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Abstract

In this paper we propose a class of sequential urn designs based on generalized Pólya
urn (GPU) models for balancing the allocations of two treatments in sequential clinical
trials. In particular, we consider a GPU model characterized by a 2 × 2 random addition
matrix with null balance (i.e. null row sums) and replacement rule depending upon the
urn composition. Under this scheme, the urn process has a Markovian structure and can
be regarded as a random extension of the classical Ehrenfest model. We establish almost
sure convergence and asymptotic normality for the frequency of treatment allocations
and show that in some peculiar cases the asymptotic variance of the design admits a
natural representation based on the set of orthogonal polynomials associated with the
corresponding Markov process.
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1. Introduction

Assume that we want to carry out a sequential experiment for comparing the efficacy of two
competing treatments. The peculiar feature of sequential designs is that they employ the data
collected in the past of the experiment in order to choose subsequent allocations, called design
points. These procedures are essential in clinical trials and in all those situations for which the
entrance of statistical units is naturally sequential.

In designing clinical trials, a component of randomization in the assignments is commonly
required to protect against various types of bias and it is often considered to be a fundamental tool
for correct inferential procedures. As is well known, a large family of sequential randomized
designs is based on urn models, which are classical tools as a randomization device [4], [6],
[9], [10], [22], [23], [24], [26], [27], [28], [29] and the most basic urn model is the generalized
(or extended) Pólya urn (GPU) model [12], [20].

Sequential clinical trials for the comparison of two treatments based on the GPU model can
be described briefly as follows. There is an urn containing balls of two different types or colours,
say type 1 (white) and type 2 (black), standing for treatment T1 and T2, respectively. The initial
urn composition is denoted by W0 = (W0,1; W0,2), where W0,i represents the number of balls
of type i at the beginning. In several applications W0 is assumed to be a deterministic quantity
and in this paper we assume that W0 = (w; w). Patients arrive sequentially and are randomly
allocated to the treatments. At each step k, a ball is drawn at random from the urn; if the ball
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is of type i, then treatment Ti is assigned to the kth subject (i = 1, 2) and the outcome Zk

is observed. Furthermore, the selected ball is replaced in the urn together with an additional
Rk(i, j) balls of type j (with j = 1, 2), where negative values are allowed and correspond to
removals of balls. Thus, at each stage k the urn updating scheme is governed by the addition
matrix

Rk =
(

Rk(1, 1) Rk(1, 2)

Rk(2, 1) Rk(2, 2)

)
, (1)

and if the row sums are constant the urn is said to be balanced. After n steps, Wn = (Wn,1; Wn,2)

denotes the urn composition, where Wn,i ≥ 0 represents the number of balls of type i present
in the urn. Let δn+1 = (δn+1,1; δn+1,2) represent the allocation of the treatment to the next
subject, with δn+1,i = 1 if the (n + 1)th unit is assigned to Ti and 0 otherwise, then, for any
n ∈ N,

P(δn+1,i = 1 | Wn) = Wn,i

Wn,1 + Wn,2
for i = 1, 2. (2)

This setting can be directly generalized to the case of several treatments (see, for instance [3]).
Obviously, the treatment allocation process plays a fundamental role both from an ethical point
of view and for inferential purposes (see, e.g. [18] and [10]). Let Nn = (Nn,1; Nn,2) represent
the number of allocations to the two treatments, where

Nn,i =
n∑

k=1

δk,i and Nn,1 + Nn,2 = n.

Clearly, both the evolution of the GPU process {Wn}n∈N and the limiting behaviour of the
associated urn design {Nn}n∈N depend on the nature of the sequence of rules {Rn}n∈N.

