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Given a probability space (X, SF, /i) and a a-algebra A c 3>, arguably the most
powerful tool in gaining information about an ^-measurable function / from restricted
knowledge of ^-measurability is that of the conditional expectation E(f \ si); written E^f
throughout the remainder of this note. Two properties of conditional expectation that
may be exploited to gain information, but which also limit conditional expectation's use
are the following.

(i) If v is a probability measure mutually absolutely continuous with respect to /x,
then the conditional expectation described in terms of v will not in general be the same as
the one developed in terms of /i.

(ii) E^f derived its uses from the idea that it represents / on the average with respect
to si. Specifically, for each A e si, JAfdfx = JA E^fd/x. This means that except when / i s
j^-measurable, E**f and / are never related by a pointwise inequality, and conditional
expectation is of limited value in making pointwise estimates to the value of a function. In
this note we shall examine the concept of measurable majorants of nonnegative L1

functions. This concept has a source in the study of subinvariant functions for Markov
operators. Also, recently, C. Akermann and N. Weaver have explored a similar behavior
for nested von Neumann algebras. Before beginning our analysis of majorants we present
a statement of the results from these diverse fields relevant to the present discussion. An
excellent source for the study of Markov operators is [4]. The new development by
Akermann and Weaver is found in [1].

PROPOSITION [1]. Let McMbe von Neumann algebras, let Q:M^>Jf be a faithful
conditional expectation, and let x E M be positive. Then the sequence <J>(jc")1/n converges in
the strong operator topology to x+, a minimal majorant of x in Jf.

A result similar to the preceding one is presented below (Lemma 2.1). Our emphasis
is in the L1 setting, and the operator algebra point of view will not be stressed in this
article. The measure theoretic setting of Markov operators is directly related to this
investigation.

Let (X, f , / i ) b e a complete probability space. Given a linear transformation Q on
Ll(X,&,(i) which is a Markov operator (i.e. positive: / ^ 0 a.e. ^>Qf>0 a.e. and
contractive: /A-1(2/1 dfi ^ Jx\f\ dfi for all / e L1), and given a measurable function g for
which 0<g<l a.e., there is a function go which is minimal with respect to the properties

(i) g ^ g o ^ l a . e . ,
(ii) Q*go — go a-e- (subinvariance for Q*)

(see [4, p. 19]). Now suppose that si is a sub-o--algebra of $• and let E1" denote the
conditional expectation operator with respect to si on Ll(X, 3F, fi). Then E*4 is a rather
basic Markov operator, and its adjoint is its restriction to L", which we shall also denote
by E*1. But EM has no subinvariant nonegative functions (in L1 or L°°) which are not
invariant, i.e., if / > 0 and E^f<feL\ then E*f=f. Also,/ is si measurable if and
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only if Eslf=f. Thus the subinvariance result mentioned above takes on the following
form for conditional expectations.

PROPOSITION. Let g e L°Z(X, 2F). Then there is an si measurable function g** such that
g^ is minimal with respect to the property g < g ^ < HglU.

In this note we shall examine the properties of this measurable majorant. We shall
actually examine the existence and properties of this majorant for nonnegative L1

functions. Unlike the L°° case, the majorant need not be finite a.e. This analysis will then
be applied to the question of existence of nonegative generators for the kernel of a
conditional expectation, and to the classification of certain operator order ideals.

1. Notation and terminology. All functions and sets encountered are by assumption
or construction $F measurable. When a function's existence is determined by an argument
outside the usual measure-theoretic countable limit family of constructions, care will be
taken to ascertain its measurability;

All function and set statements are to be interpreted as holding up to a /x-null set. In
particular, statements such as "5 = T" should be understood as "the symmetric difference
of S and T has measure 0".

{/ ̂  a} is slang for {x eX : f{x) ^ a}, etc.
Lp+ refers to those LP functions which are nonnegative.
For a cr-algebra £f, y+ is the collection of all sets in y of positive measure.

\ \
For a given measurable function g we choose a measurable set suppt. g so that g ¥* 0

a.e. on suppt. g and g = 0 a.e. off suppt. g. At no time in this article will supports be
employed for more than a countable number of functions simultaneously.

2. Some results in this section are more or less well known results about conditional
expectations. In some cases the proofs are included because the results are not routinely
stated in many reference texts on conditional expectation. The statements of these results
will be preceded by the symbol # .

