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Abstract For the p-localized sphere S
2m−1
(p)

with p > 3 a prime, we prove that the homotopy nilpotency

satisfies nil S
2m−1
(p)

< ∞, with respect to any homotopy associative H-structure on S
2m−1
(p)

. We also prove

that nil S
2m−1
(p)

= 1 for all but a finite number of primes p > 3. Then, for the loop space of the associated

S
2m−1
(p)

-projective space S
2m−1
(p)

P (n − 1), with m, n ≥ 2 and m | p − 1, we derive that nil Ω(S2m−1
(p)

P

(n − 1)) ≤ 3.
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Introduction

The homotopy nilpotency classes nil X of associative H-spaces X has been extensively
studied, as well as their homotopy commutativity. In particular, Hopkins [10] made great
progress by giving (co)homological criteria for homotopy associative finite H-spaces to
be homotopy nilpotent. For example, he showed that if a homotopy associative finite
H-space has no torsion in the integral homology, then it is homotopy nilpotent. Later,
Rao [15, 16] showed that the converse of the above criterion is true in the case of groups
Spin(m) and SO(m) and a connected compact Lie group is homotopy nilpotent if and
only if it has no torsion in homology. Eventually, Yagita [21] proved that, when G is a
compact, simply-connected Lie group, its p-localization G(p) is homotopy nilpotent if and
only if it has no torsion in the integral homology.

Although many results on the homotopy nilpotency have been obtained, the homotopy
nilpotency classes have been determined in very few cases. It is well known that for the
loop space Ω(Sm) of the m-sphere Sm, we have nil Ω(Sm) = 1 if and only if m = 1, 3, 7
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and

nil Ω(Sm) =
{

2 for odd m and m �= 1, 3, 7 or m = 2;
3 for even m ≥ 4.

Next, write KPm for the projective m-space for K = R, C, the field of reals or complex
numbers and H, the skew R-algebra of quaternions. Then, the homotopy nilpotency of
Ω(KPm) has been first studied by Ganea [7], Snaith [17] and then their p-localization
Ω((KPm)(p)) by Meier [12]. The homotopy nilpotency of the loop spaces of Grassmann
and Stiefel manifolds and their p-localization have been extensively studied in [8].

Now, let S2m−1
(p) be the p-localization of the sphere S2m−1 at a prime p. The paper grew

out of our desire to develop techniques in calculating the homotopy nilpotency classes of
S2m−1

(p) with respect to any homotopy associative H-structure for p > 3. Its main result is
the explicit determination of the homotopy nilpotence class of a wide range of homotopy
associative multiplications on localized spheres S2m−1

(p) .
We begin with general results useful in the rest of the paper. In particular, we make

use of [10, Theorem 2.1] to conclude the following corollary.

Corollary 1.4. Let X be a finite simply-connected CW -complex with torsion-free
homology H∗(X, Z). If the p-localization X(p) for a prime p admits a homotopy associative
H-structure then nil X(p) < ∞.

Next, we consider the homotopy nilpotency of S2m−1
(p) with respect to any homotopy

associative H-structures and the loop space Ω(S2m−1
(p) P (n − 1)) of the associated S2m−1

(p) -
projective space S2m−1

(p) P (n − 1) for p > 3. First, we make use of Corollary 1.4, to prove
the homotopy nilpotency of S2m−1

(p) .

Theorem 1.5. If m ≥ 2 and p > 3 is a prime then

nil S2m−1
(p) < ∞

with respect to any homotopy associative H-structure on S2m−1
(p) .

Furthermore, we show that S2m−1
(p) is homotopy associative and commutative for all but

a finite number of primes p.
Then, we apply Zabrodsky’s result [22, Lemma 2.6.6] to show the homotopy nilpotency

of Ω(S2m−1
(p) P (n − 1)) under some conditions.

Theorem 3.12. Let m ≥ 2 and p > 3 be a prime.

(1) If n ≥ 2 and m | p − 1 then

nil Ω(S2m−1
(p) P (n − 1)) ≤ nil S2m−1

(p) + 1 ≤ 3;

(2) if j = s = 1 and m � p − 1, or if we have s ≥ 1, j ≤ p, j odd, and m | p − 1, then

nil Ω(S2m−1
(p) P (jps − 1)) = 1.
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1. Prerequisites

All spaces and maps in this note are assumed to be connected, based and of the homotopy
type of CW -complexes. We also do not distinguish notationally between a continuous map
and its homotopy class. We write Ω(X) (respectively E(X)) for the loop (respectively
suspension) space on a space X, � for the homotopy relation and [Y,X] for the set of
homotopy classes of maps Y → X.

