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Finitely Related Algebras in Congruence
Distributive Varieties Have Near Unanimity
Terms

Libor Barto

Abstract. We show that every finite, finitely related algebra in a congruence distributive variety has a

near unanimity term operation. As a consequence we solve the near unanimity problem for relational

structures: it is decidable whether a given finite set of relations on a finite set admits a compatible

near unanimity operation. This consequence also implies that it is decidable whether a given finite

constraint language defines a constraint satisfaction problem of bounded strict width.

1 Introduction

Since the beginning of the systematic study of universal algebras in the 1930’s it has

been recognized that an important class of invariants of algebras and classes of alge-

bras are their congruence lattices. Particularly widely studied objects are congruence

distributive varieties, i.e., equationally definable classes of algebras whose congruence

lattices are distributive (see Section 2 for definitions).

We call an algebra in a congruence distributive variety a CD algebra. Examples of

CD algebras include lattices, and, more generally, algebras that have a near unanimity

term operation. These operations have also attracted a great deal of attention, not

only in universal algebra, but also in graph theory and, recently, in computer science

in connection with the constraint satisfaction problem (CSP), where, for instance,

near unanimity operations characterize CSPs of bounded strict width [11].

Every finite algebra is, in some sense, determined by a set of relations. We call

an algebra finitely related if this set of relations can be chosen to be finite. A use-

ful corollary of a classical result of Baker and Pixley [2] is that every algebra with a

near unanimity term operation is finitely related. Our main result provides a partial

converse.

Theorem 1.1 Every finite, finitely related CD algebra has a near unanimity term op-

eration.

A special case of this theorem for algebras determined by posets was conjectured

in [10,23]. An affirmative answer was given in [24] for bounded posets and in [19] in
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full generality. Another special case of the theorem, namely, for algebras determined

by a reflexive undirected graph, was proved in [18]. The general version is commonly

referred to as the Zádori conjecture, although it has been never stated in a journal

paper, perhaps because of scant evidence.

What made this result possible is the connection between the constraint satisfac-

tion problem and universal algebra discovered in [8, 15]. The interaction between

these areas is very fruitful in both directions. On one hand, universal algebra has

brought a deeper understanding and strong results about the CSP. On the other hand,

the CSP has motivated much of the recent work in universal algebra and opened new

research directions. This is nicely illustrated by the main result of [3] (Theorem 5.7

in this paper). This theorem contributed to the study of local consistency methods

for the CSP (and was an important step toward the full characterization of applica-

bility of local consistency methods given in [4]), and it is also one of the two main

ingredients of the proof of our main, purely algebraic result.

We remark that none of the assumptions of Theorem 1.1 is superfluous. In [24],

Zádori provides an example of an infinite, bounded poset that determines a CD alge-

bra with no near unanimity term operation. A simple example of a finite CD algebra

with no near unanimity operation is the two element set {0, 1} together with the

implication regarded as a binary operation. Finally, the algebra determined by the

complete loopless graph with three vertices does not have any near unanimity oper-

ation (it actually has no idempotent operations other than projections).

Of independent interest is a corollary of the main theorem (Corollary 7.1), which

gives an affirmative answer to the near unanimity problem for relational structures.

It is decidable whether a given set of relations on a finite set admits a compatible near

unanimity operation. This consequence is discussed in more detail in Section 7.

1.1 Organization of the Paper

In Section 2 we recall basic notions and results about algebras and relational struc-

tures. In Section 3 we show that it is enough to deal with algebras determined by at

most binary relations. In Section 4 we associate with such an algebra an instance of

the CSP whose solutions are term operations of that algebra. The definitions and re-

sults about CSP instances that we require are stated in Section 5, where we also prove

the main theorem. The main new tool is only stated in this section; its proof covers

Section 6. Finally, in Section 7 we discuss consequences and open problems.

2 Preliminaries

In this section we recall universal algebraic notions and results that will be needed

throughout the paper. This material, except for the notion of a Jónsson ideal, is

covered in any standard reference on universal algebra, for example, [9].

2.1 Algebras and Varieties

An n-ary operation on a set A is a mapping f : An → A. In this paper we assume that

all operations are finitary, i.e., n is a natural number. An operation is idempotent if it
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satisfies the identity f (a, a, . . . , a) = a, i.e., this equation holds for every a ∈ A. An

operation of arity at least three is called a near unanimity operation, if it satisfies the

identity

f (a, a, . . . , a, b, a, a, . . . , a) = a

for every position of b in the tuple.

An algebra is a pair A = (A,F), where A is a set, called the universe of A, and

F is a set (possibly indexed) of operations on A. We use a boldface letter to denote

an algebra and the same letter in plain type to denote its universe. An algebra is

idempotent if all of its operations are idempotent. Two algebras are similar if their

operations are indexed by the same set and corresponding operations have the same

arities.

A term operation of A is an operation that can be obtained from operations in A

using composition and the projection operations. The set of all term operations of A

is denoted by Clo(A). Most structural properties of an algebra (such as subalgebras,

congruences, automorphisms, etc.,) depend only on the set of term operations rather

than on a particular choice of the basic operations.

There are three fundamental operations on algebras of a fixed similarity type:

forming subalgebras, factor algebras, and products.

A subset B of the universe of an algebra A is called a subuniverse if it is closed under

all operations (equivalently term operations) of A. Given a subuniverse B of A we can

form the algebra B by restricting all the operations of A to the set B. In this situation

we say that B is a subalgebra of A and we write B ≤ A or B ≤ A.

The product of algebras A1, . . . ,An is the algebra with the universe equal to A1 ×
· · · × An and with operations computed coordinatewise. The product of n copies of

an algebra A is denoted by An. A subalgebra (or a subuniverse) of a product of A is

called a subpower of A.

An equivalence relation ∼ on the universe of an algebra A is a congruence if it is a

subalgebra of A2. The corresponding factor algebra A/∼ has, as its universe, the set

of ∼-blocks and operations that are defined using arbitrarily chosen representatives.

The set of congruences of A forms a lattice, called the congruence lattice of A.

A variety is a class of similar algebras closed under forming sublagebras, products

(possibly infinite), factor algebras, and isomorphic copies. A fundamental theorem

of universal algebra, due to G. Birkhoff, states that a class of similar algebras is a

variety if and only if this class can be defined via a set of identities.