1.1. The deterministic addition matrix

There is vast probabilistic literature regarding the evolution of the urn process {Wn}n∈N

when the addition matrix is deterministic. In particular, if Rn has constant entries at each step
we have

Rn =
(

τ υ

γ ϕ

)
for any n ∈ N; (3)

thanks to its flexibility such a case has attracted the continued attention of several authors
(see, e.g. [5], [12], and [14]). Historically, the constant and deterministic adding rule has been
investigated in the context of sequential procedures for obtaining a balanced allocation of the
treatments. Originally, Wei [26], [27] proposed a sequential GPU design based on rule (3) with
τ = ϕ ≥ 0 and υ = γ ≥ 0; subsequently, Schouten [24] analyzed this procedure in the case
in which τ = ϕ = −1, that is, assuming that the extractions from the urn are made without
replacement. When the urn is balanced and the row sums of (3) are equal to 0, the process
{Wn}n∈N is a time-homogeneous Markov chain. Within this framework, Chen [9] proposed the
Ehrenfest urn design (ED), a sequential procedure based on the Ehrenfest process, which can
be regarded as a special case of the deterministic GPU model in (3) with τ = ϕ = −1 and
υ = γ = 1. Recently, Baldi Antognini [6] analyzed a generalization of the ED based upon
the following choice of parameters: −τ = −ϕ = υ = γ ≥ 0. Also, Chen [10] introduced a
modified version of the ED which satisfies the central limit property.

1.2. The random addition matrix

In the most general formulation of the GPU model, at any step n each Rn(i, j) (i, j = 1, 2)
may be a function of the accrued information, so that the addition matrix Rn is random
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(several authors refer to this case as randomly reinforced GPU models [22] or GPU in a
random environment [16]). For instance, in response-adaptive experiments the adding rule
depends at each step on the observed responses (see, e.g. [17], [28], and [29]). Note that,
if Rn is random, a key quantity that governs the evolution of the process is the generating
matrix Hn = (E[Rn(ij) | Fn−1, δn, Zn]; i, j = 1, 2), where Fk is the sigma field generated by
{W0, δ1, Z1, W1, . . . , δk, Zk, Wk}.

When, for any given pair of indexes (i, j) ∈ {1, 2}2, {Rn(i, j)}n∈N is an independent and
identically distributed (i.i.d.) sequence of random variables, then Hn = H for any n (i.e. the
GPU model is said to be homogeneous) and Athreya and Karlin [1] and Smythe [25] derived
the asymptotic behaviour of {Wn}n∈N and {Nn}n∈N under some conditions on the spectral
structure of the generating matrix. In such a case, they assumed that the expected number
of balls added at each step is a positive constant, namely that

∑2
j=1 E[R(ij)] = c > 0 for

any i = 1, 2. More recently, Janson [19] derived functional limit theorems for {Wn}n∈N and
{Nn}n∈N for homogeneous GPU models under a set of assumptions [19, Assumptions A1–A6]
which prevent the extinction of balls. Note that, as also shown by the author, nonextinction is
also guaranteed when the process evolves as a Markov chain; however, in this instance condition
A3 no longer holds and so the theoretical framework described in this paper cannot be exploited.

Other recent contributions include [2], [3], [4], [17], and [29], where the asymptotic normal-
ity of {Wn}n∈N and {Nn}n∈N is derived for nonhomogeneous GPU models by assuming that the
total number of balls added at each step is a positive constant, namely that

∑2
j=1 R(ij) = c > 0

for any i = 1, 2.
In this paper we analyse sequential urn designs based upon a class of randomly reinforced

GPU models with null balance, where the addition matrix depends on the urn composition. Such
a class of Markovian processes can be regarded as a randomized extension of the Ehrenfest
process and generalizes previous contributions on the topic (e.g. [9], [11], [13], and [21]). By
exploiting martingale theory, we can identify sequential urn procedures that are asymptotically
balanced and satisfy the central limit property. In particular, we focus our attention to the
case in which any draw generates the birth or death of exactly one ball and we show that the
asymptotic variance of the frequency of allocations admits a natural representation based on
the eigenstructure of the transition matrix of the associated Markov chain.

2. Randomly reinforced GPU model with null balance for the balanced allocation of two
treatments

In this section we consider a family of randomly reinforced GPU models, which allows us
to define a class of sequential urn designs for the balanced allocation of two treatments. In
particular, we analyse a specification of the GPU model in (1) with null balance, denoted by
BN-GPU, in which any draw generates a random birth or death of balls depending only on the
current number of balls already present in the urn.

From now on, assume that at each step n the random addition matrix is given by

Rn =
(−An An

Bn −Bn

)
, (4)

where An and Bn are nonnegative integer random variables. From (4), the total number of balls
in the urn is kept constant (i.e. Wn,1 + Wn,2 = 2w for any n), which allows us to restrict our
attention to the univariate process {Wn,1}n∈N.