Given a space X, we use the customary notation X ∨ X and X ∧ X for the wedge and
the smash product of X, respectively.

Recall that an H-space is a pair (X,μ), where X is a space and μ : X × X → X is a
map such that the diagram

X × X
μ

�� X

X ∨ X
��

��

∇

��������������������

commutes up to homotopy, where ∇ : X ∨ X → X is the codiagonal map.
We call μ a multiplication or an H-structure on X. Two examples of H-spaces come in

mind: topological groups and the spaces Ω(X) of loops on X. In the sequel, we identify
an H-space (X,μ) with the space X.

An H-space X is called a group-like space if X satisfies all the axioms of groups up
to homotopy. Recall that a homotopy associative an H-space always has a homotopy
inverse. More precisely, according to [22, Corollary 1.3.2] (see also [3, Proposition 8.4.4]),
we have the following result.

Proposition 1.1. If X is a homotopy associative H-space then X is a group-like
space.

If X is a homotopy associative H-space, then the functor [−,X] takes its values in
the category of groups. One may then ask when this functor takes its values in various
subcategories of groups.

For example, X is homotopy commutative if and only if [Y,X] is abelian for all Y .
For an integer n ≥ 1, let X×n and X∧n be the n-fold Cartesian and smash power of

X, respectively. Write qX,n : X×n → X∧n for the quotient map. Given a group-like space
X, we write γX,1 = idX : X → X and γX,2 : X × X → X for the commutator map of X.
Since the restriction γX,2|X∨X � ∗, we get a map γ̄X,2 : X ∧ X → X with γ̄X,2qX,2 �
γX,2. Next, define inductively the maps

γX,n+1 : X×(n+1) → X and γ̄X,n+1 : X∧(n+1) → X
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by γX,n+1 = γX,2 ◦ (γX,1 × γX,n) and γ̄X,n+1 = γ̄X,2 ◦ (γX,1 ∧ γ̄X,n) for n ≥ 2, respec-
tively. Then, the diagram

X×n
γX,n

��

qX,n

��

X

X∧n

γ̄X,n

��������������������

commutes up to homotopy for n ≥ 2.
One might ask if there is an upper bound for the nilpotency class of [Y,X] that is

independent of Y . The homotopy nilpotency class of X defined by Berstein–Ganea [5] is
the least n such that γX,n+1 � ∗ and γX,n �� ∗. Equivalently, the homotopy nilpotency
class of X is the least n such that γ̄X,n+1 � ∗ and γ̄X,n �� ∗. In this case, we write
nil X = n and call the homotopy associative H-space X homotopy nilpotent. If no such
integer exists, we put nil X = ∞.

Note that nil X = 1 if and only if X is homotopy commutative. Given a space X, the
number nil Ω(X) (if any) is called the homotopy nilpotency class of X.

Now, let MU be the complex Thom spectrum, BP ∗(−) the Brown–Peterson coho-
mology with coefficients BP ∗ = Z(p)[v1, . . .] and K(n) the nth Morava K-theory at a
prime p. Thus, K(n)∗(pt) = Z/p[vn, v−1

n ] with |vn| = 2pn − 2. Hopkins [10] described
a cohomological criteria for the homotopy nilpotence of finite connected associative
H-spaces.

We recall Rao’s formulation [15, Theorem 0.2] of Hopkins’ result [10, Theorem 2.1]
needed in the sequel.

Theorem 1.2. Let X be a finite homotopy associative H-space. Then the following
conditions are equivalent:

(1) X is homotopy nilpotent;

(2) M̃U
∗
(γ̄X,n) = 0 for sufficiently large n;

(3) for every prime p, B̃P
∗
(γ̄X,n) = 0 for sufficiently large n;

(4) for every prime p and positive integer m, K(m)∗(γ̄X,n) = 0 for sufficiently large n.

Then, in [10, Corollary 2.2], it was deduced the following homological criterion for the
homotopy nilpotency.

Corollary 1.3. If X is a finite associative H-space and the integral homology H∗(X, Z)
is torsion free then X is homotopy nilpotent.

Furthermore, we derive the following result the proof of which is essentially a small
modification of Hopkins’ argument [10, Corollary 2.2].
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Corollary 1.4. Let X be a finite simply-connected CW -complex with torsion free
homology H∗(X, Z). If the p-localization X(p) for a prime p admits a homotopy associative
H-structure then nil X(p) < ∞.