2.2 Relational Structures

An n-ary relation on a set A is a subset of An (again, n is always finite in this article).

A relational structure is a pair A = (A,R), where A is the universe of A and R is a set

of relations on A. We use blackboard bold letters to denote relational structures.

We say that an operation f : An → A is compatible with a relation R ⊆ Am (or, R

is preserved by f ) if the tuple

(
f (a1

1, a2
1, . . . , an

1), f (a1
2, a2

2, . . . , an
2), . . . , f (a1

m, a2
m, . . . , an

m)
)
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belongs to R whenever (ai
1, ai

2, . . . , ai
m) ∈ R for all i ≤ n. In other words, f is

compatible with R, if R is a subpower of the algebra (A, { f }).

An operation compatible with all relations of a relational structure A is a polymor-

phism of A. The set of n-ary polymorphisms of A is denoted by Poln(A), and the set of

all polymorphisms of A is denoted by Pol(A). This set of operations is closed under

composition and contains the projection operations. On the other hand, every set of

operations on a finite set closed under projections and composition can be obtained

in this way.

Theorem 2.1 ([6, 13]) For every finite algebra A there exists a relational structure A

(with the same universe) such that Pol(A) = Clo(A).

An algebra is called finitely related if finitely many relations suffice to determine

Clo(A).

Definition 2.2 An algebra A is said to be finitely related, if there exists a relational

structure A with finitely many relations such that Pol(A) = Clo(A).

By a classic result of Baker and Pixley [2], every algebra with a near unanimity

term operation is finitely related. More generally, every algebra with few subpowers

is finitely related [5] (see Subsection 7.3).

2.3 CD Algebras

Definition 2.3 A variety is called congruence distributive, if all algebras in it have

distributive congruence lattices. A CD algebra is an algebra in a congruence distribu-

tive variety.

A theorem of Jónsson [16] characterizes CD algebras using operations satisfying

certain identities.

Definition 2.4 A sequence p0, p1, . . . , ps of ternary operations on a set A is called

a Jónsson chain, if the following identities are satisfied:

p0(a, b, c) = a,

ps(a, b, c) = c,

pi(a, b, a) = a for all i ≤ s,

pi(a, a, b) = pi+1(a, a, b) for all even i < s,

pi(a, b, b) = pi+1(a, b, b) for all odd i < s.

Theorem 2.5 ([16]) An algebra A has a Jónsson chain of term operations if and only

if A is a CD algebra.

Example Every algebra with a near unanimity term operation t is a CD algebra.
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This can be shown, for instance, by constructing a Jónsson chain:

p0(a, b, c) = a

p1(a, b, c) = t(a, a, . . . , a, b, c)

p2(a, b, c) = t(a, a, . . . , a, c, c)

p3(a, b, c) = t(a, a, . . . , a, b, c, c)

p4(a, b, c) = t(a, a, . . . , a, c, c, c)

. . . .

A useful notion for studying CD algebras is a Jónsson ideal.

Definition 2.6 Let A be a CD algebra with Jónsson chain of term operations

p0, p1, . . . , ps. A subuniverse B of A is a Jónsson ideal, if pi(b1, a, b2) ∈ B for ev-

ery a ∈ A, b1, b2 ∈ B and every i ≤ n.

Every one element subuniverse of a CD algebra is its Jónsson ideal. Therefore, if

A is an idempotent CD algebra, then every singleton is a Jónsson ideal of A.

3 Reduction to Binary Structures

In this section we show that to prove the main result it is enough to consider alge-

bras determined by binary relational structures, i.e., relational structures with at most

binary relations. This will make the presentation technically easier.

Proposition 3.1 Let A be a relational structure whose relations all have arity at most

k. Then there exists a binary relational structure Ā with universe Ā = Ak such that

Pol(Ā) = { f̄ : f ∈ Pol(A)},

where f̄ is defined (if f is n-ary) by

f̄
(

(a1
1, a1

2, . . . , a1
k), (a2

1, . . . , a2
k), . . . , (an

1, . . . , an
k )
)
=

(
f (a1

1, a2
1, . . . , an

1), f (a1
2, . . . , an

2), . . . , f (a1
k, . . . , an

k )
)
.

Proof First we replace every relation R in A with arity l < k by the k-ary relation

R × Ak−l. This clearly does not change the set of polymorphisms, therefore we may

assume that every relation in A has arity precisely k.

Next we introduce the relations in Ā. For every k-ary relation R (on A) in A we

include in Ā the unary relation R (on Ā = Ak), and for every pair 1 ≤ i, j ≤ k we

add a binary relation σi j defined by

(
(a1, . . . , ak), (b1, . . . , bk)

)
∈ σi j if and only if ai = b j .

It is straightforward to check that f̄ ∈ Pol(Ā) for every polymorphism f of A.
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To prove the converse inclusion, let h : (Ak)n → Ak be a polymorphism of Ā and

let h1, . . . , hk be its components, that is,

h
(

(a1
1, . . . , a1

k), (a2
1, . . . , a2

k), . . . , (an
1, . . . , an

k )
)
=

(

h1

(
(a1

1, . . . , a1
k), (a2

1, . . . , a2
k), . . . , . . . (an

1, . . . , an
k )
)
, . . . ,

hk

(
(a1

1, . . . , a1
k), (a2

1, . . . , a2
k), . . . , (an

1, . . . , an
k )
))

.

For any i, 1 ≤ i ≤ k, the relation σii is compatible with h. Therefore for any elements

a1
1, a1

2, . . . , a2
1, . . . an

k , b1
1, . . . , bn

k ∈ A such that, for all 1 ≤ l ≤ n, al
i = bl

i we have

hi

(
(a1

1, . . . , a1
k), (a2

1, . . . , a2
k), . . . , (an

1, . . . , an
k )
)
=

hi

(
(b1

1, . . . , b1
k), (b2

1, . . . , b2
k), . . . , (bn

1, . . . , bn
k )
)
.

