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Smoothing of Limit Linear Series of
Rank One on Saturated Metrized
Complexes of Algebraic Curves

Ye Luo and Madhusudan Manjunath

Abstract. We investigate the smoothing problem of limit linear series of rank one on an enrich-
ment of the notions of nodal curves and metrized complexes called saturated metrized complexes.
We give a finitely verifiable full criterion for smoothability of a limit linear series of rank one on satu-
rated metrized complexes, characterize the space of all such smoothings, and extend the criterion to
metrized complexes. As applications, we prove that all limit linear series of rank one are smoothable
on saturated metrized complexes corresponding to curves of compact-type, and we prove an ana-
logue for saturated metrized complexes of a theorem of Harris and Mumford on the characterization
of nodal curves contained in a given gonality stratum. In addition, we give a full combinatorial crite-
rion for smoothable limit linear series of rank one on saturated metrized complexes corresponding
to nodal curves whose dual graphs are made of separate loops.

1 Introduction

A saturated metrized complex is an object that encodes information about a degen-
erating family of smooth curves. Roughly speaking, a saturated metrized complex ¢
over a field x consists of a metric graph and an algebraic curve over « associated with
each point of the metric graph (Definition 2.1). A limit linear series of rank r on ¢
consists of a linear series of rank r on each associated algebraic curve of € satisfying
certain compatibility conditions. The main purpose of this paper is to provide a full
criterion for lifting a limit linear series of rank one to a linear series of the same rank
on a smooth curve C.

1.1 Context and Motivation

Degeneration to singular curves has been one of the most important tools in the the-
ory of smooth algebraic curves. Fundamental results on algebraic curves such as the
Brill-Noether Theorem and Gieseker—Petri Theorem were established via degenera-
tion to singular curves [16,22,23][25, Chapter 5]. While degeneration to irreducible
curves such as cuspidal curves and nodal curves was considered by Castelnuovo [12]
and several researchers, Eisenbud and Harris [16] subsequently developed a theory of
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degeneration of linear series to certain reducible curves called limit linear series. A
limit linear series is usually denoted by limit g7;, where the integers d and r are called
the degree and rank of the limit linear series, respectively. The theory of limit linear
series has numerous applications, for instance, a proof of non-unirationality of M3
[17], a detailed study of the monodromy of Weierstrass points [18], and a proof of ir-
reducibility of certain families of special linear series of curves [19]. However, until
recently the notion of limit linear series was largely restricted to curves of compact-
type, i.e., nodal curves whose dual graph is a tree. We refer to Osserman’s survey for
a more recent treatment of limit linear series on curves of compact type [30].

Recently, Amini and Baker [3] defined a notion of limit linear series on nodal
curves in general. In fact, instead of working with nodal curves per se, they con-
sidered an enrichment of nodal curves called metrized complexes (nodal curves with
a metric assigned to the corresponding dual graph) and formulated a notion of limit
linear series on a metrized complex. They show that on a metrized complex associated
with a curve of compact-type, their notion of limit linear series coincides with that of
Eisenbud and Harris. Independently, Ossermann [31] has generalized the notion of
limit linear series of Eisenbud-Harris to curves of non-compact type.

The notions of limit linear series of Eisenbud and Harris, Amini and Baker and
Osserman satisfy two key properties.

(1) For any family of smooth curves degenerating to a curve of compact type (a met-
rized complex or a nodal curve), any family of linear series on each smooth curve
in the family degenerates to a limit linear series on the curve of compact type
(a metrized complex or a nodal curve respectively). This property is called the
specialization property.

(2) The limit linear series is formulated in terms of linear series on each irreducible
component and with relations between the linear series on each irreducible com-
ponent that depend on the dual graph (see Definition 2.5 for a precise definition).

However, even in the case of curves of compact type, the converse of Property (1)
does not hold in general. In other words, not every limit g7; arises as a limit of linear
series. A limit linear series is said to be smoothable if it arises as a limit of linear series
(see Definition 3.8 for a precise definition of smoothability). Eisenbud and Harris
also considered a refinement of the notion of limit linear series called refined limit
linear series. They showed that every refined limit g’ is smoothable. For r > 2, they
constructed a moduli space of limit g; and showed that any limit g}, in irreducible
components of the expected dimension in the moduli space of limit g7; is smoothable,
which they call the regeneration theorem [16, Theorem 3.4].