Proof. Note that HQ∗(γ̄n) = 0 for the field of rationals Q sufficiently large n since
X∧n

(p) is at least (n − 1)-connected. By assumption, the canonical map MU∗(X∧n
(p) ) →

MU∗(X∧n
(p) ) ⊗ Q is injective, so by Theorem 1.2, it suffices to show that MU∗(γ̄n) ⊗ Q =

0. But, for a finite CW -complex X, there is a natural isomorphism

MU∗(X∧n
(p) ) ⊗ Q ≈ MU∗(X∧n) ⊗ Q ≈ MU∗(pt) ⊗ HQ∗(X∧n)

≈ MU∗(pt) ⊗ HQ∗(X∧n
(p) ),

so the map MU∗(γ̄n) ⊗ Q = 0 as soon as HQ∗(γ̄n) = 0. This completes the proof. �

Since the homology H∗(S2m−1, Z) are torsion free and S2m−1 is a finite CW -complex,
Corollary 1.4 yields the result on the homotopy nilpotency of S2m−1

(p) .

Theorem 1.5. If m ≥ 2 and p > 3 is a prime then

nil S2m−1
(p) < ∞

with respect to any homotopy associative H-structure on S2m−1
(p) .

In the sequel, we make use of the following. Let f : X → Y be an H-map of homotopy
associative H-spaces. Recall from [22, Chapter II] that:

(1) it is said nil f ≤ n if fγ̄X,n � ∗;
(2) f is called central if γ̄Y,2(f ∧ idY ) � ∗.

Notice that nil f ≤ min{nil X,nil Y }.
Then, in view of [22, Lemma 2.6.6], we have the following techniques for the study of

the homotopy nilpotency.

Proposition 1.6. Let F
i→ E

q→ B be an H-fibration, i.e., F
i→ E

q→ B is a fibration,
F,E and B are H-spaces and the maps i : F → E, and q : E → B are H-maps.

(1) If nil q ≤ n and i : F → E is central then nil E ≤ n + 1;

(2) if Ω(Y ) i→ E
q→ X is the induced H-fibration by an H-map f : X → Y then the

map i : Ω(Y ) → E is central.
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2. Am-spaces

Recall that by Stasheff [18], an Am-structure on a space X consists on m-tuples

X = E1(X)

q1

��

� � �� · · · � � �� En(X)

qn

��

� � �� · · · � � �� Em(X)

qm

��

∗ = B1(X) � � �� · · · � � �� Bn(X) � � �� · · · � � �� Bm(X)

such that qn∗ : πk(En(X),X) → πk(Bn(X)) is an isomorphism for all k ≥ 1, together with
a contracting homotopy h : CEn−1(X) → En(X) such that h(CEn−1(X)) ⊆ En(X) for n =
2, . . . ,m. For the purposes of homotopy theory, in the light of [18, Proposition 2], we can
think of X → En(X)

qn→ Bn(X), as a fibration.
An Am-space for m = 0, 1 . . . ,∞ is a space X with a multiplication μ : X × X → X

that is associative up to higher homotopies involving up to n variables. Further, an A∞-
space has all coherent higher associativity homotopies and is equivalent to a loop space
Ω(Y ) for a space Y called the classifying space of X.

By [18, Theorem 5], classes of spaces with Am-structures and Am-spaces coincide.

Proposition 2.1. A space X admits an Am-structure if and only if X is an Am-space.

The X-projective n-space XP (n) for n ≤ m, associated with an Am-space X is the
base space Bn+1(X) of the derived Am-structure. The space B1(X) is a point and B2(X)
can be recognized as the suspension E(X). Notice that Bm+1(X) can be defined even
when pm+1 cannot; it has the homotopy type of the mapping cone CEm(X) ∪qm

Bm(X).
By means of [18, Theorem 11, Theorem 12], the spaces En(X) and Bn+1(X) have the
homotopy types of the nth join X∗n

and CEn(X) ∪pn
Bn(X) for n ≤ m, respectively

provided X is path-connected. Because of a homotopy equivalence X∗n � En−1(X∧n)
for the (n − 1)th suspension En−1, we deduce that the fibration X → En(X)

qn→ Bn(X)
is homotopy equivalent to

X → En−1X∧n qn−→ XP (n − 1). (2.2)

3. Localized spheres S2m−1
(p) and S2m−1

(p) -projective spaces S2m−1
(p) P (n − 1)

