groups Diff(K ) for
K a smooth and compact manifold. We encountered them already as reparamet-
risation groups in the shape analysis example. However, they are also of in-
dependent interest, for example in fluid dynamics: if K is a three-dimensional
torus, the motion of a particle in a fluid corresponds, under periodic boundary
conditions, to a curve in Diff(K ); see Ebin and Marsden (1970). This observa-
tion led Arnold to his discovery of a general method by which (certain) partial
differential equations (PDEs) can be lifted to ordinary differential equations on
diffeomorphism groups. Typically these PDEs arise in the context of hydrody-
namics. Many of the applications of this technique, nowadays known as Euler–
Arnold theory for PDEs, come from geometric hydrodynamics (see Khesin
and Wendt, 2009 or Modin, 2019 for an introduction). The already mentioned
relation of weather forecasts to infinite-dimensional manifolds arises in a sim-
ilar fashion.

To deal with these examples, one frequently needs to leave the theory of dif-
ferential geometry on Banach manifolds (Lang, 1999), since diffeomorphism
groups cannot be modelled as Lie groups on Banach spaces. To understand
this, consider the canonical action of the diffeomorphisms Diff(K ) on a con-
nected compact manifold K , that is,

α : Diff(K ) × K → K, (ϕ, k) �→ ϕ(k).

This action is effective (i.e. if ϕ(k) = ψ(k) for all k, then ϕ = ψ), and with
some work one can show that the action α is transitive (i.e. for every pair of
points there is a diffeomorphism mapping the first to the second; see Michor
and Vizman, 1994). We would expect that any canonical Lie group structure
turns α into a smooth map. However, Omori established the following:

Theorem (Omori, 1978) If a (connected) Banach–Lie group G acts effec-
tively, transitively and smoothly on a compact manifold, then G must be a
finite-dimensional Lie group.

Thus, since there is no way for the diffeomorphism group being described
only by finitely many parameters, the diffeomorphism group Diff(K ) cannot
be a Lie group. To treat these examples, one thus has to look beyond the realm
of Banach spaces.

Another example are the so-called current groups C∞(K,G) of smooth map-
pings from a compact manifold to a Lie group G. The group structure is
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here given by pointwise multiplication of functions. In physics, current groups
describe symmetries in Yang–Mills theories. For example, in the theory of
electrodynamics, the gauge transformations for Maxwell’s equations form a
(Lie) subgroup of a current group. Note that the manifold K in physically rel-
evant theories typically models spacetime and is non-compact. However, we
will restrict ourselves in this book to current groups (and function spaces) on
compact manifolds K . This allows us to avoid an overly technical discussion
while special properties of the main examples remain accessible. As an ex-
ample, we mention the ‘lifting’ of geometric features from finite-dimensional
target Lie groups to the infinite-dimensional current groups. This procedure
works particularly well in the special case where K = S1 is the unit circle. In
this case the current group is better known under the name loop group LG �
C∞(S1,G); see Pressley and Segal (1986). Loop groups and current groups
are great examples for a general property of spaces of smooth functions which
we shall encounter often: under suitable assumptions, the infinite-dimensional
geometry arises from ‘lifting the finite-dimensional geometry’ of the target
spaces.

A common topic of the applications and mathematical topics mentioned
above is an intimate connection between finite- and infinite-dimensional
geometry. Indeed while infinite-dimensional differential geometry might seem
like an arcane topic from the perspective of the finite-dimensional geometer,
there are many sometimes surprising connections between the realms
of finite- and infinite-dimensional geometry. We already mentioned Euler–
Arnold theory and Arnold’s insights relating curvature on infinite-dimensional
manifolds to weather forecasts. Another example is Duistermaat and Kolk’s
proof of the third Lie theorem (‘every finite-dimensional Lie algebra is the
Lie algebra of a Lie group’; Duistermaat and Kolk, 2000, Section 1.14) or
Klingenberg’s investigation of closed geodesics (see Klingenberg, 1995). In
both cases, infinite-dimensional techniques on path spaces were leveraged to
solve the finite-dimensional problems. While many of the examples just men-
tioned can be studied while staying in the realm of finite-dimensional geom-
etry, the link to infinite-dimensional geometry should not be disregarded as a
purely academic exercise. A case in point might be the theory of rough paths
discussed in §8. Here it generally suffices to consider truncated and thus finite-
dimensional geometric settings. However, the infinite-dimensional limiting ob-
jects hint at deeper geometric insights hidden in the finite-dimensional perspec-
tive. It is my view that the infinite-dimensional perspective not only provides
a convenient framework for these examples but exhibits important underlying
structures and principles. These are worth exploring both for their own sake
and for the connected applications.
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In the context of the present book, we will explore the connection between
the finite- and infinite-dimensional realm in the context of manifolds of differ-
entiable mappings. These manifolds allow the lifting of geometric structures
such as Lie groups and Riemannian metrics to interesting infinite-dimensional
structures. For finite orders of differentiability, manifolds of differentiable map-
pings can be modelled on Banach spaces (see Palais, 1968). Thus they are
within the grasp of differential geometry on Banach spaces (Lang, 1999). How-
ever, since certain constructions (such as the exponential law) become much
more technical for finite orders of differentiability, we shall in the present book
study exclusively manifolds and spaces of smooth (i.e. infinitely often differ-
entiable) mappings. This places us immediately outside of the realm of Banach
manifolds but enables important constructions such as the Lie group structure
for diffeomorphism groups.

