
ON REDFIELD'S RANGE-CORRESPONDENCES 

H. O. FOULKES 

1. In an important paper (7), long overlooked, J. H. Redfield dealt with 
several aspects of enumerative combinatorial analysis. In a previous paper (1) 
I showed the relation between a certain repeated scalar product of a set of 
permutation characters of a symmetric group and Redfield's composition of 
his group reduction functions. Here I consider, from a group representational 
point of view, Redfield's idea of a range-correspondence and its application to 
enumeration of linear graphs. The details of the application of these ideas to 
more general enumerations are also given. 

2. Range-correspondences. Redfield considers q sets, or ranges, each of m 
symbols. If the symbols in each range aie written in any arbitrary order and 
the q ranges are then arranged as the rows of a rectangular array, any column 
of the array will determine a correspondence between a symbol in any given 
range and symbols one from each of the remaining ranges, and so the array is 
termed a range-correspondence. 

An equivalence relation is set up between the range-correspondences by 
associating with each range a permutation group Gr (r = 1, 2, . . . , q), which 
is some subgroup of the symmetric group @m on m symbols. Gr is regarded as 
operating only on the symbols in the rth range, and is termed the range-group 
of this range. 

Now let RT be some fixed initial ordering of the symbols in the rth range, 
and let 9î(1) and 9?(2) denote respectively the range-correspondences 

\ R\ OL\i Rl «21 

Rl «12 
and 

^ 2 OÙ22 

\_Rq aiq_ _Rq a2qJ 

where atj (E @m. Then 9Î(1) and 9Î(2) are defined to be equivalent if and only if 
there is an xr £ Gr such that a2r = xra\T for r — 1, 2, . . . , q. It follows that 
if an equivalence class consists of 9î(1), 9t(2), . . . , 9î(fc), then, for any given r, 
«ir, «2n • • • » &kr all belong to the same right coset of ©OT with respect to Gr. 
Hence the class can be characterized by an ordered g-tuple 

( G i « i , G2ÛJ2, . . . , Gq<Xq)i 

where at Ç @m, of right cosets of @m. 
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Clearly two arrays will represent the same correspondence between the ranges 
if they consist of the same columns, regardless of the order in which the columns 
occur in the arrays. The effect of this further equivalence relation is to regard 
the two g-tuples 

(Gi ai, G2OL2, . . . , Gq aq), (Gi a'i, G2 a! 2, . . . , Gq a q) 

as equivalent if and only if there is an element y £ ©m such that 

(Gi «i, G2 a2, . . . , Gq aq)y = (Gi alf G2 a'2, . . . , Gq a'q). 
Each equivalence class consists of all g-tuples that are permuted amongst 
themselves by elements of ©m. 

The following result is essentially the same as the first theorem in Redfield's 
paper. 

THEOREM 1. The number of non-equivalent range-correspondences is the scalar 
product (0i, 02, . . . , <t>q)j where 02- is the character of the permutation represen­
tation of @w induced by G*. 

Proof. The transitive permutation representation Pt of ©w induced by Gt 

has as its permuted symbols the right cosets of G t in @w. The Kronecker product 
of Pi , P2, . . . , Pq has as its permuted symbols the ordered g-tuples of the form 
(Gi ai, G2CK2, . . . , Gqaq). It is well known (1) that the number of transitive 
constituents of this Kronecker product is (0i, 02, . . . , 0ff). But this is clearly 
the number of equivalence classes of the ç-tuples of cosets, and hence of the 
range-correspondences, and so the theorem is proved. 

It should be remarked that each transitive constituent of the Kronecker 
product is induced by some subgroup of ©m, and so every class of range-
correspondences is associated with a subgroup of @m, this being a common 
subgroup of Gi, G2, . . . , Gq. The determination of the subgroups associated 
with a given Kronecker product depends in general on a knowledge of the 
"marks" of the representations of ©m (1) and in this sense can be regarded as 
known. Thus the association of a given class of range-correspondences with 
its appropriate subgroup may be regarded as determinable, though it could be 
lengthy in all but the simplest cases. 