In other words, hi((a1
1, . . . ), . . . ) depends only on a1

i , a2
i , . . . , an

i , and thus there exists

an n-ary operation fi on A such that

hi((a1
1, . . . , a1

k), (a2
1, . . . , a2

k), . . . , (an
1, . . . , an

k )) = fi(a1
i , a2

i , . . . , an
i ).

Now we use the relations σi j for i 6= j. For any a1
1, . . . , an

k we choose arbitrarily

b1
1, . . . , bn

k so that al
i = bl

j (for all 1 ≤ l ≤ n). As σi j is compatible with h, it follows

that fi(a1
i , . . . , an

i ) = f j(b1
j , . . . , bn

j ) = f j(a1
i , . . . , an

i ). Therefore, f1 = f2 = · · · = fk.

We have shown that h = f̄ for certain n-ary operation f on A. As each relation R

of A is compatible with h it follows that f is a polymorphism of A.

The proposition implies that Theorem 1.1 follows from the following theorem, to

be proved later.

Theorem 3.2 If A is a finite binary relational structure such that (A,Pol(A)) is a CD

algebra, then A has a near unanimity polymorphism.

Proof of Theorem 1.1 assuming Theorem 3.2 Let A be a finite, finitely related CD

algebra and let A be a relational structure with finitely many relations (say all of them

have arity at most k) such that Pol(A) = Clo(A). Let Ā be the relational struc-

ture from the previous proposition. Then Ā = (A,Pol(Ā)) is a CD algebra, since

p̄0, . . . , p̄s is a Jónsson chain of Ā whenever p0, . . . , ps is a Jónsson chain of A. By

Theorem 3.2, Ā has a near unanimity polymorphism h. Using Proposition 3.1 again

we have h = f̄ for some polymorphism f of A, and f is clearly a near unanimity

operation.

4 CSP Instance Associated with a Binary Relational Structure

Definition 4.1 An instance of the constraint satisfaction problem (CSP) is a triple

P = (V,A,C) with
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• V a nonempty, finite set of variables,
• A a nonempty, finite domain,
• C a finite set of constraints, where each constraint is a pair C = (x,R) with

– x a tuple of variables of length n, called the scope of C , and

– R an n-ary relation on A, called the constraint relation of C .

Let A be a finite idempotent algebra. An instance of the CSP over A, denoted by

CSP(A), is an instance such that all constraint relations are subpowers of A.

A solution to an instance P is a function f : V → A such that, for each constraint

C = (x,R) ∈ C, the tuple f (x) belongs to R.

Remark 4.2 The CSP is often parametrized by relational structures: an instance

whose constraint relations are in a relational structure A is called an instance of

CSP(A). It was proved in [15] that the computational complexity of deciding whether

an instance of CSP(A) has a solution is fully determined, at least when A has finitely

many relations, by the algebra A = (A,Pol(A)). Moreover, Bulatov, Jeavons, and

Krokhin proved in [8] that the complexity depends only on the variety generated

by A (i.e., the smallest variety containing A). These results are at the heart of the

connection between universal algebra and the CSP mentioned in the introduction.

For simplicity we will formulate our definitions and results for a special type of

CSP instance with a single binary constraint for each pair of variables, although most

of the material can be generalized.

Definition 4.3 An instance P = (V,A,C) of the CSP is called a simple binary in-

stance if

• C = {((x1, x2),RP
x1,x2

) : x1, x2 ∈ V},

• RP
x2,x1

= RP
x1,x2

−1
(= {(b, a) : (a, b) ∈ RP

x1,x2
}) for every x1, x2 ∈ V , and

• RP
x,x ⊆ {(a, a) : a ∈ A} for every x ∈ V .

We omit the superscript P if the instance is clear from the context.

A simple binary instance can be drawn as a |V |-partite graph in the following way.

Each part is a copy of A, one for each variable x ∈ V (the parts are now commonly

referred to as potatoes), and elements of Rx1,x2
are edges between the corresponding

copies of A. Solutions then correspond to cliques with V vertices (with one vertex in

each part).

To every binary relational structure A and natural number n we can associate, in

a natural way, a simple binary instance P(A, n) of CSP((A,Pol(A))) whose solutions

are precisely the n-ary polymorphisms of A.

Definition 4.4 Let A be a binary relational structure and let n ≥ 2 be a natural

number. The instance P(A, n) = (V,A,C) is defined by

• V = An

• RP
(a1,...,an),(b1,...,bn) = {(t(a1, . . . , an), t(b1, . . . , bn)) : t ∈ Poln(A)}

Note that P(A, n) is indeed an instance of CSP((A,Pol(A))).
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Proposition 4.5 For every binary relational structure A, the set of solutions of P(A, n)

is equal to Poln(A).

Proof It is clear that every n-ary polymorphism of A is a solution of P(A, n).

Let f be a solution to P(A, n). We have to show that every relation R of A is

preserved by f , but this is easy. If R is binary and n-tuples (a1, . . . , an), (b1, . . . , bn) ∈
An are such that (ai , bi) ∈ R for each 1 ≤ i ≤ n, then ( f (a1, . . . , an), f (b1, . . . , bn)) ∈
R(a1,...,an),(b1,...,bn) (as f is a solution), therefore

(
f (a1, . . . , an), f (b1, . . . , bn)

)
=

(
t(a1, . . . , an), t(b1, . . . , bn)

)

for some t ∈ Poln(A). Since t is a polymorphism, the right hand side is an element of

R. The proof for a unary relation R can be done, for instance, by using this reasoning

for the relation R × A.

We are interested in near unanimity polymorphisms, solutions f of P(A, n) satis-

fying the additional conditions f (a, a, . . . , a, b, a, a, . . . , a) = a (for any a, b ∈ A and

any position of b in the tuple). Therefore the following notion of a restriction of an

instance will be useful.

Definition 4.6 Let P = (V,A,C) be a simple binary instance of CSP and let J =

{ Jx : x ∈ V} be a family of subsets of A. By the restriction of P to J we mean the

simple binary instance P|J = (V,A,C ′) with

R
P|J
x1,x2 = RP

x1,x2
∩ ( Jx1

× Jx2
)

for every x1, x2 ∈ V .

