ON REDFIELD’S RANGE-CORRESPONDENCES
H. 0. FOULKES

1. In an important paper £7), long overlooked, J. H. Redfield dealt with
several aspects of enumerative combinatorial analysis. In a previous paper (1)
I showed the relation between a certain repeated scalar product of a set of
permutation characters of a symmetric group and Redfield’s composition of
his group reduction functions. Here I consider, from a group representational
point of view, Redfield’s idea of a range-correspondence and its application to
enumeration of linear graphs. The details of the application of these ideas to
more general enumerations are also given.

2. Range-correspondences. Redfield considers g sets, or ranges, each of m
symbols. If the symbols in each range aie written in any arbitrary order and
the g ranges are then arranged as the rows of a rectangular array, any column
of the array will determine a correspondence between a symbol in any given
range and symbols one from each of the remaining ranges, and so the array is
termed a range-correspondence.

An equivalence relation is set up between the range-correspondences by
associating with each range a permutation group G, (r = 1, 2, ..., q), which
is some subgroup of the symmetric group &,, on m symbols. G, is regarded as
operating only on the symbols in the rth range, and is termed the range-group
of this range.

Now let R, be some fixed initial ordering of the symbols in the rth range,
and let RO and NP denote respectively the range-correspondences

Riany R as
Rz 237 R2 227

: and : ’
Rq Ai1q Rq Aoq

where a;; € ©,. Then RV and R® are defined to be equivalent if and only if
there is an x, € G, such that as, = x, a1, for r = 1,2, ..., q. It follows that
if an equivalence class consists of RV, RP, ..., R®, then, for any given 7,
Qiry, Q2 -« -, agr all belong to the same right coset of &,, with respect to G,.
Hence the class can be characterized by an ordered g-tuple

(G1 Ay, Gz A2y o v oy Gq aq),
where a; € &, of right cosets of &,,.
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Clearly two arrays will represent the same correspondence between the ranges
if they consist of the same columns, regardless of the order in which the columns
occur in the arrays. The effect of this further equivalence relation is to regard
the two g¢-tuples

(Gray, Gaas, . .., Giay), (Grd'y, Ge sy ..., Gyd'y)
as equivalent if and only if there is an element y € &,, such that

(Gl aq, G2 Q2 v v vy Gq aq)y = (Gl a/l, G2 alz, " eey Gq a',l).
Each equivalence class consists of all g-tuples that are permuted amongst
themselves by elements of &,,.

The following result is essentially the same as the first theorem in Redfield’s

paper.
THEOREM 1. The number of non-equivalent range-correspondences is the scalar
product (o1, d2, - . ., ¢,), where ¢, is the character of the permutation represen-

tation of &, induced by G,.

Proof. The transitive permutation representation P; of &, induced by G,
has as its permuted symbols the right cosets of G;in &,,. The Kronecker product

of Py, P, ..., P, has as its permuted symbols the ordered g-tuples of the form
(Gra1, Gzas, ..., Gya,). It is well known (1) that the number of transitive
constituents of this Kronecker product is (¢1, ¢2, . . . , ¢,). But this is clearly

the number of equivalence classes of the g-tuples of cosets, and hence of the
range-correspondences, and so the theorem is proved.

It should be remarked that each transitive constituent of the Kronecker
product is induced by some subgroup of &,, and so every class of range-
correspondences is associated with a subgroup of &,, this being a common
subgroup of Gi, Gs, ..., G, The determination of the subgroups associated
with a given Kronecker product depends in general on a knowledge of the
“marks” of the representations of &,, (1) and in this sense can be regarded as
known. Thus the association of a given class of range-correspondences with
its appropriate subgroup may be regarded as determinable, though it could be
lengthy in all but the simplest cases.

3. Application to enumeration of linear graphs. One of the simplest
applications of range-correspondences is that of the enumeration of the linear
graphs formed by % lines joining some or all of # points in pairs. Two such
graphs are defined to be equivalent if and only if there is a one-to-one mapping
n of the points of one graph on the points of the other such that whenever two
points a, 8 are joined by a line in the first graph, then an and gy are joined by a
line in the second graph.

The range-correspondences used in this enumeration consist of two rows

only, each of m = <72L> elements. The range-group G; is the representation

S, of &, as a transitive group of degree m induced by a certain subgroup P.
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&,® is the group of permutations of the m lines induced by the permutations
of the 7 points.