3. Application to enumeration of linear graphs. One of the simplest 
applications of range-correspondences is that of the enumeration of the linear 
graphs formed by k lines joining some or all of n points in pairs. Two such 
graphs are defined to be equivalent if and only if there is a one-to-one mapping 
7] of the points of one graph on the points of the other such that whenever two 
points a, fi are joined by a line in the first graph, then arj and fir) are joined by a 
line in the second graph. 

The range-correspondences used in this enumeration consist of two rows 

only, each of m = ( 9 J elements. The range-group Gi is the representation 

©n
(P) of ©w as a transitive group of degree m induced by a certain subgroup P . 
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©n
(F) is the group of permutations of the m lines induced by the permutations 

of the n points. 
If Hi and H2 axe any permutation groups of degrees dïy d2 respectively on 

disjoint sets of symbols, then their direct product Hi X Hi is defined to be the 
set of all products ht hjy where ht runs through Hi and hj through H2. Thus 
Hi X Hi is of degree dx + d2. 

LEMMA 1. d = ©W
(P) where P = ©2 X ©«-2. 

Proof. P is the set of all permutations of n symbols which leave unaltered a 
given pair of symbols, say 1 and 2, or merely interchange them. We can thus 
associate P with the undirected line [1, 2] joining the points denoted by 1 and 2, 
and implicitly with the remaining n — 2 isolated points. 

If x € ©„ and $ P , and [1, 2]x = [a, 0] (or [0, a]), then for every p <E P we 
have [1, 2]£x = [a, 0] (or [£, a]). Further if z is any element of ©w such that 
[1, 2]z = [a, p] (or [/3, a]), then [1, 2]z = [1, 2]* and so sx"1 £ P and z lies in 
the coset Px of P in ©„. Hence there is a one-to-one correspondence between 
the lines [a, f$] and the cosets Px. 

If y g P or Px, and [1, 2]y = [7, 5], then P ^ is mapped on [7, <5]. Let s be 
any permutation of ©w which changes [a, /3] into [7, 5], Then for every p Ç P , 
[1, 2]£xs = [1, 2]y and so pxsy1 G P , that is (px)s = £13/, where pi £ P , 
and so (Px)s = P^. 

It follows that the group of permutations of the lines induced by ©w acting 
on the points is isomorphic to the group induced on the cosets by @n, which 
proves the lemma. 

We have thus interpreted the first range as the set of m lines joining n 
points in pairs, and have taken ©W

(F) as its range-group. 
We now interpret the second range as a set of m symbols 

Sl , 52, . . . , Sk, ffc+i, Tjc+2, . . . , rm. 

Any line paired with one of Si, s2, • . • , sk in a range-correspondence becomes 
one of the k lines selected for the graph belonging to this range-correspondence, 
and any line paired with one of rk+i, . . . , rm is rejected for the graph. The range-
group G2 is taken as ©fc X ©m_fc, where ©^ permutes su s2j . . . , sk and ©m_fc 

permutes rk+u r*+2, . . • , rm. 
There is thus a one-to-one correspondence between the range-correspondences 

and the graphs of k lines on n points. The separation of the range-corres­
pondences into classes under the equivalence relation of §2 corresponds 
exactly to the separation of the &-line graphs into classes under the equivalence 
relation defined earlier in this section. 

To find 02 we multiply the cycle index of ©fc by that of ©m_fc. This gives a 
polynomial 
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where (p) = ( l a l 2 a 2 . . . mam) is a partition of m. If hp is the number of elements 
in the class of ©w associated with (p), then 02 is the set of numbers Ap/hp, 
where p ranges over all partitions of m. Alternatively the above symmetric 
function is the sum [m] + {m — 1, 1} + . . . + \m — k, k) of Schur functions, 
and 02 is the sum of the irreducible characters [m], [m — 1, 1], . . . , [m — k, k] 
of @ro. 