Clearly, the urn process (or, equivalently, the associated urn design) is completely determined
by the specification of the sequences of random variables {An}n∈N and {Bn}n∈N. Throughout
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this paper, we define the BN-GPU model by assuming that, at each step n, given Wn−1,1 = x,
An and Bn satisfy the following conditions:

• for x ∈ {1, . . . , 2w}, An has support Ax ⊆ {0, . . . , x} and probability distribution
function (PDF) f (·; x), where

P(An = a | Fn−1, δn,1, Zn) = P(An = a | Wn−1,1 = x) = f (a; x), a ∈ Ax;
• for x ∈ {0, . . . , 2w − 1}, Bn has support Bx ⊆ {0, . . . , 2w − x} and PDF g(·; x), where

P(Bn = b | Fn−1, δn,1, Zn) = P(Bn = b | Wn−1,1 = x) = g(b; x), b ∈ Bx.

These conditions ensure the correct specification of the BN-GPU model, since (4) involves
subtraction; furthermore, they characterize its probability structure. Note that, if Wn−1,1 = 0
or Wn−1,1 = 2w we do not pose any restriction on An or Bn, respectively, since it is not relevant
to the evolution of the process as the draw becomes deterministic.

Under this scheme, the addition matrix Rn depends on stage n only through the number of
balls in the urn, Wn−1,1. For instance, given Wn−1,1 = x, if the ball that has been drawn is of
type 1 then, with probability f (a; x), a balls of type 1 will be removed and a balls of type 2
will be added.

This scheme is quite flexible, since the PDFs can be chosen ad hoc in order to model several
kinds of replacements, and generalizes some proposals in the literature (see [9], [10], [11],
[13], and [21]). Observe that, if An = Bn = 1 almost surely (a.s.) for any n, the ball that has
been drawn is placed in the other urn with probability 1 and {Wn,1}n∈N becomes the classical
Ehrenfest urn process (so that the associated design is the ED proposed by Chen [9]).

Under the BN-GPU model, at each step n the urn process satisfies the recursive relation

Wn,1 = Wn−1,1 − δn,1An + (1 − δn,1)Bn, (5)

and the sequence {Wn,1}n∈N is a time-homogeneous Markov chain on the state space
X = {0, . . . , 2w} with transition matrix P = (px,y) given by

px,y =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g(y − x; x)

(
1 − x

2w

)
, y > x,

f (0; x)
x

2w
+ g(0; x)

(
1 − x

2w

)
, y = x,

f (x − y; x)
x

2w
, y < x,

for x = 1, . . . , 2w − 1 and

p0,y = g(y; 0) and p2w,y = f (2w − y; 2w), y ∈ X.

Clearly, the properties of the chain vary with {f (·; x)}x=1,...,2w and {g(·; x)}x=0,...,2w−1, and
throughout this paper we assume that An and Bn are nondegenerate random variables and that
the following condition holds.

(C1) The families of PDFs {f (·; x)}x=1,...,2w and {g(·; x)}x=0,...,2w−1 are chosen such that the
Markov chain {Wn,1}n∈N is irreducible.
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Under assumption (C1), the urn process {Wn,1}n∈N is ergodic (i.e. irreducible and positive recur-
rent), since the state space X is finite. Thus, the stationary distribution π = (π(0), . . . , π(2w))

exists and is unique and from now on let Eπ denote the ergodic average, namely

Eπ =
2w∑
x=0

xπ(x).

2.1. Some general properties of BN-GPU designs

In this section we analyse the properties of sequential urn procedures generated by the
BN-GPU model in (4). From (2) and (5), at each step n the treatment allocations are governed
by

P(δn+1,1 = 1 | Wn,1) = Wn,1

2w
= 1

2
−

n∑
j=1

{
δj,1Aj − (1 − δj,1)Bj

2w

}
.

Clearly, the properties of the BN-GPU designs vary on the basis of the specification of the
sequences of random variables {An}n∈N and {Bn}n∈N. The following theorem highlights the
asymptotic relationship between the frequency of treatment allocations and the corresponding
urn process.