1.2 Smoothing Criterion for Limit Linear Series of Rank One on Saturated Met-
rized Complexes

In this paper, we consider a refinement of the notion of a metrized complex called sat-
urated metrized complexes (Definition 2.1) and undertake a detailed study of smootha-
bility of limit g}, on saturated metrized complexes of algebraic curves. Roughly speak-
ing, a saturated metrized complex can be considered as a metric graph T with an al-
gebraic curve associated with each point of I'. On the other hand, for a metrized
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complex, only the points in a finite subset A of T' are associated with algebraic curves.
Therefore, a saturated metrized complex can be derived from a metrized complex by
inserting curves at the points in I'\ A (the process is called a saturation of the metrized
complex). Conversely, a metrized complex can be derived from a saturated metrized
complex by ignoring the curves associated with the points in T’ \ A.

The main goal in this paper is to provide a full smoothing criterion for limit g
on saturated metrized complexes. We briefly explain our approach first and state the
criterion in Theorem L1.

In a recent work Amini, Baker, Brugallé, and Rabinoff [4, 5] showed that har-
monic morphisms between metrized complexes can essentially be lifted to finite mor-
phisms between curves. Let K be an algebraically closed field of characteristic 0 that
is complete with respect to a non-archimedean valuation of value group R. Let the
corresponding residue field be x. Suppose that X is a smooth proper curve over
K. Let £ be a skeleton of the Berkovich analytification X** of X. Let €(X) be the
saturated metrized complex over the residue field x associated with ¥ (see Appen-
dix A.1 for a precise construction). A base point free g on X induces a morphism
¢: X — P! of degree d. By the functoriality of analytification, we have an induced
map ¢*": X** — P}, where P, , is the Berkovich projective line. The retraction
from X*" to the skeleton X induces a pseudo-harmonic morphism €¢ (see §3.1 for a
precise definition) from the saturated metrized complex €(2) to a saturated metrized
complex €(T) of genus zero where the underlying metric tree T of €(T') is a skeleton
of PL_ .. On the other hand, by [5, Theorem A] there is a harmonic morphism ¢¢™m°¢
from a modification €(2™°¢) of €(X) to €(T) which is compatible with ¢** . More
precisely, we have the following commutative diagram.

x_— ¢ . p

| .

an 1
X 7 ]PB erk

<¢

¢(zmed) ¢(2) ¢(T)

C(bmod

Recall that we can represent a g on X by (D, H) where D is an effective divisor of
degree d and H is a two-dimensional linear subspace of H°(X, £(D)). The special-
ization (D, H) of (D, H) to €(X) represents a limit g, on €(X) that is smoothable.
On the other hand, the lifting theorem [5, Theorem B] guarantees that any harmonic
morphism onto a genus-0 (saturated) metrized complex can be lifted to a finite mor-
phism onto a projective line. Therefore, to investigate whether a limit g}, represented
by (D, H) on a saturated metrized complex is smoothable, we must characterize when
there exist a genus-0 saturated metrized complex €(T) and a modification ¢(Z™°4)
of €(Z) such that there is a harmonic morphism €¢™°4: ¢(=™°4) — &(T) which is
“compatible” with the data (D, K).
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An important aspect is that, starting from a smoothable limit g} represented
by (D, H) on €(X), there generally exist different choices of €(2)™°4, &(T), and
cpmed: ¢(xmed) . ¢(T) in the above commutative diagram. Therefore, to give
a full smoothing criterion, the main challenge is to determine all possible ¢(X™°9),
&(T), and €¢™°? that are compatible with the data (D, J().

In this paper, the key to addressing this challenge is to first reorganize the infor-
mation in (D, H) and associate with it a combinatorial object called a global diagram
on I'. A global diagram consists of a “piecewise-constant differential form” defined
on I’ and a partition of the set of tangent directions at every point in I'. It turns out
that the failure of exactness of this differential form is an obstruction to smoothing
(D, ). We say that (D, H) is solvable if this differential form is exact. Hence, by
integration of the exact differential form for a solvable (D, J), we derive a rational
function p on I' with everywhere nonzero slopes. The bifurcation tree B associated
with p is a metric tree whose points correspond to superlevel components of T at all
values of p. Moreover, there is a canonical projection g from I' to B. By properly
gluing the bifurcation tree B along its branches, we can derive a metric tree that is
called a partition tree with respect to B. (See §4 for precise definitions of bifurcation
trees and partition trees.) We denote by ASDI?:H the space of all such partition trees
with respect to B. One observation is that in the above commutative diagram, the
underlying metric tree T of €(T) can only possibly be a partition tree.