Finally, I would like to draw the reader’s attention to the fact that besides
many links and connections between finite- and infinite-dimensional geom-
etry, there are quite severe differences between both settings of differential
geometry. Many of the strong structural statements from finite-dimensional
geometry simply cease to be valid when passing to manifolds modelled on
infinite-dimensional spaces (many statements already break down in the more
familiar Banach setting). These pitfalls are well known to experts but often
surprise beginners in the field. In the spirit of providing an introduction to
infinite-dimensional geometry, I have taken care to emphasise the differences
and illustrate them with examples where possible. For example, the following
problems are frequently encountered when passing to the infinite-dimensional
setting:

• Infinite-dimensional spaces cannot be locally compact and they do not sup-
port a unique vector topology. Thus arguments building on compactness are
not available (see Appendix A).

• Smooth bump functions do not need to exist (see Appendix A.4). Hence the
usual local-to-global arguments become unavailable.

• Beyond Banach spaces, there is no general solution theory for ordinary dif-
ferential equations and no general inverse function theorem (see Appendix
A.5).

• Dual spaces become more difficult to handle. As a consequence, it is impos-
sible to define differential forms as sections in dual bundles in general (see
Remark 1.45).

• Equivalent definitions from finite-dimensional differential geometry are
often not equivalent in the infinite-dimensional setting. This happens, for
example, for submersions and immersions; compare §1.7.
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The structure of the book is as follows. First of all, we shall provide the nec-
essary foundational material for differential geometry in the general infinite-
dimensional setting in the first two chapters. Here we emphasise

(a) calculus and manifolds on infinite-dimensional spaces beyond the Banach
setting, and

(b) manifolds of differentiable functions.

Beyond Banach spaces there are several choices as to how one can gener-
alise the concept of differentiability. We adopted the so-called Bastiani calcu-
lus based on iterated directional derivatives. This choice is different from the
popular ‘convenient calculus’. We shall compare the calculi in later chapters.
Furthermore, we discuss several foundational topics, such as locally convex
spaces, in a series of appendices. The material covered there should allow the
reader to grasp most of the basics needed to follow the main part of the book.
Moreover, the material in the appendices gives some insight into the common
problems arising in the passage from finite- to infinite-dimensional settings al-
ready mentioned. While the setting in which we will be working is quite gen-
eral, we will often not exhibit the most general definitions, results and settings
which can possibly be treated in the framework. For example, only manifolds
of mappings on a compact manifold are considered here. The non-compact
case is interesting and deserving of attention, however the associated theory is
much more involved and technical. Our philosophy here is that if the simpli-
fied case already admits applications and exhibits the character and problems
of the infinite-dimensional setting, we will restrict our attention to the simple
case. However, we shall comment on the more general case and provide point-
ers to the literature. Armed with the knowledge provided by the present book,
the reader should be able to quickly learn the more general case should she so
desire.

Having dealt with the general setting, we shall then study the main objects
of interest in this book:

(a) (infinite-dimensional) Lie groups and Lie algebras, Chapter 3 and
(b) (weak) Riemannian geometry, Chapter 4.

Based on these building blocks, we shall explore several applications of infinite-
dimensional geometry in the next chapters. These range from shape analysis
to connections with higher geometry (in the guise of Lie groupoids) to Euler–
Arnold theory for PDEs and the geometry of rough path spaces. These later
chapters can be read mostly independently from each other. I have selected
the topics for the advanced chapters with a view towards developments within
the field over the last years. The broad selection of topics and the introductory
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nature of the present book prevent an in-depth discussion of these advanced
topics. Therefore these chapters gracefully omit many of the more technical
and subtle points. However, the reader will be able to gain an impression of
the role infinite-dimensional differential geometry plays in these applications.
Moreover, there are ample references to the literature which should enable the
interested reader to follow up on a topic after perusing the respective chapter.

Before we begin, let us set some conventions that will be in effect for all that
is to come.

Conventions

• Write N � {1,2,3, . . .} for the natural numbers and N0 � N ∪ {0}.
• All topological spaces are assumed to be Hausdorff, that is, for every pair of

two (distinct) points in the space, there are disjoint open neighbourhoods of
these points.

• If nothing else is said, products of topological spaces will always carry the
product topology.

• If U ⊆ X is an open subset of a topological space, we also write shorter
U ⊆◦ X .

We shall exclusively work over the real numbers R, all vector spaces are to be
understood over the real numbers. However, many results carry over to com-
plex vector spaces. For example, it is no problem to define the notion of com-
plex differentiability (see e.g. Glöckner, 2002).

Recommended Further Reading

As mentioned above, infinite-dimensional differential geometry is a vast topic,
which we cannot hope to cover in this book. Thus we have concentrated on an
introduction to infinite-dimensional Lie groups, (weak) Riemannian metrics
and their interplay. For further reading on the topics of this book, we would
like to recommend the following works, which have also influenced the pre-
sentation in the present book:

• (infinite-dimensional) Lie theory (Neeb, 2005) – lecture notes; (Neeb,
2006) – extensive survey; and, once it becomes available (Glöckner and
Neeb, forthcoming).

• Manifolds of mappings (Wockel, 2014); on non-compact domains (Michor,
1980).

• (weak) Riemannian geometry (Bruveris, 2018, 2019).
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Furthermore, there is a host of topics that could not be covered in this book. Al-
beit there is again no hope that we could do justice to the vast body of research
on these topics, we would like to mention a few works that are either introduc-
tory or exhibit new phenomena which are genuinely infinitely dimensional in
nature:

• Symplectic geometry (Abraham et al., 1988 (Banach setting); Kriegl and
Michor (1997, Section 48)).

• Sub-Riemannian geometry (Grong et al., 2015; Agrachev and Caponigro,
2009).

• Kähler geometry (Sergeev, 2020).
• Poisson geometry (Beltiţă et al., 2018).
• Finsler geometry (Larotonda (2019) on diffeomorphism groups; Eftekhari-

nasab and Petrusenko (2020) in the context of bounded Fréchet geometry).
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