The character 0i can be obtained as a special case of a procedure given later 
in §5(c). This special case has, however, been treated by Slepian (8, p. 144) 
and by Harary (3) by constructing a symmetric function Gn which is ''based" 
on 0i. This symmetric function is a sum of Schur functions, and the number 
Lnlc of inequivalent linear graphs of k lines on n points can be expressed in 
terms of the multiplicities of the ^-functions of less than three parts. 

THEOREM 2. If 
[m/2] 

Gn= Z Pr{m-r,r} + 2 ^ ) , 

where {v} has more than two parts, then for k < [|w] 
Jc 

Ln,m~kLn1c = (01, 02) = zl Pi. 
i=0 

Proof. If [X] is the irreducible character of ®m associated with {X}, then 
lm/2] 

0i = Z) Pr[m - r,r]+Yj 7*H 

where [m/2] is the greatest integer in m/2. Also 

02 = [m] + [m — 1, 1] + . . . + [m — k, k], 
and so 

Lnk = (0i, 02) = (0i, [m]) + (0i, [m - 1, 1]) + . . . + (0i, [m - k, k]) 

since (£, f), where [f] is absolutely irreducible, is the multiplicity of f in ^. 
Hence, if the expression of Gn as a sum of 5-functions is known, Ln1c is deter­

mined at sight from the coefficients of those 5-functions with less than three 
parts. We find 

G » = { 1 } , G 3 = { 3 ! , 
G4 = {6} + {42} + {32} + {2'} + {22Pj + {16}, 
G5 = (10) + {82} + 2{73} + 2{64} + {721} + 2(631} 

+ 3{622} + 2{6212} + {614} + 2{541} + 5{532} 
+ 3{5312} + 6{5221} + 3{422) + 3{4212} + {432} 
+ 5{4321} + 3{5213} + 2{331} + 4{423} + 3{3222} 
+ 5{4313} + 5{42212} + 3{32212} + 2{3231} + {25} 
+ 3{516} + 3{4214} + 3{3214} + 2{32213} + }416} 
+ {321s} + {2314}, 
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from which the part of the table for Ln]c for n < 5, k < 10 can be read off 
(8, p. 146; 9, p. 200). 

Two points of interest may be noted. 
(i) The only significant part of Gn is the symmetric function 

[TO/2] 

X) Pr{m - r,r}, 
r=0 

and so the cycle-index Gn used (8, p. 145) in applying Polya's theorem is not 
the only symmetric function that will serve the purpose in general. The 
redundancy of the 5-functions of three or more parts is, of course, evident 
from Theorem 2, but it can also be regarded as due to the fact that the sub­
stitution of 1 + xr for every rth power-sum in Gn, as is required in Pôlya's 
theorem, means that we are concerned with S-iunctions of 1 and x only, and 
•S-functions of more than two parts will be identically zero (4, p. 87). 

(ii) The non-equivalent graphs on n points with k lines are equi-numerous 
with certain partitions of w, not in general distinct. Thus for n = 5, k = 4, 
it would be of interest to find some correspondence between the graphs and the 

partitions (10), (82), (73), (73), (64), (64) in some order. 
We now consider more general types of subgroups in place of G\ and G2, and 

show how 0i and <j>2 can be evaluated for these more general types. The results 
still possess an interpretation in enumerative graph theory. 

4. Generalization of G\. If we select any unordered pair from a set of n 
nodes we are in an obvious sense partitioning the nodes in accordance with the 
partition (ln_22). The structural unit from which a linear graph is constructed 
is the line, regarded here as a line together with n — 2 isolated points, and so 
associated with the partition (lw_22). We now consider a structural unit more 
complicated than the line and n — 2 isolated points, namely an undirected 
graph associated with any partition of n. 