More smoothing obstructions arise from the compatibility between 73 and the
data in (D, H). We organize these obstructions into three additional levels and as-
sociate a subspace (denoted by Ag?ﬂ, Ag’)ﬂ, and Ag?g{, respectively) of A(DI)J{ with
each of these three additional levels (Section 5). In particular,

Q) (2) (3) (4)
Aplge 2 Ay qc 2 A g0 2 Ay g -

We will show that any genus zero saturated metrized complex €(T') that can arise in

the above commutative diagram must have an underlying metric tree T in A(g )f}c’
)

conversely we can build such a €(T') from any metric tree T in A% 'g¢- See Figure 11

for an example of A%?}c’ Ag?}c, Ag))%, and Ag)}f.

In summary, we have the following theorem as the smoothing criterion.

and

Theorem 1.1 (Smoothing Criterion) A pre-limit g (or a limit gly) represented by

(D, H) on a saturated metrized complex is smoothable if and only if the space of metric

trees A(ﬁ’)}c associated with (D, H) is nonempty.

One feature that distinguishes the study of smoothability of limit g}, in comparison
with the lifting of harmonic morphisms of [4,5] is the appearance of the space of trees
A%?%, Ag’)g{, Ag’)ﬂ, and Ag?g{. These spaces are naturally endowed with a partial
order (see Appendix B) and lead to several directions for future work. For exam-
ple, they are essentially spaces of phylogenetic trees and seem to be related to similar
spaces occurring in other contexts such as the space of trees [9] and in the context of
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dynamics [15]. Another direction of investigation is that the work of Abramovich, Ca-

poraso, and Payne [1] suggests that Agg ’)ﬂ can be interpreted in terms of the Berkovich

analytification of the moduli space of all smoothings of the underlying limit g,

Furthermore, the above criterion is an effective characterization of smoothable
limit g}, since it is not only a full criterion but also finitely verifiable given the data
(D, H) (for finite verifications, see §2.7 and an equivalent form of the smoothing cri-
terion in Theorem 2.6).

We also expect the global diagram technique employed in setting up the smooth-
ing criterion to be a useful tool for characterizing the gonality stratum and for study-
ing moduli spaces of metrized complexes (and tropical curves) with a given gonality.
These topics will be pursued in the future. We would like to mention that Omid Amini
has independently obtained a smoothing theorem on limit g} for limit linear series
in the framework developed in an upcoming paper [2], which is a refinement of [3].
Cartwright has also recently studied the problem of smoothing divisors of rank two
and higher [10]. Cartwright considered lifting of rank two divisors on tropical curves
(and metrized complexes). Given a matroid and an infinite field x, he constructed a
graph (and a metrized complex) and a divisor of rank two, called a matroid divisor, on
it and showed that the problem of lifting the matroid divisor to a smooth curve over
«[[t]] is equivalent to realizability of the underlying matroid over «. These results show
that the lifting problem for higher rank divisors (rank two and higher) is sensitive to
the underlying field and is evidence for the difficulty in generalizing our smooth cri-
terion for higher rank divisors. In addition, Cartwright, Jensen, and Payne [11] and
Jensen and Ranganathan [27] have proved higher rank lifting theorems for divisors
on tropical curves which are general and special chain of loops respectively.

1.3 Applications

We present four concrete applications of the smoothing criterion.

1.3.1 Application 1: Saturated Metrized Complexes of Compact Type

In Section 71, we prove a version of the smoothing theorem of Eisenbud and Harris
[16] for curves of compact type in the setting of saturated metrized complexes with
underlying metric graphs being trees (we call them saturated metrized complexes of
compact type) as follows: on a saturated metrized complex of compact type, every
diagrammatic pre-limit linear series of rank one must be smoothable.