If H, and H, are any permutation groups of degrees di, d. respectively on
disjoint sets of symbols, then their direct product H, X H, is defined to be the
set of all products %, 4, where k; runs through H; and %; through H,. Thus
H, X H; is of degree d; + da.

LeEMMA 1. Gi = &, where P = S5 X Sy,

Proof. P is the set of all permutations of # symbols which leave unaltered a
given pair of symbols, say 1 and 2, or merely interchange them. We can thus
associate P with the undirected line [1, 2] joining the points denoted by 1 and 2,
and implicitly with the remaining n — 2 isolated points.

If x € ©,and €P, and [1, 2]x = [, B] (or [B, a]), then for every p € P we
have [1, 2]px = [a, B8] (or [B, a]). Further if z is any element of &, such that
[1, 2]z = [a, B8] (or [8, @]), then [1,2]z = [1, 2]x and so zx~! € P and z lies in
the coset Px of P in &,. Hence there is a one-to-one correspondence between
the lines [a, 8] and the cosets Px.

If y ¢ Por Px, and [1, 2]y = [y, 8], then Py is mapped on [y, é§]. Let s be
any permutation of &, which changes [, 8] into [y, §]. Then for every p € P,
(1, 2]pxs = [1, 2]y and so pxsy~' € P, that is (px)s = p,y, where p, € P,
and so (Px)s = Py.

It follows that the group of permutations of the lines induced by &, acting
on the points is isomorphic to the group induced on the cosets by &,, which
proves the lemma.

We have thus interpreted the first range as the set of m lines joining n
points in pairs, and have taken &,® as its range-group.
We now interpret the second range as a set of m symbols

S1y 82y o v vy Sky Tt ly T2y « o oy Tpe

Any line paired with one of sy, 53, ..., s; in a range-correspondence becomes
one of the k lines selected for the graph belonging to this range-correspondence,
and any line paired with one of 7,44, . . ., 7n is rejected for the graph. The range-
group G is taken as &; X &,,, where &, permutes sy, s, . . ., s; and S,,_,
permutes i1, k42 - - -y Tme

There is thus a one-to-one correspondence between the range-correspondences
and the graphs of % lines on # points. The separation of the range-corres-
pondences into classes under the equivalence relation of §2 corresponds
exactly to the separation of the Z-line graphs into classes under the equivalence
relation defined earlier in this section.

To find ¢, we multiply the cycle index of &, by that of &,,_,. This gives a
polynomial

1 a
1, a2 a
“"Z A,,Z] 29 ...me,
M okm
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where (p) = (191222 ... men) is a partition of m. If %, is the number of elements
in the class of &,, associated with (p), then ¢, is the set of numbers 4,/k,,
where p ranges over all partitions of m. Alternatively the above symmetric
function is the sum {m} 4+ {m — 1,1} + ... 4 {m — k, &} of Schur functions,
and ¢, is the sum of the irreducible characters [m], {m — 1, 1], ..., [m — k, k]
of &,,.

The character ¢; can be obtained as a special case of a procedure given later
in §5(c). This special case has, however, been treated by Slepian (8, p. 144)
and by Harary (3) by constructing a symmetric function G, which is “based”
on ¢;. This symmetric function is a sum of Schur functions, and the number
L,; of inequivalent linear graphs of % lines on # points can be expressed in
terms of the multiplicities of the S-functions of less than three parts.

THEOREM 2. If
[m /2]

= 2 Brdm —r v} + 2 0,

=0

where {v} has more than two parts, then for k < [3n]

Ln,m—k nk = (¢11 ¢2) = Z—Oﬁl

Proof. If [\] is the irreducible character of &,, associated with {A}, then
[m /2]

61 = ZO ﬁr[m —r,r] +Z 'YV[V]
where [m/2] is the greatest integer in m/2. Also

and so

Lnk = (d’l» ¢2) = (¢1y [m]) + (¢1’ [m - 1: 1]) + .. + (d)ly [m - kr k])
= ;} B,

since (£, ¢), where [{] is absolutely irreducible, is the multiplicity of ¢ in &.
Hence, if the expression of G, as a sum of S-functions is known, L,; is deter-
mined at sight from the coefficients of those S-functions with less than three
parts. We find
G; = {1}! G; = {3}7
G, = {6} + {42} + {37} + {2°} + {271%} + {1},
Gs = {10} + {82} + 2{73} + 2{64} + {721} 4 2{631}
[622) + 2(6212} + {614} + 2{541} + 5{532}
(5312} + 6{5221} + 3{422} + 3{421?} + {43%)
{4321} + 3{521%) + 2{351} + 4{42%} + 3{3222)
(4313} + 5{42212) + 3{32212} + 2{32°1} + {27}
{51°) + 3{421%} + 3{3°1%} + 2{32°1%} + {415}