2.1. LEMMA. Let f e L\.(&). Then {E*{f"))Vn is increasing a.e.

Proof. Apply the conditional form of Holder's inequality with p = (n + l)/n and

2.2. DEFINITION. L e t / e L V ^ ) . Then

2.3. REMARKS. Note that /Jrf may be infinite on sets of positive measure. Indeed, any
of the conditional moments E^f for n ̂  2 may be infinite on sets of positive measure. In
any case, / ^ is a pointwise limit of j^-measurable functions and so it is si measurable as
well.

In the special case that M is the trivial o--algebra consisting of sets of measure 0 or 1
only E^g = Jxgdfi. In this case si measurable functions are constant, and Lemma 2.1
and Definition 2.2 combine to yield the classic statement.
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For each measurable function f, \\f\\p is an increasing function of p, and lim | | / | | p =

At this point it would be more accurate to use the notation /•*'•'* since the
construction depends on conditional expectation, which in turn depends not just on the
o--algebra, but on the measure as well. We shall see however, that the definition yields the
same function for all equivalent measures.

Note that for a nonnegative function / , both / and EMf have precisely the same
integral over X. It follows that unless/is si measurable, both {/>£^/} and {f^E^f}
have positive measure. The next result shows that f^^f The proof is essentially a
conditional form of the proof of Chebychev's inequality.

2.4. PROPOSITION. Let f G L\.(3F). Then f<fM, and if g is si measurable with f^g,
thenf^^g.

Proof. Let e > 0 and let A = {/•*< »}. Then A e si. Let T = {f>f* + e}. Then
TcA and

Now for any nonnegative function g, glln—> Xsuppt.g a-e-> s o t n a t

f*

Thus fi (suppt. E^XT) = 0. and consequently %T = 0; that is fi(T) = 0. But e was chosen
arbitrarily, and so / ^f*.

Now suppose that g is si measurable and / ^ g. Then for each n > 1, / " < g", and so,
since E^g" = g", we obtain

{E^ff" <{Es>gn)Vn = g.

It then follows from the definition of /•* that /•* < g. •

2.5. COROLLARY. LeJ v be a finite measure equivalent to fi. Then for every
nonnegative function f, f^'y = /'s/''t.

Proof. By the equivalence of the measures, "a.e." is unambiguous. Since / </iMf>/i,
we have/'a'tV^/J*t't a.e., and conversely. D

In light of 2.4 and 2.5 we shall refer to /•*' as the si majorant of /.

EXAMPLE 1. Consider / = XF for F e @. Then

that is

\XF)
 =

Thus the support of the conditional probability, E^XF, of F is the smallest si set
containing F.
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EXAMPLE 2. Suppose that si is generated by a finite or countable partition {A} of X.
Then

and so
1/rt I r \ 1/n

) d )( 1 \ 1/rt / r \ l/n

- — . f"dn) .XAi.
(i(Aj)/ \JAi I

Consequently,
/ =.

EXAMPLE 3. Let dfi = \ dx on X = [-1,1], ^ the Lebesgue sets in X, and let si be
the a-algebra generated by the intervals (-a, a) for a e (0,1). Then

For any positive numbers s and t, (s" + tny'"-*max{s,t}. (Note that a von Neumann
algebra form of this innocent fact plays a central role in [1].) It follows that

/*(*) = max{/(jr),/(-*)}.

2.6. DEFINITION. For / > 0 , the ,s# minorant off is defined as

where the obvious interpretation is to be used when the denominator is 0 or °°.
One may verify in a routine manner that f^^f and, if g is a nonnegative J^

measurable function with g^f, then g^f^. Also, since {/'a/<00}e J^, it is easily seen
that

/ - = ( / ' - ( / * - / ) " ) • **-<->•

The properties of .stf majorants listed in the following proposition may all be proved by
using the minimality of/^ among all si measurable g s / a . e .

2.7. PROPOSITION. Let f and g be nonnegative 3* measurable functions and let a and b
be nonnegative si measurable functions. Then the following results hold.

( i ) ( / + g ) r f ^ / r f + grf-
(ii) (f.gy^f.g*-
(iii) (a.f + b)si = a.fst + b.
(iv) / / S3 is a a-algebra with $&<zsi, then f* < /* .
As noted earlier, /x may be replaced by any equivalent finite measure without

affecting /Jrf. We shall exploit this fact to study and apply the concept of jtf-majorant. For
convenience, define %{\i) as the set of all probability measures mutually absolutely
continuous with \x.. For v E <£(/X), E^f is defined to be the conditional expectation with
respect to si and v. The symbol E^ will be reserved for the case where the measure used
i s jLt.

Suppose that v is any finite measure with V « / A , and let / > 0 . Then since
/ £/j r f e si, the following is true.
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2.8. LEMMA. For every finite v«n, E^f^f-*.