Theorem 1. For any sequential urn design based on the BN-GPU model in (4) which satisfies
assumption (C1), then

lim
n→∞

Nn,1

n
= Eπ

2w
a.s. (6)

and √
n

(
Nn,1

n
− Eπ

2w

)
d−→ N

(
0; σ 2

(2w)2

)
as n → ∞,

where

σ 2 = lim
n→∞

1

n
V

(n−1∑
k=0

Wk,1

)
< ∞ (7)

(the special case in which σ 2 = 0 corresponds to the convergence in probability to 0).

Proof. At each step n, consider the martingale process {Mn, Fn}, where

Mn = Nn,1 − 1

2w

n−1∑
k=0

Wk,1 =
n∑

k=1

(
δk,1 − Wk−1,1

2w

)
=

n∑
k=1

Qk.

Let F0 be the trivial σ -field, since

E[Q2
n+1 | Fn] = Wn,1

2w

(
1 − Wn,1

2w

)
≤ 1

4
a.s. for any n ∈ N.

Then
∑∞

k=1 k−2 E[Q2
k | Fk−1] < ∞ and, hence, from Theorem 2.18 of [15], we have

lim
n→∞

Mn

n
= lim

n→∞

[
Nn,1

n
− 1

2w

1

n

n−1∑
k=0

Wk,1

]
= 0 a.s. (8)
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Thus, the almost sure convergence in (6) follows from the strong law of large numbers for
ergodic Markov chains, since

lim
n→∞

1

n

n−1∑
k=0

Wk,1 = Eπ a.s. (9)

Furthermore, by (6), (8), and (9) it follows that

lim
n→∞

Nn,1∑n−1
k=0 Wk,1

= 1

2w
a.s. (10)

and, from the central limit theorem for ergodic Markov chains (see [8]),

lim
n→∞

√
n

(
1

n

n−1∑
k=0

Wk,1

)
= W ∗ in law, (11)

where W ∗ ∼ N(Eπ ; σ 2) and σ 2 is as defined in (7). Thus, by (10) and (11), we have

lim
n→∞

√
n

(
Nn,1

n

)
= W ∗

2w
in law.

3. The BN1-GPU designs

Consider now the special case of the BN-GPU model, denoted by BN1-GPU, under which
any draw generates the birth or the death of exactly one ball. Formally, we assume that at each
step n and for any given Wn−1,1 = x, {An}n∈N and {Bn}n∈N are sequences of Bernoulli random
variables such that

P(An = 1 | Wn−1,1 = x) = f (1; x) = f (x),

P(Bn = 1 | Wn−1,1 = x) = g(1; x) = g(x),
(12)

with 0 < f (x), g(x) < 1 for any x ∈ X. From (12), the sequence {Wn,1} is a time-
homogeneous Markov chain on X = {0, . . . , 2w} with tridiagonal (or Jacobian) transition
matrix P = (px,y) given by

px,y =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g(x)

(
1 − x

2w

)
, y = x + 1,

1 − g(x)

(
1 − x

2w

)
− f (x)

x

2w
, y = x,

f (x)
x

2w
, y = x − 1,

together with the boundary condition p0,−1 = p2w,2w+1 = 0. It can be shown that the chain
{Wn,1}n∈N is ergodic and aperiodic, with stationary distribution π given by the equilibrium
equations

π(x) = π(x − 1)ξx, x = 1, . . . , 2w,

π(0) =
[

1 +
2w∑
j=1

j∏
x=1

ξx

]−1

,
(13)
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where, for any x = 1, . . . , 2w,

ξx = g(x − 1)(1 − (x − 1)/2w)

f (x)(x/2w)
=

(
2w − x + 1

x

)
g(x − 1)

f (x)
; (14)

also, from (13), the ergodic average becomes

Eπ = π(0)

2w∑
x=1

x

x∏
k=1

ξk. (15)

Under the BN1-GPU model, the chain {Wn,1}n∈N is time-reversible, so that, letting λ0, . . . , λ2w

be the set of eigenvalues of P , each λx is real and with suitable ordering we have 1 = λ0 >

λ1 ≥ · · · ≥ λ2w ≥ −1. Also, for any x = 0, . . . , 2w, let vx = (vx(0), . . . , vx(2w)) be the
right eigenvector associated with λx , where v0 = 1. Since eigenvectors are determined up to
multiplication by a nonnull scalar, from now on we set

2w∑
j=0

v2
x(j)π(j) = 1 for any x = 0, . . . , 2w,

i.e. v0, . . . , v2w is the family of right eigenvectors of P which are orthonormal with respect to
the stationary distribution π .