To find an n-ary polymorphism of a binary relational structure A, we will con-

sider the instance P = P(A, n) and its restriction to the family J = { Jx : x ∈ V},

where J(a,a,...,a,b,a,a,...,a) = {a} (for every a, b ∈ A and every position of b in the tuple),

and J(a1,...,an) = A otherwise. With this choice, the set of solutions of P|J coincides

with the set of n-ary near unanimity polymorphisms of A. We show that this set is

nonempty in two steps. First we prove that P|J contains a subinstance that is “con-

sistent enough”, and then we apply a result from [3] saying that such instances always

have a solution.

In the next section we introduce the required consistency notions.

5 Consistency Notions, Proof of Theorem 3.2

5.1 (1, 2)-systems

Definition 5.1 Let P = (V,A,C) be a simple binary instance and let {Rx : x ∈ V}
be a family of nonempty subsets of A. We say that P is a (1, 2)-system with unary

projections {Rx : x ∈ V}, if, for any x1, x2 ∈ V , the projection of Rx1,x2
to the first

coordinate is equal to Rx1
. (It follows that the projection to the second coordinate is

equal to Rx2
.)

If, moreover, A is an algebra and P is an instance of CSP(A) we say that P is a

(1, 2)-system over A.
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Observe that if P is a (1, 2)-system over A, then each Rx is a subuniverse A (since

the set Rx is equal to the projection of Rx,x to the first coordinate). In this case we

denote the subalgebra of A with universe Rx by Rx.

Also note that the instance P(A, n) introduced in Section 4 is always a (1, 2)-system

with unary projections {Rx : x ∈ V}, where

R(a1,...,an) = {t(a1, . . . , an) : t ∈ Poln(A)}.

When a simple binary instance P is drawn as a multipartite graph (see the note

after Definition 4.3), then P is a (1, 2)-system if and only if, for every pair x1, x2 of

variables, every vertex a ∈ Rx1
is adjacent to at least one vertex from Rx2

and to no

vertex outside Rx2
(in particular, vertices outside the sets Rx are isolated).

Whether an instance has a restriction that is a (nonempty) (1, 2)-system can be

decided using trees.

Definition 5.2 Let P = (V,A,C) be a simple binary instance. A P-tree T is a

tree (i.e., an undirected connected graph without loops or cycles) whose vertices are

labeled by variables in V . The vertex set of T is denoted by vert(T) and the label of a

vertex v ∈ vert(T) by lbl(v).

A realization of a P-tree T in P is a mapping r : vert(T) → A such that

(r(v1), r(v2)) ∈ Rlbl(v1),lbl(v2) whenever v1, v2 are adjacent vertices of T. For a vertex v

of T we put

T[v] = {r(v) : r is a realization of T in P}.

If P is a (1, 2)-system with unary projections {Rx : x ∈ V}, then every P-tree

is clearly realizable. Moreover, for every P-tree T and every vertex v of T, we have

T[v] = Rlbl(v). The following proposition provides a converse to this observation.

Proposition 5.3 Let P = (V,A,C) be a simple binary instance over an algebra A. If

every P-tree is realizable in P then, for every x ∈ V , the set

Rx =

⋂

T is a P-tree
v∈vert(T)
lbl(v)=x

T[v]

is nonempty and P|{Rx :x∈V} is a (1, 2)-system over A.

Proof Since A is a finite set, each Rx can be obtained by intersecting the sets T[v]

for only finitely many P-trees T. Moreover, there exists a single tree Tx with vertex vx

labeled by x such that Rx = Tx[vx]. We take the disjoint union of the finite collection

of trees and identify the vertices v to a single vertex. It follows that Rx is nonempty

for every x ∈ V .

Next we prove that P|{Rx :x∈V} is a (1, 2)-system. It is enough to show that for

every x1, x2 ∈ V and every a1 ∈ Rx1
there exists a2 ∈ Rx2

such that (a1, a2) ∈ Rx1,x2
.

Consider the P-tree T constructed from Tx2
by adding a vertex v1 adjacent to vx2

with

label x1. This P-tree has a realization r such that r(v1) = a1 (since Rx1
⊆ T[v1]). Now

we can put a2 = r(vx2
), because

(
r(v1), r(v2)

)
∈ Rx1,x2

and r(v2) ∈ T[vx2
] ⊆ Tx2

[vx2
] = Rx2

.
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Finally, we have to show that P|{Rx :x∈V} is an instance of CSP(A). It is clearly

enough to prove that Rx (= Tx[vx]) is a subuniverse of A for every x ∈ V . But this

is a straightforward consequence of the definitions: for any P-tree T, any operation

t of A (say, k-ary) and any k-tuple of realizations r1, . . . , rk of T in P, the mapping r

defined by r(v) = t(r1(v), . . . , rk(v)) is a realization of T in P (as Rx1,x2
is a subuniverse

of A2 for every x1, x2 ∈ V ).

Remark 5.4 The family R = {Rx : x ∈ V} from the previous proposition is

actually the largest family such that P|R is a (1, 2)-system. Also observe that if some

P-tree is not realizable, then no such a family exists.

5.2 (2, 3)-systems

A (2, 3)-system is a (1, 2)-system such that every edge extends to a triangle:

Definition 5.5 A (1, 2)-system P = (V,A,C) is called a (2, 3)-system if for every

x1, x2, x3 ∈ V and every (a1, a2) ∈ Rx1,x2
there exists a3 ∈ A such that (a1, a3) ∈ Rx1,x3

and (a2, a3) ∈ Rx2,x3
.

Examples of (2, 3)-system include the instances P(A, n).

The following theorem is the main new ingredient for the proof of the Zádori

conjecture. It is proved in Section 6.

Theorem 5.6 Let P = (V,A,C) be a (2, 3)-system with unary projections {Rx : x ∈
V} over a CD algebra A and let J = { Jx : x ∈ V} be a family of (nonempty) subsets of

A such that each Jx is a Jónsson ideal of Rx. If all P-trees with at most 48|A|

vertices are

realizable in P|J, then all P-trees are realizable in P|J.

The core result of [3] states that every (2, 3)-system over a CD algebra has a solution

([3, Theorem 5.2]). We will need a refinement proved (although not explicitly stated)

in the same article.