+3
+3
+5
+5
+3
+ {321°} + {2°14},
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from which the part of the table for L, for # < 5, £ < 10 can be read off
(8, p. 146; 9, p. 200).

Two points of interest may be noted.

(i) The only significant part of G, is the symmetric function

[m /2]

ﬁr{m -7, 7’},
=0

and so the cycle-index G, used (8, p. 145) in applying Pélya’s theorem is not
the only symmetric function that will serve the purpose in general. The
redundancy of the S-functions of three or more parts is, of course, evident
from Theorem 2, but it can also be regarded as due to the fact that the sub-
stitution of 1 + x” for every rth power-sum in G,, as is required in Poélya’s
theorem, means that we are concerned with S-functions of 1 and x only, and
S-functions of more than two parts will be identically zero (4, p. 87).

(ii) The non-equivalent graphs on # points with k lines are equi-numerous
with certain partitions of m, not in general distinct. Thus for #n = 5, & = 4,
it would be of interest to find some correspondence between the graphs and the

o e dr N

partitions (10), (82), (73), (73), (64), (64) in some order.

We now consider more general types of subgroups in place of G, and G, and
show how ¢; and ¢ can be evaluated for these more general types. The results
still possess an interpretation in enumerative graph theory.

4. Generalization of G;. If we select any unordered pair from a set of #
nodes we are in an obvious sense partitioning the nodes in accordance with the
partition (1"—22). The structural unit from which a linear graph is constructed
is the line, regarded here as a line together with » — 2 isolated points, and so
associated with the partition (1"-22). We now consider a structural unit more
complicated than the line and #» — 2 isolated points, namely an undirected
graph associated with any partition of #n.

Take any undirected graph X on # nodes and let its decomposition into
connected components be

X=Xu+Xe+t+...+ Xy
+ X+ X4+ .00+ Xoa
+Xn1+Xn2+~-~+Xnam

where X ;; is a connected graph on 7 nodes. This decomposition determines a
partition (\) = (121222, . ge) of the # nodes. If we apply a permutation
n of &, to the nodes and require that if (@, 8) is an edge in X, then (an, 87) is
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an edge in the permuted graph, then the permuted graph will not necessarily
be the same as X, though, of course, it will be equivalent to it. The number of
different graphs

X0 =X, X®, ..., X™

obtained by applying &, to the nodes depends on the automorphism group of X.

Suppose that the a; graphs X1, X, ..., X, consist of ay; graphs equiva-
lent to X i, a graphs equivalent to X ;4,, and so on, where X ;4,, X ig,, - . . are
inequivalent, and

s
a; = Z A ke
k=1

If G,;? is the automorphism group of X, then the automorphism group
of Xu+ X+ ... 4+ X is the direct product

©; = (Gax(i) © @an) X (Gtw(i) © @aiz) X v X (Gas(i) © @a.’.,),

where « denotes a wreath product (2, p. 81).

The automorphism group of X is &) = &; X ®: X ... X ®,. This is a
subgroup of &, and so induces a transitive permutation representation &,
of &, of degree n!/n,, where #n, is the order of ®. The symbols on which
&, N operates can be taken as the cosets ® x of &, with respect to ®,.

LEmma 2. (i) There is a ome-to-one correspondence between the graphs
X0, X®0 ) X™ and the cosets &y x, and (ii) the permutation group induced
on the graphs by applying &, to the nodes is isomorphic with SV,

Proof. (i) If u;is an element of &, such that XWu,; = X®, then for every
g € O\ we have XWgu,; = X® and so every element of a given coset changes
X into the same graph.

Further, if z is any element of &, such that Xz = X® then XMz = X Wy,
and so zu;~! € ), and z belongs to the coset &, #;. Hence the correspondence
O u; — XD is one-to-one, wherez = 1,2, ..., m.