Take any undirected graph X on n nodes and let its decomposition into 
connected components be 

X = X n + X12 + . . . + X\ai 
+ X^l + X12 + . . . + X2a2 

+ 
+ Xn\ + Xn2 + . . . + Xnan, 

where Xtj is a connected graph on i nodes. This decomposition determines a 
partition (X) = ( l a i2 a 2 . . . nan) of the n nodes. If we apply a permutation 
7] of ®n to the nodes and require that if (a, ft) is an edge in X, then (at], firj) is 
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an edge in the permuted graph, then the permuted graph will not necessarily 
be the same as X, though, of course, it will be equivalent to it. The number of 
different graphs 

-X™ = X, X«\ . . . , I ( f f l ) 

obtained by applying @n to the nodes depends on the automorphism group of X. 
Suppose that the at graphs XiU Xi2, . . . , Xiai consist of an graphs equiva­

lent to Xiai, ai2 graphs equivalent to Xia2, and so on, where Xiai, Xia21 . . . are 
inequivalent, and 

at X <*<*• 
If Gaj

(i) is the automorphism group of Xiaj, then the automorphism group 
of Xa + Xi2 + • • • + Xiai is the direct product 

®, = (Gai<*> - ®ail) X (G«,«> - ©ai2) X . . . X (Go,™ - ©a,-.), 

where oo denotes a wreath product (2, p. 81). 
The automorphism group of X is @\ = ®i X @2 X . . . X ®n. This is a 

subgroup of @w and so induces a transitive permutation representation <SW
( x) 

of ©w of degree n\/n\, where n\ is the order of ©\. The symbols on which 
©n

( x) operates can be taken as the cosets @\ # of @w with respect to @\. 

LEMMA 2. (i) TTzere is a one-to-one correspondence between the graphs 
J ( 1 ) , X{2\ . . . , X{m) and the cosets ©x x, and (ii) //ze permutation group induced 
on the graphs by applying @n to the nodes is isomorphic with @n

( x). 

Proof, (i) If ut is an element of ©w such that X{l)ut = X(i\ then for every 
g Ç ©x we have X(1)g^i = X(i) and so every element of a given coset changes 
X(l) into the same graph. 

Further, if z is any element of @w such that Xwz = X ( ' \ then X ( % = X{l)ut 

and so 2 ^ - 1 £ ®x and s belongs to the coset @x ut. Hence the correspondence 
®\Ui—> X{i) is one-to-one, where i = 1, 2, . . . , m. 

(ii) If 5 is any permutation of ©w which changes X(i) into Xu\ then for 
every g G ©x we have 

XWgUtS = X<*>5 = -X™ = ! ( % , • 

and so gitisuf1 Ç @x and ®\UiS = ®\Uj. Conversely if 5 is such that 
®\Uts = ®\Uj, then X ( % = XU). It follows that the group induced on the 
X{i) by ©re is isomorphic with the group induced on the cosets by ©n, and so 
the lemma is proved. 

5. Permutation character of ©m induced by ©n
(@x). ©n

(@x) is a sub­
group of ©m and so induces a transitive representation of ©m. We determine 
the character <t>\ of ©w corresponding to this representation. The procedure 
may be considered in three stages. 
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(a) Cycle index of Gar
(i) ™ ©air. Let the cycle index of a permutation group 

G of order |G| and degree k be 

7? — X^ „ t x w Z2 t xk 

P — TQ\ Zs g*h i2 . . . tk , 

the summation being over all partitions (a) = P 1 2*2 . . . kXk of k. The cycle 
index of ©p is 

\p) = ^ Ç v/v2 . . . V-
summed over all partitions (p) = F 1 2^2. . . £VP of £. It is known (5) that the 
cycle index of G co ©p is 

F ® IP) = Ti E hp(F
{1))yi(F(2))V2. . . 0F(p)rp 

where P ( r ) is the symmetric function obtained from F by replacing every tt by 
/<r, and <g) denotes the operation of "plethysm." 

(b) Permutation character of ©w induced by ®x. The cycle index P\ of ®x is 
the product of the cycle indices of ®i, ®2, . . . , ®w, and since the cycle index 
of &t is the product of the cycle indices of 

G (i) co © G (i) co (g . G (i) co (S 

then Px is known from (a) above. 
If 

P\ = —. y. Bvs\ s 2 . . . sn
 n, 

n\ v 

where (v) = 1V1 2"2 . . . nVn is a partition of n, then the character of ©n induced 
by the unit representation of ®x is found by evaluating Bv/nv for each (i>), 
where nv is the number of elements of ©n in the class Cv. Alternatively, if the 
required plethysms are known, the character could be found by multiplication 
of 5-functions. 