Theorem 5.7 Let P = (V,A,C) be a (2, 3)-system with unary projections {Rx : x ∈
V} over a CD algebra A and let J = { Jx : x ∈ V} be a family of (nonempty) subsets

of A such that each Jx is a Jónsson ideal of Rx. If P|J is a (1, 2)-system, then P|J has a

solution.

Remark 5.8 The method used to prove [3, Theorem 5.2] was the following. If J

satisfies the assumptions (such families are called absorbing systems in [3]) and some

of the sets Jx have more than one element, then it is possible ([3, Lemma 6.9]) to find

a family J ′
= { J ′x : x ∈ V} such that J ′ satisfies the same conditions, J ′x ⊆ Jx and at

least one of these inclusions is proper. In this way we eventually get a solution to P|J.

More recently, the result that every (2, 3)-system over a CD algebra A has a so-

lution was generalized in two directions. First, a weaker consistency notion than

(2, 3)-system is enough to guarantee a solution. It suffices to assume that the in-

stance is a so-called Prague strategy (see [4]). A more “modern” proof of Theorem

5.7 would be to show that P|J is a Prague strategy (which is not hard).
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A weaker condition can also be put on the algebra. It is enough to assume that

A lies in a meet semi-distributive variety (actually, for an idempotent finite algebra

A, the statement “every (2, 3)-system (or Prague strategy) over A has a solution” is

equivalent to “A lies in a meet semi-distributive variety” [4]).

5.3 Proof of the Zádori Conjecture

We are ready to prove the main theorem. As discussed in Section 3, it is enough to

prove Theorem 3.2.

Theorem 3.2 If A is a finite binary relational structure such that (A,Pol(A)) is a CD

algebra, then A has a near unanimity polymorphism.

Proof Let p0, . . . , ps be a Jónsson chain of operations of the algebra (A,Pol(A)). Let

A be the algebra with universe A whose operations are idempotent polymorphisms of

A. Since pi ’s are idempotent, p0, . . . , ps is a Jónsson chain for the algebra A.

Let n be a natural number greater than 48|A|

and let P = P(A, n). It was observed

above that P is a (2, 3)-system over A with unary projections {Rx : x ∈ V}.

Let J = { Jx : x ∈ V}, where J(a,a,...,a,b,a,a,...,a) = {a} (for every a, b ∈ A and every

position of b in the tuple), and J(a1,...,an) = A otherwise. Since A is idempotent, each

Jx is a Jónsson ideal of Rx. As discussed in Section 4, the solutions to the instance

Q = P|J are n-ary near unanimity polymorphisms of A; therefore, it is enough to

show that Q has a solution.

First we observe that every P-tree T with at most n − 1 vertices is realizable in Q.

Indeed, the variables are n-tuples and T has less than n vertices; therefore, there exists

a natural number i (with 1 ≤ i ≤ n) such that b is not on the i-th position of any

tuple x = (a, a, . . . , a, b, a, a, . . . a), a 6= b which is a label of a vertex of T. Then the

mapping assigning ai to a vertex of label (a1, . . . , an) is a realization of T in Q.

By Theorem 5.6 every tree is realizable in Q.

Proposition 5.3 (applied to the simple binary instance Q) gives us a system J ′
=

{ J ′x : x ∈ V} such that Q|J ′ is a (1, 2)-system with unary projections J ′.

For every x ∈ V , J ′x is a Jónsson ideal of Rx. Indeed, in the proof of Proposition 5.3

we have shown that J ′x = TQ
x [vx] for certain tree Tx and its vertex x. If a1, a2 ∈ J ′x and

b ∈ Rx, then there exists a realization r1 (resp. r2) of Tx in Q such that r1(vx) = a1

(resp. r2(vx) = a2), and, since P is a (1, 2)-system, there exists a realization r3 of Tx

in P such that r3(vx) = b. Now we apply the Jónsson term operation pi to r1, r2, r3

(in the same way as in the last paragraph of the proof of Proposition 5.3), and we get

a realization r of Tx in P such that r(vx) = pi(a1, b, a2). From the assumption that

Jx ′ is a Jónsson ideal of Rx ′ (for every x ′ ∈ V ), it follows that r is a realization in Q.

Therefore, pi(a1, b, a2) ∈ TQ
x [vx] = J ′x .

Finally, P is a (2, 3)-system, J ′ is formed by Jónsson ideals of appropriate Rx’s and

P|J ′ (= Q|J ′) is a (1, 2)-system; thus, by Theorem 5.7, P|J ′ has a solution, which is

of course also a solution to P|J.
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6 Proof of Theorem 5.6

Theorem 5.6 Let P = (V,A,C) be a (2, 3)-system with unary projections {Rx : x ∈
V} over a CD algebra A and let J = { Jx : x ∈ V} be a family of subsets of A such that

each Jx is a Jónsson ideal of Rx. If all P-trees with at most 48|A|

vertices are realizable in

P|J, then all P-trees are realizable in P|J.

We argue by contradiction. We take a tree that is not realizable in P|J, and we

eventually obtain a configuration (a tuple (B, L,U , E, F, a, b)) that will contradict the

following auxiliary result. In this lemma we look at the binary relations E, F on B as

digraphs.

Lemma 6.1 Let B be a finite CD algebra and let U , L ⊆ B, E, F ≤ B2, a, b ∈ B be

such that

• E is a Jónsson ideal of F;
• U is disjoint from L;
• a ∈ U , b ∈ L, (a, b) ∈ F;
• the digraph E ∩U 2 has no sources (that is, for all c ∈ U there exists d ∈ U such that

(d, c) ∈ E);
• the digraph E ∩ L2 has no sinks (that is, for all c ∈ L there exists d ∈ L such that

(c, d) ∈ E).

Then there exist c ∈ U and d ∈ B \U such that (c, d) ∈ E.

Proof We take a counterexample to the lemma and fix a Jónsson chain p0, p1, . . . , ps

of term operations of B. We may assume that B is idempotent, otherwise we can

replace B by the algebra (B, {p0, p1, . . . , ps}).

Let us quickly sketch the proof on a smallest choice that does not satisfy the con-

clusion:

B = {1, 2}, U = {1}, L = {2}, E = {(1, 1), (2, 2)},

F = {(1, 1), (2, 2), (1, 2)}, a = 1, b = 2.