(ii) If s is any permutation of &, which changes X® into X, then for
every g € &, we have

XWgy,s = X5 = XD = XWy,

and so gu;su;' € & and Gru;s = Oyu,;. Conversely if s is such that
Oy uys = Oy uy, then XOs = XD, It follows that the group induced on the
X® by &, is isomorphic with the group induced on the cosets by &,, and so
the lemma is proved.

5. Permutation character of &, induced by &,*V. &,® is a sub-
group of &,, and so induces a transitive representation of &,. We determine
the character ¢) of &, corresponding to this representation. The procedure
may be considered in three stages.
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(@) Cycle index of G4,(P ~ @,;,. Let the cycle index of a permutation group
G of order |G| and degree k be

1 x z,
F= i_G—lza: O T S S

the summation being over all partitions (¢) = 1712%2, .. k% of k. The cycle
index of &, is

{p} =

v, v2 Yp
] Z hpsl ST . oS,
P

S

summed over all partitions (p) = 1¥12v2 ., . p¥» of p. It is known (5) that the
cycle index of G » &, is

F® {P} — })1_' zp: hp(F(l))yl(F(2))u2 L. (F(ﬂ))up

where F™ is the symmetric function obtained from F by replacing every ¢; by
tir, and ® denotes the operation of ‘‘plethysm.”

(b) Permutation character of ©, induced by ®,. The cycle index Py of ®, is
the product of the cycle indices of &, &, ..., ®,, and since the cycle index
of ©; is the product of the cycle indices of

Glll(i) © @ﬂu: Gaz(i) © 6011‘21 ey Gaa(i) © @‘aiav
then P, is known from (a) above.
If
1 v v2 v
P)‘=;"ZB,,81 S ... 8,
where (v) = 1712”2, .. n’»is a partition of #, then the character of &, induced

by the unit representation of ®&, is found by evaluating B,/n, for each (v),
where 7, is the number of elements of &, in the class C,. Alternatively, if the
required plethysms are known, the character could be found by multiplication
of S-functions.

(c) Permutation character of &,, induced by S,°Y. We consider the transitive
permutation representation R, of character 5, of &, induced by any subgroup
®, of order g. Denote the conjugate classes of &, by C, as in (b). It is assumed
that  is known; when ® is &,, 9 is found as in (b), but the procedure described
here is valid for any ®&. The characteristic 5, of C, is, of course, known if the
number g, of elements of & lying in C, is known, for

e nl g

Ny = "7 = _‘1”'2”2 e ’ﬂy"‘lll! VQ! . e Vn!.

g h g
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If @ is of index w in &,, then 7, is the sum of the unitsin the leading diagonal
of any of the permutation w X w matrices representing those elements of &,
lying in C,. We wish to associate every (v) with a partition

(T) = (1m 2. .. ww)

of w, and so obtain the cycles which occur in the representation R of degree w.

Clearly v1 = 1, for every ». To determine v, for » > 1 we use the rth power
of a partition (7, p. 450). If R, is a permutation whose cycles are given by (»),
then the cycles of R," give a partition of # called the rth power of (v) and which
we denote by »(™,

If x € C,, then x* € C,w». If p is prime, 7, will be the same as 7, unless R,
has cycles of length p. If R, has v, p-cycles, then 5,m = 4, + pv,. For a
composite integer d, with divisors d¢ = 1, d1,ds, ..., d, d, we have in the
same way

Ny@ = N» + Yar 'dl + Yas 'd2 + e + ‘Yd, 'dt + 'yd'dv

which leads to the following result:

THEOREM 3. If, in a permutation represeniation R, of degree w and character 7,
of &, the class C, of &, is mapped on the class C'r of S, then

1 t
Ya =g <n,(a> - 'Ydi'di> ,
i=0
ford =1,2,..., 0, where d; < d are the divisors of d.

This theorem gives a convenient and rapid procedure for the construction
of the classes of R whenever 5 is known. In essence the theorem is equivalent
to a theorem of Redfield (7, p. 451). Formulae for special cases have been
given by Slepian (8, p. 145) and Harary (3, pp. 451, 452).