Let S2m−1
(p) be the p-localization of the sphere S2m−1 at a prime p. It is known by [11,

Theorem 1.4] that S2m−1
(2) does not admit a homotopy associative multiplication if m �=

1, 2. The sole obstruction to putting an H-structure on S2m−1 is the Whitehead square
[ι2m−1, ι2m−1] of a generator ι2m−1 ∈ π2m−1(S2m−1). Since the order of [ι2m−1, ι2m−1] is
≤ 2, it follows that, if p is an odd prime, S2m−1

(p) admits an H-space structure. Which
p-localized spheres S2m−1

(p) with p > 2 have an H-structures or loop structures is known
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by Adams [1]. More precisely, in view of [2] (see also [14, Proposition 11.2.2]), we have
the following H-structure on S2m−1

(p) .

Proposition 3.1. If p is an odd prime and n ≥ 1 then there is an H-structure μA on
S2m−1

(p) (unique up to homotopy if p is an odd prime and n ≥ 2 or if n ≥ 1 and p > 3)
such that the double suspension E2 : S2m−1

(p) → Ω2S2m+1
(p) is an H-map.

Further:

(1) if p > 2 then (S2m−1
(p) , μA) is a homotopy commutative H-space;

(2) if p > 3 then (S2m−1
(p) , μA) is a homotopy associative H-space.

Loosely speaking, via the double suspension map E2 : S2m−1
(p) → Ω2(S2m+1

(p) ), the mul-
tiplication on the double loop space Ω2S2m+1

(p) restricts to the multiplication μA on the
bottom cell S2m−1

(p) . Next, by Mimura et al. [13, Proposition 6.8], Stasheff [18] and Sullivan
[19], we have the result on H-structures on S2m−1

(p) .

Proposition 3.2. Let m ≥ 2 and p > 3 be a prime. Then:

(1) the p-localized sphere S2m−1
(p) admits an Ap−1-structure;

(2) if S2m−1
(p) admits an Ap-structure then m | p − 1;

(3) S2m−1
(p) admits an A∞-structure if and only if m | p − 1 provided p > 3.

This implies that S2m−1
(p) does not admit an Ap-structure provided m � p − 1. We also

point out that an Ap−1-structure on S2m−1
(p) is induced from Ω2(S2m+1

(p) ) which is of course
an A∞-space, via the double suspension map E2 : S2m−1

(p) → Ω2(S2m+1
(p) ). Further, in view

of Proposition 3.2, the sphere S2m−1
(p) admits an Ap-structure if and only if it admits a

classifying space.
Now, we show the nilpotency of S2m−1

(p) provided m | p − 1.

Proposition 3.3. If m | p − 1 then nil S2m−1
(p) ≤ 2 with respect to the A∞-structure

on S2m−1
(p) .

Proof. Sullivan [19], to construct a classifying space for S2m−1
(p) with m | p − 1, con-

sidered the space K(Zp, 2), where Ẑp is the p-adic integers and the cyclic subgroup
Γ < Zp−1 < Ẑ∗

p (the p-adic units) of order m. Then Γ acts freely on a model of K(Ẑp, 2)
and X = K(Ẑp, 2)/Γ has cohomology H∗(X, Z/pZ) = S(x, 2m), the graded symmetric
algebra generated by x with degree |x| = 2m and π1(X) = Γ. After completing X at
p to X̂p, we have a space with π1(X̂p) = 0 and H∗(X̂p, Z/pZ) = S(x, 2m). The map
S2m−1 → Ω(X̂p) defines a homotopy equivalence S2m−1

(p)

�→ Ω(X̂p) and X̂p is a classifying
space for S2m−1

(p) .
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But, by [14, Chapter 2], the p-completion preserves a fibration of simply-connected
spaces. Hence, the p-completion of the fibration Γ → K(Ẑp, 2) → X leads to the fibration
Γ̂p → K(Ẑp, 2) → X̂p. Consequently, we get the H-fibration

Ω(K(Ẑp, 2)) = K(Ẑp, 1) −→ Ω(X) −→ Γ.

Since the space X = K(Ẑp, 2)/Γ is simply-connected, we have ̂(Ω(X))p = Ω(X̂p). Then,
by means of the p-completeness of K(Ẑp, 1), the p-completion of the fibration above yields
the H-fibration

K(Ẑp, 1) −→ Ω(X̂p) −→ Γ̂p

determined by the canonical H-map Γ̂p → K(Ẑp, 2).
Thus, by means of Proposition 1.6(2), we derive that the H-map Ω(K(Ẑp, 2)) =

K(Ẑp, 1) → Ω(X) is central and so Proposition 1.6(1) yields

nil S2m−1
(p) ≤ 2.