The first step of the proof is to transform our counterexample into a form closer to

this simplest one. Next we prove that E must at least contain the edge (2, 1), and

finally we show that in this case we would have a directed path from 1 to 2 in the

digraph E.

Since E ∩ U 2 has no sources, we can find a sequence a = a1, a2, . . . of elements

in U such that (ai+1, ai) ∈ E for all i. As U is finite, there are positive numbers k and

l such that ak = ak+l. Similarly, we find a sequence b = b1, b2, . . . of elements in L

such that (bi , bi+1) ∈ E and positive numbers k ′ and l ′ such that bk ′ = bk ′+l ′ . Let m

be a natural number greater than or equal to k + k ′ − 1 and divisible by l and l ′, let

E ′
= E ◦ E ◦ · · · ◦ E

︸ ︷︷ ︸

m-times

, F ′
= F ◦ F ◦ · · · ◦ F

︸ ︷︷ ︸

m-times

, U ′
= U , B ′

= B, a ′
= ak,

where ◦ denotes the composition of relations defined by

S ◦ S ′
= {(s, s ′ ′) : ∃s ′ ∈ B (s, s ′) ∈ S, (s ′, s ′ ′) ∈ S ′}
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and let b ′ ∈ {bk ′ , bk ′+1, . . . , bk ′+l ′} be an element such that there exists a directed

path in the digraph F from a ′ to b ′ of length m (we can take the element of appro-

priate distance from a ′ on the path a ′
= ak, ak−1, . . . , a1, b1, b2, . . . , bk ′ , bk ′+1, . . . ,

bk ′+l ′ = bk ′ , bk ′+1, . . . ).

These new sets B ′, E ′, F ′,U ′ and elements a ′, b ′ have the following properties.

• B ′ is a CD algebra, E ′ ≤ F ′ ≤ B ′2, E ′ is a Jónsson ideal of F ′. This is straightfor-

ward. (That E ′, F ′ are subalgebras follows from a more general fact that any relation

positively primitively defined from subpowers is a subpower, but it is easy to check

the claims directly.)

• a ′ ∈ U ′, b ′ ∈ B ′ \ U ′, (a ′, a ′) ∈ E ′, (b ′, b ′) ∈ E ′, (a ′, b ′) ∈ F ′. We have

chosen b ′ so that there exists a directed path in F of length m between a ′ and b ′, thus

(a ′, b ′) ∈ F ′. Since a ′ (resp. b ′) are in a closed path of length l (resp. l ′) and this

length divides m, it follows that (a ′, a ′), (b ′, b ′) ∈ E ′.

• There do not exist c ∈ U ′, d ∈ B ′ \ U ′ such that (c, d) ∈ E ′. Otherwise there is a

path in E from c to d in E, which is impossible as there is no edge from U ′ to B ′ \U ′.

We will show that it is impossible to find B ′,U ′, E ′, F ′, a ′, b ′ satisfying the con-

ditions above. For contradiction, assume that B ′,U ′, E ′, F ′, a ′, b ′ satisfy these three

conditions and |B ′| is the smallest possible.

The minimality assumption has some useful consequences.

• (c, c) ∈ E ′ for any c ∈ B ′. Otherwise the following choice would form a smaller

counterexample: B ′ ′
= {c : (c, c) ∈ E ′}, U ′ ′

= U ′ ∩ B ′ ′, E ′ ′
= E ′ ∩ B ′ ′2, F ′ ′

=

F ′ ∩ B ′ ′2, a ′ ′
= a ′, b ′ ′

= b ′. That B ′ ′ is a subuniverse of B ′ is straightforward to

check (and it again follows from the general fact about positive primitive definitions

of subpowers).

• (a ′, c) ∈ F ′ for any c ∈ B ′. Otherwise we could take B ′ ′
= {c : (a ′, c) ∈ F ′} and

restrict all the sets to B ′ ′ as above, i.e., U ′ ′
= U ′∩B ′ ′, E ′ ′

= E ′∩B ′ ′2, F ′ ′
= F ′∩B ′ ′2,

a ′ ′
= a ′, b ′ ′

= b ′. Note that we need idempotency to show that B ′ ′ is a subuniverse

of B ′ (B ′ ′ is defined using F ′ and the subuniverse {a ′} of B ′).

• (c, d) ∈ F ′ for any c ∈ U ′, d ∈ B ′ \U ′. Otherwise we take B ′ ′
= {e : (e, d) ∈ F ′},

a ′ ′
= a ′, b ′ ′

= d and, again, restrict U ′, E ′, F ′ to B ′ ′. From the first item it follows

that (b ′ ′, b ′ ′) ∈ E ′ ′, and the second item implies that (a ′ ′, b ′ ′) ∈ F ′ ′.

Now we consider the sequence

a ′
= p1(a ′, a ′, b ′), p1(a ′, b ′, b ′) = p2(a ′, b ′, b ′), p2(a ′, a ′, b ′)

= p3(a ′a ′, b ′), . . . , ps ′(a ′, b ′, b ′) = b ′,

where s ′ = s if s is odd and s ′ = s − 1 if s is even.

As (a ′, a ′), (b ′, b ′) ∈ E ′, (a ′, b ′) ∈ F ′, and E ′ is a Jónsson ideal of F ′, it follows

that the first pair of elements of this sequence is in E ′. Similarly, the second pair is in

E ′−1, the third pair in E ′, and so on. Thus we have a “fence” in E ′ from a ′ to b ′, and,

since we are assuming that there are no c ∈ U ′, d ∈ B ′ \ U ′ such that (c, d) ∈ E ′,

there must exist elements c ∈ U ′ and d ∈ B ′ \U ′ such that (d, c) ∈ E ′.
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We have (c, c), (d, d), (d, c) ∈ E ′ and (c, d) ∈ F ′. It follows that

c = p1(c, c, d), p1(c, d, d) = p2(c, d, d), p2(c, c, d) = p3(c, c, d), . . . , d

is a sequence where all the pairs are in E ′. This contradicts the assumption that there

is no element in U ′ that is E ′-related to an element outside U ′.

For the remainder of this section we fix P, Rx’s, and J satisfying the hypotheses of

Theorem 5.6, and we assume that there exists a tree that is not realizable in P|J.