(c) Permutation character of ©w induced by ©w
( x). We consider the transitive 

permutation representation R, of character rj, of @n induced by any subgroup 
®, of order g. Denote the conjugate classes of ©n by Cv as in (b). It is assumed 
that 7} is known; when ® is ®x, rj is found as in (b), but the procedure described 
here is valid for any @. The characteristic rjv oî Cv is, of course, known if the 
number gv of elements of ® lying in Cv is known, for 

= ii.^l = fc.i"i.2'2 . . . nn-Vl\ v2\... vn\. 

https://doi.org/10.4153/CJM-1966-105-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-105-5


REDFIELD'S RANGE-CORRESPONDENCES 1067 

If @ is of index w in ©n , then 77,, is the sum of the units in the leading diagonal 
of any of the permutat ion w X co matrices representing those elements of ©w 

lying in Cv. We wish to associate every (v) with a part i t ion 

( r ) = (l*i 2 ? 2 . . . «*«) 

of co, and so obtain the cycles which occur in the representation R of degree co. 
Clearly 71 = rjv for every v. T o determine yT for r > 1 we use the r th power 

of a part i t ion (7, p . 450). If Rx is a permutat ion whose cycles are given by (v), 
then the cycles of RX

T give a parti t ion of n called the r th power of (p) and which 
we denote by v(r). 

If x G CV, then xp £ C„(p). If /? is prime, TJV(P) will be the same as 77„ unless i ^ 
has cycles of length £. If Rx has 7^ ^-cycles, then rjv(v) = rjv + pyv. For a 
composite integer J, with divisors d0 — 1, di, d2, . . . , du d, we have in the 
same way 

ilvid) = t]v + jdi 'di + yd2 -d2 + . . . + ldt 'dt + yd'd, 

which leads to the following result: 

T H E O R E M 3. / / , in a permutation representation R, of degree œ and character 77, 
of @n the class Cv of @n is mapped on the class Cv of ©„, then 

for d = 1, 2, . . . , co, where dt < d are the divisors of d. 

This theorem gives a convenient and rapid procedure for the construction 
of the classes of R whenever 77 is known. In essence the theorem is equivalent 
to a theorem of Redfield (7, p . 451). Formulae for special cases have been 
given by Slepian (8, p . 145) and Hara ry (3, pp. 451, 452). 

As a numerical illustration we take n — 7 and @ = ©5 X ©2. v is then the 
sum of the irreducible characters [7], [61], [52] of ©7, giving 

77 = 21, 11, 6, 3, 5, 2, 1, 0, 1, 3, 0, 1, 2, 0, 0 

where the classes of ©7 are arranged in the order given by D. E. Little wood 
in his table of irreducible characters of ©7 (4). Alternatively 77 can be found 
from the product of the cycle indices of @5 and @2. The mapping of each v on 
the corresponding T is given in Table I. 

Taking the columns in order, we find tha t the part i t ions of 21 arising are 
l21, l n 2 5 , 1635, 13244, 1528, 1222336, 154, 363, 12244, 1329, 37, 1 .5U0, 1222362, 
2.3.4.12, and 73. We observe (i) 77̂  need be computed only for those values of d 
which are least common multiples of cycle lengths of some v, (ii) for a given d 
we can ignore columns for which the least common multiple of the cycles of v 
is not divisible by d, (iii) entries in any column terminate when v{d) = ( l 7 ) , 
(iv) if the least common multiple of the cycles in any column is composite, 
then other columns can be derived from it. T h u s since (34) —> (2.3.4.12), we 
have (223) -> (1222362), (134) - » (13244), (143) - * (1635), (1322) -> (1528). 
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TABLE I 