This completes the proof. �

Then, Arkowitz, Ewing and Schiffman [4, Theorem 0.1] have proved the following result
on H-structures on S2m−1

(p) .

Theorem 3.4. Let p be an odd prime and n a positive integer with m | p − 1.

(1) If m < p − 1 then S2m−1
(p) has a unique H-structure which is both homotopy

commutative and a loop multiplication.

(2) If m = p − 1 then S2m−1
(p) has precisely p multiplications; one homotopy commutative

and not a loop multiplication, and (p − 1) loop H-structures which are H-equivalent
but not homotopy commutative.

Thus, the above and Theorem 3.4(2) yield the conclusion.

Corollary 3.5. If m | p − 1 and p > 3 then

nil S2m−1
(p) = 2

with respect to all (p − 1) loop H-structures on S2m−1
(p) .

We point out that Proposition 3.3 has been already shown by Meier [12] in the special
case when m = p − 1 using the result [20, Theorem 13.4].

Theorem 3.6. Let p be an odd prime.

π2m−1+k(S2m−1)
(p) ) ≈

⎧⎪⎪⎨
⎪⎪⎩

Z/pZ for k = 2i(p − 1) − 1, i = 1, . . . , p − 1, m ≥ 2;

Z/pZ for k = 2i(p − 1) − 2, i = m, . . . , p − 1;

0 ortherwise for 1 ≤ k < 2p(p − 1) − 2.
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Given a pointed connected topological space X and a prime p, write πm(X; p) for
the p-primary component of its mth homotopy group πm(X) for m ≥ 1. Recall that
by [6], the set of homotopy classes of possible H-structures on S2m−1

(p) is in one-to-one
correspondence with [S2m−1

(p) ∧ S2m−1
(p) , S2m−1

(p) ] = π4m−2(S2m−1, p). Consequently, if p > 3
then we may study the homotopy nilpotency of S2m−1

(p) .
Nevertheless, in some particular cases, an estimation for nil S2m−1

(p) might be stated.
First, notice that Theorem 3.6 implies that

π2m−1+k(S2m−1
(p) ) = 0 (3.7)

provided k < 2p(p − 1) − 2, k �= 2i(p − 1) − 1 for i = 1, . . . , p − 1 and k �= 2i(p − 1) − 2
for i = m, . . . , p − 1.

Certainly, the homotopy group π4m−2(S2m−1) is finite and write �π4m−2(S2m−1) for its
order. Then, for pm = max{p; p is a prime with p | �π4m−2(S2m−1)}, we apply Theorem
3.6 to state the result on an H-structure on S2m−1

(p) .

Proposition 3.8. Let p > 3 and m ≥ 3.
If m < p − 1 or p > max{3, pm} then S2m−1

(p) admits a unique homotopy associative and

commutative H-structure and nil S2m−1
(p) = 1.

Proof. If m < p − 1 then 2m − 1 < 2p − 3 and Equation (3.7) implies that

[(S2m−1
(p) )∧2, S2m−1

(p) ] = π2(2m−1)(S2m−1
(p) ) = 0.

If p > max{3, pm} then π2(2m−1)(S2m−1
(p) ) = 0 as well. Then, Proposition 3.1 provides an

existence of a unique homotopy associative and commutative H-structure on S2m−1
(p) and

the proof follows. �

Now, we apply the results above to S2m−1
(p) -projective spaces S2m−1

(p) P (n − 1). Write
Jk(S2n) for the kth stage of the James construction on the sphere S2m.

Since S2m−1
(p) P (1) � S2m

(p) and S2m−1
(p) P (n − 1) � CS2(n−1)m−1

(p) ∪qn−1 S2m−1
(p) P (n − 2) for

the fibration (2.2)

qn−1 : S2(n−1)m−1
(p) → S2m−1

(p) P (n − 2)

with X = S2m−1
(p) , we can define inductively a map

S2m−1
(p) P (n − 1) −→ Jn−1(S2m

(p) ).

for p > 3 provided n − 1 < p with m � p − 1 or any n ≥ 1 with m | p − 1.
Furthermore, one can state the result on some S2m−1

(p) P (n − 1).