To obtain a configuration contradicting the previous lemma we will first trans-

form our non-realizable tree to a tree whose every vertex has degree 1 or 3 and that

has no realization in P with leaves realized in P|J. We require the following definition.

Definition 6.2 Let T be a P-tree and let S be a subset of vertices of T. A realization

r of T in P is called an S-realization if r(v) ∈ Jlbl(v) for every v ∈ S.

For a vertex v of T we define

TS[v] = {r(v) : r is an S-realization of T in P}

The set S from the definition will often be the set of all leaves of T, which we

denote by leaves(T).

Lemma 6.3 There exists a P-tree T such that

• the degree of any vertex of T is 1 or 3;
• T has no leaves(T)-realization;
• T has a S-realization for every proper subset S of leaves(T).

Proof We start with a P-tree T that is not realizable in P|J. To every inner vertex

(i.e., a vertex of degree greater than one) we add an adjacent vertex with the same

label. Since Rx,x is a subset of the equality relation, any realization maps the new

leaf to the same element of A as the inner vertex. It follows that the new tree is not

leaves(T)-realizable.

In a similar way we can modify the tree so that all the vertices have degree at most

3. If a vertex v has degree at least 4, we can split it into two adjacent vertices v1, v2

with the same label in such a way that v1 is adjacent to 2 of the original neighbors of v

and v2 is adjacent to the remaining neighbors. Clearly, v1 and v2 have smaller degree

than v; therefore, we can repeat this splitting procedure until we obtain a tree whose

every vertex has degree at most 3 and that is not leaves(T)-realizable.

Let T be such a tree with minimal number of vertices.

Now we show that T has no vertex of degree 2. Suppose otherwise, that is, there

is a vertex v with precisely two neighbors v1, v2. The tree T ′ obtained by remov-

ing the vertex v and adding the edge v1 − v2 is smaller than T, therefore T ′ has a

leaves(T ′)-realization r ′. As (r ′(v1), r ′(v2)) ∈ Rlbl(v1),lbl(v2) and P is a (2, 3)-system,

there exists a ∈ A such that (r ′(v1), a) ∈ Rlbl(v1),lbl(v) and (r ′(v2), a) ∈ Rlbl(v2),lbl(v)

(This is the only place in this section where we use the assumption that P is a (2, 3)-

system. For the rest it would suffice to assume that P is a (1, 2)-system.) It follows

that the extension r of the mapping r ′ by r(v) = a is a leaves(T)-realization of T, a

contradiction.
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It remains to show that T is S-realizable for every proper subset S of leaves(T), but

this is easy. If we remove a leaf outside S, the remaining tree is S-realizable (from the

minimality of T), and this realization can be extended to an S-realization of T as P is

a (1, 2)-system.

For the remainder of the proof we fix a P-tree T with the properties stated in the

previous lemma.

Lemma 6.4 T contains a path of length at least 2 · 8|A|.

Proof It can be easily computed that a tree, which has all vertices of degree at most

3 and which does not contain any path with more than k vertices, has size at most 2k

(this is a crude estimate, one computes that the most accurate estimate is 3 · 2k/2 − 2

for even k and 2(k+3)/2 − 2 for odd k > 1).

Since T has more than 48|A|

vertices by our assumption (smaller P-trees are even

realizable in P|J), the claim follows.

We fix a subpath v1, v2, . . . , vm of T, where m ≥ 2 · 8|A|. We define subsets Si of

leaves(T), i = 1, 2, . . . ,m, as follows. A leaf of T is in Si if and only if the shortest

path from this leaf to vi contains neither vi−1 nor vi+1. (For v1 only the vertex v2 is

considered. If v1 is a leaf, then S1 = {v1}. Similarly for vm.) In other words, we

straighten the line v1, . . . , vm and shake the tree. Then Si is the set of leaves below vi .

The next lemma will enable us to find the sought after configuration.

Lemma 6.5 There exist natural numbers k, l such that

• 1 ≤ k, l ≤ m, k ≤ l + 2;
• TSk

[vk] = TSl
[vl];

• TS1∪S2∪···∪Sk
[vk] = TS1∪S2∪...Sl

[vl] 6= ∅;
• TSk∪Sk+1∪···∪Sm

[vk] = TSl∪Sl+1∪···∪Sm
[vl] 6= ∅.

Proof There is at least m/2 − 1 ≥ 8|A| − 1 even numbers less than m. For each such

number i we consider the triple

(
TSi

[vi],TS1∪···∪Si
[vi],TSi∪···∪Sm

[vi]
)

of subsets of A (note that these subsets are nonempty by the third item of Lemma

6.3). There are less than (2|A| − 1)3 < 8|A| − 2 possible triples, therefore, by the

pigeonhole principle, there exist distinct k, l with the same associated triples and the

lemma follows.

Again, the estimates we used are very rough. For instance, the second and third

sets in the triple are disjoint subsets of the first subset. This significantly reduces the

number of possibilities, etc.

Let

Q1 = S1 ∪ S2 ∪ · · · ∪ Sk, Q2 = Sk ∪ · · · ∪ Sl, Q3 = Sl ∪ · · · ∪ Sm.
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Now we define

B = TSk
[vk] = TSl

[vl],

L = TQ2∪Q3
[vk] = TQ3

[vl],

U = TQ1
[vk] = TQ1∪Q2

[vl],

E = {(r(vk), r(vl)) : r is a Q2-realization of T},

F = {(r(vk), r(vl)) : r is a (Sk ∪ Sl)-realization of T},

(a, b) = (r(vk), r(vl)) for a chosen (Q1 ∪ Q3)-realization r of T.