1.3.2 Application 2: Saturated Metrized Complexes with Genus-g
Underlying Metric Graphs Containing g Separate Loops

In Section 72, we follow the same philosophy in the proof of the above Eisenbud-
Harris Theorem and generalize it to a full combinatorial characterization of smooth-
able limit g} on a saturated metrized complex whose underlying metric graph I' con-
tains g separate loops. Note that the case for metric graphs made of chains of loops
that are used for tropical proofs of the Brill-Noether Theorem [14] and Gieseker—Petri
Theorem [26] falls into this category.
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1.3.3 Application 3: Saturated Metrized Complexes of Harris—-Mumford Type

Harris and Mumford [24, Theorem 5] considered specific families of nodal curves
and proved a smoothing theorem for limit g}, for curves in these families. Using this,
they obtained a partial characterization of the gonality stratum. We refer to satu-
rated metrized complexes corresponding to these families of nodal curves as Harris—
Mumford saturated metrized complexes and discuss them in detail in Section 7.3. The
setting of Theorem 5 of [24] is slightly different from ours since they worked with
nodal curves rather than saturated metrized complexes. In particular, the Harris-
Mumford types of saturated metrized complexes have flower-like underlying metric
trees (see Figure 9). In Theorem 7.6 we prove an analogue of [24, Theorem 5], while
Theorem 1.1 can actually be considered as a generalization of [24, Theorem 5] in the
above sense.

1.3.4 Application 4: Extending the Smoothing Criterion to Metrized
Complexes

Theorem 1.1 also suggests the following approach to an analogous smoothing criterion
for limit g, on metrized complexes: a limit g}, on a metrized complex is smoothable
if and only if this limit g, can be extended to a smoothable limit g} on a saturated
metrized complex that is a saturation of the original metrized complex. We have more
detailed discussions and give a concrete example in Section 7.4 to show that even in
the setting of metrized complexes, the smoothing criterion is still finitely verifiable.

1.4 Outline of the Rest of the Paper

The rest of the paper is organized as follows. In Section 2, we explain some no-
tions and terminologies essential to the paper. In Section 3, we study the relation
between smoothable limit g and harmonic morphisms between saturated metrized
complexes. In Section 4, we discuss the notions of bifurcation trees and partition
trees. In Section 5, we study properties of the spaces A%?%, A(DZ))%, Ag))g{, and Ag?ﬂ
that arise from different levels of obstructions of the limit gy from being smoothable.
In Section 6, we prove the smoothing criterion. Section 7 is devoted to examples and
applications of our smoothing criterion.

2 Some Notions and Terminologies Related to the Smoothing
Criterion

In this section, we first present the basic notions and terminologies, and then state an
alternative version of the smoothing criterion that is directly verifiable.

Let K be an algebraically closed field of characteristic 0 complete with respect to
a non-trivial non-archimedean absolute value. We assume that the value group of K
is the group of real numbers (IR, +). Let R be the valuation ring of K, and « be the
residue field of K that we also assume to be algebraically closed and of characteristic
0. (On the other hand, starting from x, we can also construct such a field K with value
group R and residue field « using generalized Puiseux series [29].) For an algebraically
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closed field K, we let Ko, = K U {oo} be the projective line P} with coordinates. The
above notations and assumptions will be applied throughout this paper.

2.1 Saturated Metrized Complexes

Definition 2.1 A saturated metrized complex € over an algebraically closed field x

consists of the following data.

(i) A metricgraphT.

(i) A smooth complete irreducible algebraic curve C, over « associated with each
point p € T such that C, is a projective line except for points in a finite subset of
I'. (For simplicity, we also use C,, to represent the set of closed points of C,.)

(iii) Forevery point p € I',an injection red,: Tanp (p) — C, called the reduction map
at p where Tanr(p) is the set of tangent directions on I incident to p, red, () is
called the marked point in C,, associated with the tangent direction ¢ € Tanr(p),
and A, = Im(red,) is the set of marked points of C,. For convenience, we
let Red: [1per Tanr(p) — Il,er Cp be defined as Red(t) = red,(t) when t €
Tanr(p).

The genus g(€) of € is defined as g(T') + ¥ ,cr g(Cp), where g(T') is the genus (the

first Betti number) of the metric graph I' and g(C, ) is the genus of the algebraic curve

C,. The genus of a saturated metrized complex is finite since C,, has genus zero for

all but a finite number of points p € I'.

Remark 2.2 The notion of saturated metrized complex follows the same philosophy
as that of metrized complex in [3], except there, only the points in a finite vertex set
A of T are associated with curves. Hence, by ignoring the curves associated with the
points in ' \ A for a vertex set A of I', we can derive a metrized complex ¢’ from a
saturated metrized complex €. We say that ¢’ is the restriction of € to A. Conversely,
given a metrized complex ¢’ and a saturated metrized complex €, we say that € is a
saturation of €' if €’ is a restriction of € and they have the same genus (the newly
inserted curves in € are all projective lines).