We shall make repeated use of the following change of measure formula for
conditional expectations.

2.9. PROPOSITION. Let v«fi. Then

rpstf "•»* v

£4 —

Proof. We shall make use of the following facts,
(i) suppt. u c suppt. E^u, for every nonnegative function u;
(ii) suppt. E^{u. f) <=. suppt. E^u, for any nonnegative u and /

dv
Let u = — and let / e Lx(v). Then for A e si, we have

dfi

fdv=f fdv
JA

=\ E«(u.f)dn

= (£^(M . / )) . *suppt. E^ - dv
JA U

= I (E*(u.f)).Xsum.E«u-E?(-)dv.

As the first and last integrands in this chain are j^-measurable,

Elf = ( £ - (« . / ) ) . zSUpp«. E"U • £ ? Q ) .

Temporarily letting/ = 1, we see that

E

Using this in the penultimate displayed equation leads to the desired conclusion. •

As a special case, note that if v is a finite measure equivalent to /u,, then

W
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and of course E^( .V /* j = 1 a.e. On the other hand, if E*u = 1 a.e. for u > 0, then

for dv = udfL, E^f = £^(u. / ) .

—mr\"
increasing a.e. and

Proof. By the conditional expectation version of the Cauchy-Schwarz inequality, we
have

(£-a?/n+ i)2=(^

pslrn + \ psirn+2
n e n c e r-^fn — rrffn+11 which establishes the stated monotonicity. Let F be the

E f E f
£^yn + l

pointwise limit of . n . Then F is si -measurable and (putting n = 0) F ^ E^f. If, for
E f

some n > 0 we have F" > E^f, then

This shows that F > lim (Estfn)Un=fji. But for dvn = j;dn,

/

and consequently /•* = lim ^ . D
£ /

Given a set of ̂ -measurable functions y we will say that the ^-measurable function
/ is the essential supremum of if; f = ess. sup if, if for every geif,f>g a.e. and if h is
any j^-measurable function dominating all the members of if, then h &/ a.e. We then
may rephrase the equality established in Lemma 2.10 as follows.

2.11. LEMMA. Let f e L\(X,&,IL). Then

/ ^ = ess.sup{£f/:ve^( / i )}.

Proof. Using the vn's from Lemma 2.10, we see that the essential supremum is
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greater than or equal to f* a.e. But we have also seen that f* 2= Eff, for every v in
D

3. Two applications. Conditional expectations are particularly pleasant projections
on an L1 space in that they are positive, contractive, and their ranges are I) subspaces of
the original space. This point of view was used and developed extensively, notably in [2],
[6] and [3]. However, the complementary projection / - E* is only positive under rather
restrictive conditions, and its range is far from being an L1 space. Indeed the kernel of E^
generally possesses few of the algebraic amenities of an L1 space. If / E kerE^ a n d / s O
then / = 0; products of members of the kernel bear no special relationship to the kernel;
etc. We will show now that the behavior of majorants can give at least one useful bit of
information about these kernels. First note that ker E* = {f - E*f :f e L\&)}. Of
course, there is nothing unique about representing a member of the kernel of E31 as
/ - E^f. Indeed, if g is an j^-measurable function for which E^g exists and is finite a.e.,
then / - E"f = (/ + g) - E'if + g). But this is as bad as it gets. If / - E*/ = h- E*h,
then f - h =.E (f - h), which is j^-measurable. We ask whether, for a given real valued
function k e ker E^, there is a nonnegative function p such that k = p — E^p.

3.1. PROPOSITION. Let h be a real-valued member of kerfs1**. Then there exists a
nonnegative function p for which h = p - E^p if and only if(h~)^< °° a.e. In this case the
function po = h + (h~)^ is the minimal nonnegative function for which h = p0 — E^p0.

Proof. Suppose that h e k e r £ ^ , / > 0 , £^/<oo, and h=f-E*f. We may then
write f = h +a, for some j^-measurable function a. Since E^h = 0 a.e., a = E*f; and
since / > 0 , it follows that E**f>0, hence a^O. But h+a=f^0 so that a>-h and
a >0; i.e., a > h~. Thus (/i")rf < a < ». This also establishes the minimality of h + (h~y.

Conversely, suppose that h s k e r £ ^ and {h~)* < °° a.e. Then

and

(h + (h-)s*)-E*(h + (h-)*') = h. •

The preceding discussion was concerned with finiteness (a.e.) of majorants. The
following material is concerned with having majorants in L\

For this illustration of the role of majorants, consider

This space was studied in [5]. Its properties relevant to the present discussion are listed
below.