V l 7 152 143 134 l a 2 2 1 2 23 125 16 124 123 132 25 223 34 7 

Le.m. 
of 1 2 3 4 2 6 5 6 4 2 3 10 6 12 7 

cycles 

m 21 11 6 3 5 2 1 0 1 3 0 1 2 0 0 

y(2) l7 1322 l 7 143 132 1322 l 7 125 143 223 
V2 5 1 8 2 0 2 9 0 2 1 

„(3) l 7 152 123 l7 1322 134 

r?3 5 3 1 7 1 1 

,/(4) l 7 l7 143 
VA 4 4 1 

1/(5) l7 152 

Vb 4 2 

„(<*) l7 l7 l7 1322 

1?6 1 3 2 0 

„(7) l7 

T?7 3 

,,(10) l7 

1710 1 

Ï/U2) l7 

7712 1 

Having related every (v) to its appropriate ( r ) , the cycle index of R can 
be written as 

l l i si71s2
y2 . . . sja, 

where hv is the order of the class Cv of ©w. In general two or more partitions (v) 
may be mapped on the same (T). Collecting like terms, the cycle index 
becomes 

JL V ^1 TJ o 7 1 c 7 2 c 7o> 

co! rTi »! 
where i?r = 0 if (T) is not the image of any (v), and H? = hv + hv> -{-... , 
where (*>), ( / ) , . . . are the partitions mapped on (T). The character of the 
permutation representation of ©„ induced by R is now co! Hr/nl KT, where Kr 

is the order of the class C'Y of ©w, and (T) ranges over all partitions of co. 
When ® = @x and co = w = »!/»\ we have the character <£x required at the 

start of §5. 

6. Generalization of G2. We now consider a set T of m elements, which 
are completely arbitrary, but which for convenience of description we refer to 
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as "colours." Repetitions of the same colour are allowable and a "colour" is 
allowed which when paired with an element of another set D of elements 
obliterates, or rejects, the element of D. Let cn, £12, . . . , c^x be the colours 
that appear once only, C21, £22, . . . , c^2 be the colours that appear twice 
only, . . . , cmu cm2, . . . , cmpm be the colours that appear m times. Then 
(l/?1 2 ^ 2 . . . m^m) is a partition (/x) of m. For fixed values of s and t, denote 
the s elements of T having the colour cst by cst

(1\ cst
(2\ . . . , cst

(s\ The set T 
thus consists of the m elements c*/r), where i = 1, 2 , . . . , m and j = 1, 2, . . . , fif 

and r = 1, 2, . . . , i. 
An automorphism group A^oî T can be set up in various ways, depending 

on the way in which we require the colours to be invariant under the per­
mutations of Aft. 

Consider the group As, of degree sfo, which (i) permutes the elements of 
each row of 

C n ( 1 ) C i ( 2 ) C ,<*> 

C.2 (1\ CS^\ . . . , CS^S\ 

c*™, c,fi.w, . . . , *.*<•> 

in all possible ways, and (ii) induces a permutation group Asl on fti of the 
rows, ^4s2 on ft2 of the rows, and so on, where fti + A2 + . . . + #*/ = @s> 
Then 

4 , = (©, co Asl) X (©, co As2) X . . . X (®, ~ ^ s / ) , 

and we may define the automorphism group of T to be 

i4M = i4i X ^ 2 X . . . XAm. 

In the notation of §5(a), the cycle index of ©p co G is 

\p\ ® F = ĵ i ç g,({^î(1)r(^î(2)r • • • a^rr , 
and so the cycle index of 4̂M is known when those of As\, As2, . . . , Asf are 
known. If the cycle index of AM is 

then the permutation character <£M of ©w induced by AM is found by evaluating 
Fw/hw for each w. Alternatively, if the necessary plethysms are known, then 
<£M could be found by the multiplication of 5-functions by the Littlewood-
Richardson rule. 

7. Evaluation of (#x, $M). A simplification, arithmetical in nature, may be 
noted. Instead of evaluating (<£x, ^ ) as s scalar product of characters of ©m, 
we reach the same result by evaluating the scalar product (ls, 4>P(S)) of 
characters of ©w, where 1^ is the unit representation of 5 = @„( x) and 4v(5) 

https://doi.org/10.4153/CJM-1966-105-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-105-5


1070 H. 0. FOULKES 

denotes 0M restricted to S. This follows from Frobenius' Reciprocity Theorem 
(1, p. 277). Hence the computation of <t>\ is superfluous. All that is required is 
to relate each (v) of ©w with its appropriate (T) in @m, as in §5, and then 
compute (<£x, ^v) as 

where ^ ( n is the character of the class C'Y of @m obtained by restricting 
0M to S. 