Remark 2.3  Saturated metrized complexes appear as the inverse image of a skeleton
in the map from the Huber adic space to the Berkovich analytification of a curve [20],
and are closely related to “exploded tropicalizations” [32].

2.2 Divisor Theory on a Saturated Metrized Complex

Here we give a natural extension of the divisor theory on metrized complexes in [3]
to a divisor theory on saturated metrized complexes. This divisor theory on metrized
complexes introduced in [3] combines the conventional divisor theory on algebraic
curves and an analogous divisor theory on metric graphs [21,28].

Let € be a saturated metrized complex with underlying metric graph I' and alge-
braic curve C,, at point p. A pseudo-divisor D on a saturated metrized complex € is
the data (Dr, {D, } per ), where Dr is a divisor on T’ and D,, is a divisor on the curve
C, satisfying the relation Dr(p) = deg(D,) for every point p € I'. We also say that
Dr is the tropical part of D and D,, is the C,-part of D. We say that a point u € C,
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is a supporting point of D if Dy(u) # 0. The degree of D is defined to be the degree
of Dr. If in addition D, = 0 for all but finitely many points p € I, then we call D a
divisor on €. We say D is effective if D, is effective for all points p € T.

Note that for any pseudo-divisor D on a saturated metrized complex, D,, will have
degree 0 for all but finitely many points p € T. However, D, can be non-zero for
infinitely many points in I', which is unconventional from the viewpoint of divisor
theory. The notion of divisors on a saturated metrized complex rectifies this aspect.

Remark 2.4  All divisors on € form a group isomorphic to @ ,er Div(C)) (the free
abelian group on [,y Cp). Therefore, we also write a divisor D on € formally as
D =3 per Dp, where D, is the Cy,-part of D.

A pseudo-rational functionis f = (fr, { fp} per )» Where fr is a tropical rational func-
tion (piecewise-linear function with integer slopes) on I and f, is a rational function
on the algebraic curve C,. We also say that fr is the tropical part of f and f,, is the
Cp-part of f. We say that | is nonzero if f, is nonzero for all p € T. The principal
pseudo-divisor div(f) associated with a nonzero pseudo-rational function f is defined
as (dv(fe), {div(fy) + divp(fi) hper) where divy (fr) = Sreran gy Sl (fr) (red (1))
and sl (fr) is the outgoing slope of the function fr along the tangent direction ¢. A
rational function is a pseudo-rational function whose associated principal pseudo-
divisor is a divisor. Divisors D; and D, are linearly equivalent if they differ by a prin-
cipal divisor.

As in the case of principal divisors on an algebraic curve or on a metric graph, the
set of the principal divisors on a saturated metrized complex forms an abelian group
under addition.

2.3 Limit Linear Series on a Saturated Metrized Complex

Definition 2.5 Let € be a a saturated metrized complex. A pre-limit linear series of
rank r and degree d (also known as a pre-limit g7;) on € is represented by the data
(D, H) where D = (Dr, {D,} per) is an effective divisor of degree d on € and H =
{Hp} per» where H, is an (r + 1)-dimensional subspace of the function field of C,,.

A limit linear series of rank r and degree d (also known as a limit g7) on Cis a
pre-limit g/, represented by (D, H) with 3 = {H,}per that satisfies the following
additional condition: for every effective divisor & = (Er, {E,}per) on € of degree r
such that the support of E, does not intersect the set A, of marked points of C,, for
every p € T, there exists a rational function § = (fr, {fp } per) such that f, € H, for all
points p € T'and D - € + div(f) > 0.

Our definition of limit linear series is a slight modification of the notion of crude
limit linear series in [3, §5.3]. For instance, we impose the additional restriction that
the support of E, does not intersect the set A,. This restriction is justified by Theo-
rem 3.7, which states that a specialization of linear series is a limit linear series.

Throughout this paper, unless otherwise specified, we let D = (Dr, {D, } per) and
I = {H,} per for convenience. When we say F = { f; } per is an element of J{, it means
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fp € Hp forall p € I'. In addition, we may also consider F as a function from [[,.r Cp
to « which sends u € C,, to f,(u).
We say a pre-limit g/; (respectively, a limit g’}) represented by (D, H) is refined if
(D, H) has the following additional properties.
* The constant function is contained in H,, for every point p € T.
* For every point p, the support of D, is disjoint from the set A, of marked points
of Cy.
The two conditions are justified by Lemma 3.11, stating that a smoothable pre-limit
g must be refined.