3.2. PROPOSITION. ([5]).
(i) L°{9)^%^L\&).
(ii) / e %if and only if E^ \f\ G LX. Also \\E^ \f\ \\a defines a Banach space norm on

(iii) Xis an order ideal: fe Stand \g\ < |/ | =>g E X.
(iv) (Extreme case.) JC= L ' (^) if and only d is generated by a finite partition of X.
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(v) (Extreme case.) 3(=U'(S') if and only if there is a constant C such that
|/ | < C. £ * |/|, for every f e L\9).

We will now examine this last condition with respect to $£ majorants. First note that
for each order ideal such as 3if, there is a dual order ideal X' defined as 3T = {/:/. 3ifc
L'(^)}. It follows from the general theory of order ideals that JC = LX(SF) if and only if
T = L~(9).

3.3. PROPOSITION. % = {/: | / |* e L1}. In particular T = L\9) if and only if | / |* e
V(sf), for every feL\9).

Proof. For each / e 3if\ let K'f: $T—» V be the linear transformation of multiplication
by /. Then a routine use of the closed graph theorem shows that each K'f is continuous
(with respect to the norm on 3if mentioned above). Suppose that \f\* e L1. Then, for each

1
= f

so that / E T.
Conversely, suppose that / e X', let c = \\K'f\\, and let A = suppt. E*11/|. Then, via

Lemma 2.10 and the monotone convergence theorem,

I
But

so that |/|rf e L1. D

As a specific example of sd c ^ where T = L\ note that if .E^/CO =

for / e ^ ( [ - 1 , 1 ] , ctx/2), then |/| < 2. £ ^ |/|. It is worth noting that whereas the extreme
condition "3if=L1(^)" allows an essentially measure independent characterization ",s# is
generated by a finite partition of X", the same cannot be said for the opposite extreme.
Indeed, using the example immediately above, let dv = (1 -x)(dx/2). Then v G
and

& J X ) ~
(1-*)/(*)

In particular, for any continuous / , E^f(\) = / ( - l ) , and so we cannot bound nonnegative
functions by their conditional expectations.

We conclude this note with a brief examination of some of the curious implications
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of the condition |/ | < C EM |/|, for all / e L1. Let us assume that this condition holds.
Then for each nonnegative/in L\f^<C. E*f. But then for any v e

Eif<C.E*f. (Recall that Est = E*.)

Equivalently, for every strictly positive L1 function g,

But this shows that
E«(f.g)^C.(E*f).(E«g),

which quickly leads to

E«(\f.g\)*C.{E"\f\).(E'\g\),

for all / and g in L1. cr-algebras ^ with this "Holder's-like inequality" property seem
worthy of study and classification. One potentially interesting property of such cr-algebras
is seen by first noting that when every / i n L* yields /•"* in L\, then of course all such f1*
are finite a.e. This shows (via Proposition 3.1) that for every real-valued h skerE^,
h=p -E^p for the nonnegative functionp =h + (h')*1.

3.4. PROPOSITION. Suppose that I/I1* e L1, for every f in L1. Then there is a constant
d>0 such that, for every real-valued h s kerE^, we have —d. {h+)si<h <d. (h~)^.

Proof. Let h be a real valued function in ker£^, and let p -h + (h')*. Further,
there is a constant c such that / ^ c. E^f a.e., for every nonnegative function / It follows
that

h + (h-)* = p <c. E*p = c. (h-y,

and s o / i s d . (h*)1*, where d = c - 1. Since the same analysis is applicable to —h, we see
that

andso-d.(^+)^</i<d.(/i-)-rf. •

3.5. PROPOSITION. Suppose that |/|J* G O,for every fin L1. Then there is an integer N
such that no collection of more than N mutually disjoint sets is independent of si.
Moreover, any function independent from si is a simple function.

Proof. Let c be a constant such that | / | < c. £•* |/ | a.e., for all / If F e &+ is
independent of si, then E^XF ~ ̂ (F) a.e., so that 1 ^ c. fi{F). If {Ft: i e /} is a collection
of mutually disjoint sets in SF+ independent of si, then the cardinality of / ^ c. £ /i,(/v) — c.

This establishes the first assertion. For the second, suppose that / is real-valued and
independent of si. Then

| = c. f \f\dn,

so that / e L°°. But the finiteness result just established shows that for any countable
partition {£,-} of [-||/|U, II/IU], all but finitely many of the sets /"'(5,) have measure 0.
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This ensures that / is a simple function. This observation extends to complex-valued
functions immediately. •
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