As a numerical illustration we take # = 7 and ® = &S5 X ©,. n is then the
sum of the irreducible characters [7], [61], [52] of &;, giving

n=21,11,6,3,5,2,1,0,1,3,0,1,2,0,0

where the classes of ©; are arranged in the order given by D. E. Littlewood
in his table of irreducible characters of &; (4). Alternatively 5 can be found
from the product of the cycle indices of &5 and &,. The mapping of each » on
the corresponding T is given in Table I.

Taking the columns in order, we find that the partitions of 21 arising are
121) 11125 1635 13244 1528 1222336, 154, 36°% 12244, 132% 37, 1.52.10, 1222362,
2.3.4.12, and 73. We observe (i) 7, need be computed only for those values of d
which are least common multiples of cycle lengths of some », (ii) for a given d
we can ignore columns for which the least common multiple of the cycles of »
is not divisible by d, (iii) entries in any column terminate when »@ = (17),
(iv) if the least common multiple of the cycles in any column is composite,
then other columns can be derived from it. Thus since (34) — (2.3.4.12), we
have (223) — (1222362), (1%4) — (1324%), (143) — (1835), (132%) — (1528),
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TABLE 1

v 17152 143 134 1%2% 1223 1%5 16 124 128 13* 25 28 34 7

l.c.m.
of 1 2 3 4 2 6 5 6 4 2 3 10 6 12 7
cycles

m 21 11 6 3 5 2 1 0 1 3 0 1 2 0 0

v® 17 1322 17 143 132 1822 17 1?5 143 2%33

N2 5 1 8 2 0 2 9 0 2 1

v® 17 152 123 17 1322 1%

ns 5 3 1 7 1 1

y® 17 17 143

N4 4 4 1

»® 17 152

5 4 2

p(6) 17 17 17 13922

7 1 3 2 0

»(D 17
n1 3
»(10) 17

710 1

»(12) 17

me2

Having related every (v) to its appropriate (T'), the cycle index of R can
be written as

1
poy VEM hysise %L LS.,
where %, is the order of the class C, of &,. In general two or more partitions (»)
may be mapped on the same (I'). Collecting like terms, the cycle index

becomes

1 w! YL Y Vo

JI‘Z{@ ;L—!Hpsl‘szz...sw ,
where Hr = 0 if (I') is not the image of any (v), and Hr = &, + hy + . . .,
where (v), (+'),... are the partitions mapped on (I'). The character of the

permutation representation of &, induced by R is now w! Hp/n! Kr, where Ky
is the order of the class C'r of &©,, and (T') ranges over all partitions of w.

When ® = &, and w = m = n!/n, we have the character ¢, required at the
start of §5.

6. Generalization of G,;. We now consider a set 7" of m elements, which
are completely arbitrary, but which for convenience of description we refer to
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as “colours.” Repetitions of the same colour are allowable and a “colour” is
allowed which when paired with an element of another set D of elements
obliterates, or rejects, the element of D. Let ¢y, c1s, - - -, €15, be the colours
that appear once only, ca, cas, ..., C2s, be the colours that appear twice
only, ..., Cni Cm2, - -+, Cmp,, be the colours that appear m times. Then
(161262 mbn) is a partition (u) of m. For fixed values of s and ¢, denote
the s elements of 7" having the colour ¢;; by ¢,V ¢,?, ..., ¢/ 9. The set T
thus consists of the m elements ¢;;(7, wherez =1,2,...,mandj=1,2,...,8;
andr =1,2,...,1

An automorphism group 4, of T can be set up in various ways, depending
on the way in which we require the colours to be invariant under the per-
mutations of 4,.

Consider the group 4;, of degree sB;,, which (i) permutes the elements of
each row of

Csl(l)y Csl(2)y ceey Csl(s);
632(1): 682(2)1 e ooy 632(3)1
63,5,(1), 635,(2), ooy Csﬂ,(s)

in all possible ways, and (ii) induces a permutation group 4, on S of the
rows, As on B of the rows, and so on, where B + B2+ ... 4+ By = B,
Then

Ag= (B, ® Ag) X (S, ® Ay) X ... X (&, ® Ay),
and we may define the automorphism group of T to be
Ay=A41 X A2 X ... X 4.
In the notation of §5(a), the cycle index of &, ~ G is

() @ F =15 Z e (01 ()" .. (1210,

and so the cycle index of 4, is known when those of 4, A, ..., Ay are
known. If the cycle index of A4, is

1

pou meFw 7S L s,

then the permutation character ¢, of &,, induced by 4, is found by evaluating
Fo,/h, for each w. Alternatively, if the necessary plethysms are known, then
¢, could be found by the multiplication of S-functions by the Littlewood-
Richardson rule.