Since k ≤ l − 2 and Sk+1 6= ∅ (by the first item of Lemma 6.3), Q1 ∪ Q3 is a proper

subset of leaves(T); therefore, T has a (Q1 ∪ Q3)-realization by the third item of

Lemma 6.3, and the definition of a and b makes sense. This choice satisfies all the

assumptions of Lemma 6.1:

• B is a subuniverse of A. It follows directly from the definitions (see the last para-

graph of the proof of Proposition 5.3). Let B be the subalgebra of A with universe

B.
• E, F ≤ B2, E is a Jónsson ideal of F. This is also straightforward. That E is a Jónsson

ideal of F follows from the assumption that Jx is a Jónsson ideal of Rx for every

x ∈ Q2.
• U and L are disjoint. Suppose c ∈ U ∩ L. Since U = TQ1

[vk], there exists a

Q1-realization r1 of T such that r1(vk) = c. Similarly, since L = TQ2∪Q3
[vk], there

exists a (Q2 ∪ Q3)-realization r2 of T such that r2(vk) = c. The realizations r1 and

r2 can be joined in the following way. We put r(v) = r1(v) for vertices v whose

shortest path to vk does not contain vk+1, and r(v) = r2(v) for the other vertices.

Now r is a (Q1 ∪Q2 ∪Q3)-realization of T. But Q1 ∪Q2 ∪Q3 is the set of all leaves

of T, a contradiction (see the second item of Lemma 6.3).
• a ∈ U , b ∈ L, (a, b) ∈ F. The element a is defined as r(vk) for a (Q1 ∪ Q3)-reali-

zation r of T. Since Q1 ⊆ Q1 ∪Q3, we have TQ1∪Q3
[vk] ⊆ TQ1

[vk] = U ; therefore,

a = r(vk) ∈ U . Similarly, b ∈ L follows from b = r(vl), Q3 ⊆ Q1 ∪ Q3 and

L = TQ3
[vl], and (a, b) ∈ F follows from Sk ∪ Sl ⊆ Q1 ∪ Q3.

• E∩U 2 has no sources, E∩L2 has no sinks. Let c be an arbitrary element of U . Since

U = TQ1∪Q2
[vl], there exists a (Q1 ∪Q2)-realization r of T such that r(vl) = c. But

r is also a Q2-realization of T, hence (r(vk), r(vl)) ∈ E. The element d = r(vk) lies

in TQ1∪Q2
[vk] ⊆ TQ1

[vk] = U . We can analogically show that E ∩ L2 has no sinks:

any c ∈ L is equal to r(vk) for a (Q2 ∪Q3)-realization r of T, and r(vl) ∈ TQ3
[vl] =

L.
• There do not exist c ∈ U and d ∈ B \ U such that (c, d) ∈ E. If c ∈ U = TQ1

[vk]

and (c, d) ∈ E, then there exists a Q1-realization r1 of T and a Q2-realization r2

of T such that r1(vk) = c = r2(vk) and r2(vl) = d. When we join r1 and r2 in the

same way as in the proof that U and L are disjoint, we get a (Q1 ∪ Q2)-realization

r of T such that r(vl) = d. But U = TQ1∪Q2
[vl], thus d ∈ U .

The last property contradicts Lemma 6.1, and this concludes the proof of Theo-

rem 5.6.
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7 Conclusion

7.1 Decidability of Near Unanimity for Relational Structures

As a corollary of the main theorem we obtain an affirmative answer to the near una-

nimity problem for relations.

Corollary 7.1 It is decidable whether a finite relational structure with finitely many

relations has a near unanimity polymorphism.

Proof It is enough to decide whether the given relational structure has a Jónsson

chain of polymorphisms. This can be decided as follows. We first compute the set

P of all ternary idempotent polymorphisms satisfying p(a, b, a) = a and then com-

pute the graph whose vertices are idempotent binary operations having f and g the

vertices of an edge if and only if there exist p1, p2 ∈ P such that for all a, b,

f (a, b) = p1(a, a, b), p1(a, b, b) = p2(a, b, b) and g(a, b) = p2(a, a, b).

A Jónsson chain exists if and only if π1 is connected to π2, where πi is the idempotent

binary operation that is the projection operation on the i-th coordinate.

It was shown in [22] that the corresponding decision problem for algebras (that is,

does a given finite algebra with finitely many operations have a near unanimity term

operation?) is decidable. This was a surprising development after undecidability

results about closely related questions [21].

The naive algorithm described in the proof of Corollary 7.1 runs in exponential

time.

Open Problem 7.2 Determine the computational complexity of deciding whether a

finite relational structure with finitely many relations has a near unanimity polymor-

phism.

There exist polynomial time algorithms for finite posets [17] and for finite reflex-

ive undirected graphs [18].

The complexity of the same problem for algebras is also unknown. There exists

a polynomial time algorithm for deciding whether a finite idempotent algebra (with

finitely many operations) is a CD algebra, and the same problem without assuming

idempotency is exponential time complete [12].

7.2 Arities

Our proof gives some upper bound on the minimal arity of a near unanimity poly-

morphism; namely, a binary relational structure A either has a near unanimity poly-

morphism of arity 48|A|

+ 1 or has none. From the reduction presented in Section 3 it

follows that for a relational structure whose relations have maximum arity k an upper

bound is 48|A|k

+1. We have used quite rough estimates in a couple of places; however,

this proof most likely cannot provide a better upper bound than doubly exponential.

For finite algebras with finitely many operations the upper bound also exists, but

is tremendously large and is not even computed in [22].

Therefore we have the following open problem.
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Open Problem 7.3 Give a better upper bound for the minimal arity of a near una-

nimity polymorphism (resp. term operation) for relational structures with finitely many

relations (resp. finite algebras).

7.3 Valeriote’s Conjecture

The most important open problem related to this work is the Valeriote conjecture

(also known as the Edinburgh conjecture [7]).

Conjecture 7.4 Every finite, finitely related algebra in a congruence modular variety

has few subpowers.

Congruence modularity is a widely studied generalization of congruence distribu-

tivity. An algebra A has few subpowers if the logarithm of the number of subalgebras

of An is bounded by a polynomial in n. This property was defined and its importance

in the CSP demonstrated in [5,14]. Examples of algebras with few supbowers include

algebras with a Maltsev operation (e.g., groups, rings, modules) and algebras with a

near unanimity operation. It is known [5, 20] that every finite CD algebra with few

subpowers has a near unanimity term. Therefore, a positive solution to the Valeri-

ote conjecture would imply the main result of this paper. It would also have deep

consequences in the complexity of constraints.

A converse to the conjecture generalizing the Baker–Pixley result [2] was proved

recently. E. Aichinger, P. Mayr, and R. McKenzie [1] have shown that every finite

algebra with few subpowers is finitely related.
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