Proposition 1. Under any BN1-GPU design, if the functions f (·) and g(·) in (12) satisfy the
symmetric condition

f (x) = g(2w − x) for any x = 0, . . . , 2w, (16)

then the corresponding design is asymptotically balanced, namely

lim
n→∞

Nn,1

n
= 1

2
a.s.

and furthermore, as n → ∞,

√
n

(
Nn,1

n
− 1

2

)
d−→ N

(
0; σ 2

(2w)2

)
, (17)

where

σ 2 =
2w∑
x=1

1 + λx

1 − λx

( 2w∑
j=1

jvx(j)π(j)

)2

. (18)

Proof. Given assumption (16), from (13) and (14) we can write

π(x) = π(0)
g(0) · · · g(x − 1)

g(2w − 1) · · · g(2w − x)

x∏
k=1

(
2w − k + 1

k

)

= π(0)
g(0) · · · g(x − 1)

g(2w − 1) · · · g(2w − x)

(
2w

x

)
;

so that

π(2w) = π(0)
g(0) · · · g(2w − 1)

g(2w − 1) · · · g(0)

(
2w

2w

)
= π(0)
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and, in general, π(x) = π(2w − x) for any x = 0, . . . , 2w, where

π(0) =
[

1 +
2w∑
j=1

j∏
k=1

(
2w

j

)
g(0) · · · g(k − 1)

g(2w − 1) · · · g(2w − k)

]−1

.

Thus, from (15), we have

Eπ =
w−1∑
x=0

xπ(x) + wπ(w) +
w−1∑
r=0

(2w − r)π(2w − r) = w

2w∑
x=0

π(x) = w,

so that the proof follows directly from Theorem 1. The spectral representation of the asymptotic
variance in (18) is derived through the central limit theorem for reversible Markov chains (see,
for instance [7, pp. 232–235]).

The adoption of a random replacement rule renders the model quite general. However, note
that this gain in flexibility produces an increase of variability in the asymptotic behaviour of
treatment allocations. In fact, for instance, under Chen’s ED

lim
n→∞

√
n

(
Nn,1

n
− 1

2

)
= 0 in probability,

whereas for the BN1-GPU model (17) holds.
In the following we analyse some special cases of the BN1-GPU model designed for

balancing the treatment allocations.

Example 1. (Constant expected replacement.) Let us assume that f (x) = t and g(x) = s, for
any x = 0, . . . , 2w with 0 < t, s < 1. Under this choice, {An}n∈N and {Bn}n∈N are sequences
of i.i.d. Bernoulli random variables, An ∼ Ber(t) and Bn ∼ Ber(s), so that the adding rule does
not depend on the number of balls already in the urn and the BN1-GPU becomes homogeneous.
From Proposition 1, in order to obtain a sequential procedure which is asymptotically balanced
we set s = t . In such a case the stationary distribution of the ergodic chain {Wn,1}n∈N is
binomial with π(·) = Bin(2w, 1

2 ). Moreover, from the spectral representation given in [21] the
transition matrix P has eigenvalues λx = 1 − sx/w for x = 0, . . . , 2w, with corresponding
right eigenvectors given by the sequence of Krawtchouk polynomials (see, for instance [11]).

Example 2. (Linear expected replacement.) Consider now the nonhomogeneous BN1-GPU
model with linear replacement probabilities, namely

f (x) = x

2w
and g(x) = 1 − x

2w
, for any x = 0, . . . , 2w.

Observe that this choice of functions f (·) and g(·) satisfies (16), so that the corresponding
urn procedure is asymptotically balanced. Furthermore, as shown by Dette [11], the stationary
distribution of the chain {Wn,1}n∈N is hypergeometric with

π(x) =
(

4w

2w

)−1(2w

x

)2

, x = 0, . . . , 2w.

The set of eigenvalues is given by λx = 1 − x(4w + 1 − x)/4w2 for x = 0, . . . , 2w and the
corresponding right eigenvectors are the so-called Hahn–Eberlein polynomials.
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