7. Evaluation of (¢,, ¢,). A simplification, arithmetical in nature, may be
noted. Instead of evaluating (¢, ¢.) as & scalar product of characters of &,
we reach the same result by evaluating the scalar product (1g, ¢us)) of
characters of &,, where 1g is the unit representation of S = &, and bucs)
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denotes ¢, restricted to S. This follows from Frobenius’ Reciprocity Theorem
(1, p. 277). Hence the computation of ¢, is superfluous. All that is required is
to relate each (v) of &, with its appropriate (T') in &, as in §5, and then
compute (¢, ¢,) as

1
n| uz*n hv ¢M(F)1

where ¢,r) is the character of the class C'r of &, obtained by restricting
¢ to S.

8. Interpretation of (¢, ¢,). Many complicated graphical structures can
be enumerated by appropriate choice of (A\) and (u), and still further com-
plications can be dealt with by taking more than two rows in the range-
correspondences and evaluating the corresponding multiple scalar product.
Even for small values of # it is not always a simple matter to enumerate these
structures by trial.

As an illustration take # = 6 and (\) = (3%). Then O\ = &; ~» &, and is
of degree 6 and order 72. @6(@") is a transitive representation of S of degree 10.
The character 5 of this representation is the sum of the irreducible characters
[6] and [42] since {3} ® {2} = {6} + {42}, and so

n = (101 4: 11 0, 2‘7 17 Oy ]-y 2y 4! 1)
where the arrangement of the classes is
15, 142, 133, 1%4, 1222, 123, 15, 6, 24, 23, 32,
The procedure of §5 maps these partitions, in the above order, on
110, 1423 1383, 242, 1224 136, 52, 136, 1242, 1423, 133,
The structural units that we now use to construct our generalized graphs are
the 10 different pairs of disjoint triangles which can be drawn using six points
in general position.

Various colourings and automorphism groups for the colourings may be
chosen.

(a) Let there be three colours, green (once), red (twice), and an obliterating
colour (seven times). The automorphism group of the coloursis ©; X &, X &;
and since

{1}{2}{7} = {10} 4 2{91} + 2{82} + {81%} + {73} + {721}

the character ¢,, as far as required, is 360, 24, 0, 0, 8, 0, 0, 0, 0, 24, 0, where
the arrangement of the classes is as given above. When restricted to &g, the only
non-zero terms are 360, 24, 8, 24 for the classes 18, 142, 1222, 23 respectively, and
so the number of inequivalent generalized graphs constructed on six points
from one pair of disjoint green triangles and two pairs of disjoint red triangles is

1

—og (8601 + 24.15 + 45.8 4 24.15) = 2.
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(b) Let there be three colours each taken twice, and an obliterating colour
taken four times. If the three colours are interchangeable, the automorphism
group of the colours is (&, ~ @53) X &, of cycle index

({2} ® {31){4} = ({6} + {42} + {2%}){4)
= {10} + {91} 4+ 2{82} 2{73} + 2{64}
+ {721} + {631} + 2{622} + {541} + {532} + {5221}
+ {422} + {423},

and so ¢,, as far as required, is 3150, 70, 9, 2, 46, 1, 0, 19, 10, 70, 9, from which

(on, du) = 7_;6 (3150 + 70.15 + 9.40 + 2.90 + 46.45 + 19.120

+ 1.120 + 10.90 4 70.15 4 9.40) =

Finally it should bz noted that the set of generalized graphs obtained here
for a given &) and p = (k, m — k) forms a subset of a set of superposed
graphs formed by superposing %k graphs of automorphism group &, as defined
by Read (6).

Thus if # = 5 and the structural unit is a line and three isolated points, the
automorphism group is @22 = @, X &;, giving rise to the character

(5] + [41]+ [32] = 10,4,1,0,2,1,0

of ©;, where the classes are 1%, 132, 123, 14, 122, 23, 5 respectively. From this,
Read’s scalar product for enumerating the superposed graphs obtained by
superposing three graphs each with automorphism group ®.;s is

120 (1000 4 640 + 20 + 0 + 120 420 4 0) =

whereas the number of graphs without multiple edges formed by three lines
on five points is four.
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