8. Interpretation of (#\, <£M). Many complicated graphical structures can 
be enumerated by appropriate choice of (X) and (/*), and still further com­
plications can be dealt with by taking more than two rows in the range-
correspondences and evaluating the corresponding multiple scalar product. 
Even for small values of n it is not always a simple matter to enumerate these 
structures by trial. 

As an illustration take n = 6 and (X) = (32). Then ©\ = ©3 ™ ©2 and is 
of degree 6 and order 72. ©6

( x) is a transitive representation of ©6 of degree 10. 
The character 77 of this representation is the sum of the irreducible characters 
[6] and [42] since {3} <g> {2} = {6} + {42}, and so 

r> = ( 1 0 , 4 , 1 , 0 , 2 , 1 , 0 , 1 , 2 , 4 , 1 ) 

where the arrangement of the classes is 

l6, 142, 133, 124, 1222, 123, 15, 6, 24, 23, 32. 

The procedure of §5 maps these partitions, in the above order, on 

l10, 1423, 133, 242, 1224, 136, 52, 136, 1242, 1423, 133. 

The structural units that we now use to construct our generalized graphs are 
the 10 different pairs of disjoint triangles which can be drawn using six points 
in general position. 

Various colourings and automorphism groups for the colourings may be 
chosen. 

(a) Let there be three colours, green (once), red (twice), and an obliterating 
colour (seven times). The automorphism group of the colours is ©1 X ©2 X ©7 
and since 

{1}{2}{7} = {10} + 2{91} + 2{82} + {812} + {73} + {721} 

the character </>M, as far as required, is 360, 24, 0, 0, 8, 0, 0, 0, 0, 24, 0, where 
the arrangement of the classes is as given above. When restricted to ©6, the only 
non-zero terms are 360, 24, 8, 24 for the classes l6, 142, 1222, 23 respectively, and 
so the number of inequivalent generalized graphs constructed on six points 
from one pair of disjoint green triangles and two pairs of disjoint red triangles is 

~ (360.1 + 24.15 + 45.8 + 24.15) = 2. 
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(b) Let there be three colours each taken twice, and an obliterating colour 
taken four times. If the three colours are interchangeable, the automorphism 
group of the colours is (©- <*> @3) X ©4 of cycle index 

({2} ® {3}){4} = ({6} + {42} + {2*}){4} 
= {10} + {91} + 2{82} + 2{73} + 2{64} 
+ {721} + {631} + 2{622} + {541} + {532} + {5221} 

+ {422} + {423}, 

and so #„, as far as required, is 3150, 70, 9, 2, 46, 1, 0, 19, 10, 70, 9, from which 

(tfx, </>J = ^ (3150 + 70.15 + 9.40 + 2.90 + 46.45 + 19.120 

+ 1.120 + 10.90 + 70.15 + 9.40) = 16. 

Finally it should be noted that the set of generalized graphs obtained here 
for a given ©x and fi = (k, m — k) forms a subset of a set of superposed 
graphs formed by superposing k graphs of automorphism group ©\ as defined 
by Read (6). 

Thus if n = 5 and the structural unit is a line and three isolated points, the 
automorphism group is ©213 = ©2 X ©3, giving rise to the character 

[5] + [41] + [32] = 10, 4, 1, 0, 2, 1, 0 

of ©5, where the classes are l5, 132, 123, 14, 122, 23, 5 respectively. From this, 
Read's scalar product for enumerating the superposed graphs obtained by 
superposing three graphs each with automorphism group ©213 is 

J | Q (1000 + 640 + 20 + 0 + 120 + 20 + 0) = 15, 

whereas the number of graphs without multiple edges formed by three lines 
on five points is four. 
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