2.4 Alternative Version of the Smoothing Criterion

We have the following equivalent version of the smoothing criterion in Theorem L.1.
This version is finitely verifiable (see §2.7).

Theorem 2.6 (Smoothing Criterion, Version II) A pre-limit g}, (or a limit g,) repre-
sented by (D, H) on a saturated metrized complex is smoothable if and only if (D, H)
is diagrammatic, is solvable, and satisfies the intrinsic global compatibility conditions.

We primarily employ this version in the rest of the paper, in particular in Section 7.
The equivalence of these two versions of the smoothing criterion follows from Propo-
sition 5.6. In the rest of this section, we explain the terms diagrammatic, solvable, and
intrinsic global compatibility conditions that appear in the smoothing criterion. In
Section 7.4, we extend this smoothing criterion on saturated metrized complexes to
the case for metrized complexes in a natural way.

2.5 Diagrams Induced by (D, H) and Solvability

For a pre-limit g} represented by (D, H) to be refined, we extract the information in
the space H;, and associate a combinatorial object called a local diagram with a point
p € I'. A global diagram is formed by assembling the local diagrams at all points in T'
in a “continuous” way.

First let us give a more precise description of local and global diagrams on a metric
graph I'.

Definition 2.7 (i) A local diagram at a point p of I is made of following data.

(a) A nonzero integer m(p, t) called the multiplicity associated with each tangent di-
rection ¢ € Tanr(p), where Tanr(p) is the set of tangent directions emanating
from p. We refer to those tangent directions with negative multiplicities as in-
coming tangent directions and denote the set they form by Inr(p). Similarly, we
refer to those tangent directions with positive multiplicities as outgoing tangent
directions and denote the set they form by Outr (p).

(b) The elements in Tanr(p) are partitioned into equivalence classes with one of the
equivalence classes being exactly In(p). We refer to this partition of Tanr(p) as
the local partition at p and refer to the tangent directions that belong to the same
equivalence class as locally equivalent.
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(ii) An open neighborhood of a point p € T is called a simple neighborhood if
it is simply connected and every point in the neighborhood, except possibly p, has
valence two. For a simple neighborhood U of a point p € T', alocal diagram at a point
p induces a local diagram at any point q in U \ {p} as follows. Suppose that q lies
along the tangent direction ¢ € Tanr(p). Assign the integer —m(p, t) to the tangent
direction at g corresponding to the edge joining p and g and assign the integer m(p, t)
to the other tangent direction at q. Assign the two tangent directions at q to different
equivalence classes.

(iil) A global diagram on a metric graph I’ is a collection of local diagrams at all
the points in I such that the local diagrams satisfy the following continuity property:
for every point p, there is a simple neighborhood U of p such that for every point
q € U~{p} thelocal diagram induced by p at q coincides with the local diagram at g.

(iv) A global diagram on T is called solvable if there exists a tropical rational func-
tion p on T such that the outgoing slope sl¢(p) of p along the tangent direction ¢ €
Tanr(p) for any point p € T coincides with the multiplicity. Formally, this means that
the differential equation sl;(p) = m(p, t) is satisfied. This equation is referred to as
the characteristic equation of the global diagram.

Remark 2.8 Recall thata vertex set of T (the set of all points of valence at least three)
induces an edge-weighted graph called a model of T (see [6]). Since I is compact, the
multiplicity aspect of a global diagram can be represented in terms of the following
data: a model for T, an orientation of each edge of the model, and a non-zero integer
associated with each edge called the multiplicity of that edge. In other words, a global
diagram induces a piecewise-constant integer-valued differential form on I' and this
differential form is exact if the global diagram is solvable.

When a global diagram is solvable, the solution of the characteristic equation is
unique up to a translation by a constant. Since m(p, t) is nowhere zero for all p and
t € Tanr(p), the solution must have everywhere nonzero slopes.

For a two-dimensional linear space H,, of rational functions on C, that contains
the constant functions, we can naturally associate a local diagram defined with each
point of I'. The details of such a procedure are presented in the following construc-
tion. This construction translates the algebraic data encoded in J{ to combinatorial
data on T. Furthermore, the two aspects of the definition of local diagrams, mul-
tiplicity and local partition, are both motivated from the notion of harmonic mor-
phisms (§3.1).