Proposition 3.9. The canonical map

S2m−1
(p) P (n − 1) −→ Jn−1(S2m

(p) )

is an integral homology isomorphism for p > 3 provided n − 1 < p with m � p − 1 or any
n ≥ 1 with m | p − 1.
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Consequently, by means of the Whitehead Theorem, we get a homotopy equivalence
S2m−1

(p) P (n − 1) �−→ Jn−1(S2m
(p) ) which yields an H-homotopy equivalence

Ω(S2m−1
(p) P (n − 1)) �−→ Ω(Jn−1(S2m

(p) ))

for p > 3 provided n − 1 < p with m � p − 1 or any n ≥ 1 with m | p − 1. But, Gray showed
[9, Theorem 1 and the footnote on p. 182] that Ω(Jjps−1(S2m)) with p ≥ 3 is universal
in the category of homotopy associative commutative H-spaces, with its generating sub-
space being the (2mp − 2)-skeleton provided p ≥ 3 with s > 0 and an odd j ≤ p. Hence,
Proposition 3.9 yields the conclusion on the H-structure on Ω(S2m−1

(p) P (jps − 1)).

Corollary 3.10. If p > 3 and m ≥ 2 then the associative H-space Ω(S2m−1
(p) P (jps − 1))

is homotopy commutative provided j = s = 1 and m � p − 1 or s ≥ 1, j ≤ p is odd and
m | p − 1.

For further studies of the homotopy nilpotency of Ω(S2m−1
(p) P (n − 1)), we need to show

an existence of some H-fibration.

Lemma 3.11. If p > 3 is a prime, m ≥ 2 and m | p − 1 then for a fixed A∞-structure
on S2m−1

(p) and n ≥ 2 then there is an H-fibration

Ω(S2mn−1
(p) ) −→ Ω(S2m−1

(p) P (n − 1)) −→ S2m−1
(p)

with the central map Ω(S2mn−1
(p) ) −→ Ω(S2m−1

(p) P (n − 1)).

Proof. Recall that by Proposition 3.2(3) the space S2m−1
(p) admits an A∞-structure

provided m | p − 1. Furthermore, for such the space S2m−1
(p) , Sullivan [19] constructed a

classifying space denoted in the proof of Proposition 3.3 by X̂p.
Next, write in : S2mn−1

(p) ↪→ S2m−1
(p) P (n − 1) and jn : S2m−1

(p) P (n − 1) ↪→ X̂p for the

canonical inclusion maps and notice that En−1(S2m−1
(p) )∧n = S2mn−1

(p) . Since Ω(X̂p) �
S2m−1

(p) , we get the Puppe fibration sequence

· · · → Ω(S2mn−1
(p) )

Ω(in)−→ Ω(S2m−1
(p) P (n − 1))

Ω(jn)−→ S2m−1
(p)

∂n→ S2mn−1
(p)

in
↪→ S2m−1

(p) P (n − 1)
jn
↪→ X̂p.

But, the H-deviation [22, Definition 1.4.1.] of ∂n is a map S2m−1
(p) ∧ S2m−1

(p) → S2mn−1
(p)

which is null homotopic for dimension and connectivity reasons if n ≥ 2. Then, by Zabrod-
sky [22, Proposition 1.5.1.], ∂n is an H-map. Hence, Proposition 1.6(2) implies that
Ω(in) : Ω(S2mn−1

(p) ) → Ω(S2m−1
(p) P (n − 1)) is central in the H-fibration

Ω(S2mn−1
(p) )

Ω(in)−→ Ω(S2m−1
(p) P (n − 1))

Ω(jn)−→ S2m−1
(p)

and this completes the proof. �

Thus, Propositions 1.6(1), 3.3, Corollary 3.10 and Lemma 3.11 yield the result on the
homotopy nilpotency of Ω(S2m−1

(p) P (n − 1)) under some conditions.
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Theorem 3.12. Let m ≥ 2 and p > 3 be a prime.

(1) If n ≥ 2 and m | p − 1 then

nil Ω(S2m−1
(p) P (n − 1)) ≤ nil S2m−1

(p) + 1 ≤ 3;

(2) if j = s = 1 and m � p − 1, or if we have s ≥ 1, j ≤ p, j odd, and m | p − 1, then

nil Ω(S2m−1
(p) P (jps − 1)) = 1.

To conclude, we point out that Theorem 3.12 applies to more cases than Meier’s result
[12, Theorem 5.4].

We close the paper with the following conjecture.

Conjecture 3.13. If p > 3 is a prime and m,n ≥ 2 then

nil Ω(S2m−1
(p) P (n − 1)) < ∞.
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