Construction of Local Diagrams From J{  In the following, given a refined pre-
limit g} represented by (D, ), we associate a local diagram with every point on
the metric graph using the data 3{. From the definition of a refined pre-limit g},
we know that the two-dimensional linear space H,, of rational functions on C, has
a basis {1, f, } where f, is a nonconstant rational function on C,. Let 717: Cp = Koo
be the function on C, extending f, to its poles. We construct the local diagram at
p as follows: for a tangent direction ¢ of C,, we let the multiplicity m(p, t) be the
ramification index of f » at the marked point corresponding to the tangent direction ¢
with sign “~” if red, () is a pole of f, and sign “+” otherwise. The local partition at p
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Figure I: A local diagram (right) at p derived from H, on the curve C, (left) of genus 1.

is defined by declaring that two tangent directions are locally equivalent if and only if
their marked points are in the same level set of f,,. Hence Inr(p) is the set of tangent
directions whose corresponding marked points are the poles of f, and the elements of
Inr(p) are all locally equivalent. In this way, we construct a local diagram at p from
fp- Moreover, since different choices of nonconstant functions f, in H, afford the
same local diagram at p, we also say that this local diagram at p is induced by H,,.

Compatibility Between D and H{  For a nonconstant function f, € H,, we say
that DJTP and Dy are the effective and non-effective parts of div(f, ), respectively, if
div(f,) = D}P - D} andboth D}p and D}, are effective with no overlapping support-
ing points. Note that by the construction of the local diagrams from f,, the marked
point associated with an incoming tangent direction in Inp(p) is a pole of f, and we
must have D +Zemnp (pym(ps> t)(red, () > 0 (note that m(p, t) < 0 for ¢ € Inp(p)).
By comparing D, with D + Z¢erny (p) m(p,t)(red,(t)), we introduce the compat-
ibility between D, and H,. More precisely, we say that H,, is compatible with D,
or Dif D, > Dy + Ztetng (p)m(p> t) (red,(t)). We say that a supporting point of
Dy — Ziernp(pym(ps t)(red, (1)) - D} is a base point of (D, H) when D,, is compat-
ible with H,. In this sense, a supporting point of D, is either a base point of (D, J{)
or a pole of a nonconstant rational function in H,. We say D and J{ are compatible
if D, and H,, are compatible for all p € T. Note that the total number of base points
must be finite when D and J{ are compatible.

Example 2.9  Figure 1 illustrates the construction of a local diagram at p € I' using
a two-dimensional linear space H,, of rational functions on a genus-1 curve C,. We
suppose that each H), contains a constant function. Consider a nonconstant rational
function f, € H,. Suppose f, has degree 3 and the poles of f,, are u, u,, and u3 with
all ramification indices being 1, and points u; and u, are marked points with associ-
ated tangent directions ¢}’ and t. Then ¢} and t§ are incoming tangent directions with
m(p,t') = m(p,t3) = -1 Let c and ¢’ be distinct values in « and suppose f,"(c) =
{v1,v2,v3} with all ramification indices being 1and f, ' (¢") = {w1, w } with ramifica-
tion indices of w; and w; being 1 and 2, respectively. Suppose v;, wy, and w, are marked
points with associated tangent directions #{, t’, and ¢}/, respectively. Then ¢/, ¢}, and
ty are outgoing tangent directions with m(p, t}) =1, m(p, ;") =1,and m(p, £y ) = 2.
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Moreover, the corresponding local partition of Tany (p) is {{#}', &5}, {t7 }, {t]’, t5 } }.
Moreover, a divisor D, on C,, is compatible with H}, if and only if u; is a supporting
point of Dy,

Definition 2.10  We say that a refined pre-limit g} (respectively, limit g}) repre-
sented by (D, J() on a saturated metrized complex € = (T, {Cp } yer ) is diagrammatic
if D and 3 are compatible and the local diagrams induced by H form a global dia-
gram. In addition, if the global diagram induced by (D, J{) is solvable, then we say
that (D, H) is solvable.

2.6 Intrinsic Global Compatibility Conditions

In general, the extra condition in the definition of a (diagrammatic) limit g} over that
of a (diagrammatic) pre-limit g}; represented by (D, ) does not guarantee solvability
(see the example in §5.1). However, if (D, H) is smoothable, then it must be solvable
(see Theorem 2.6).

On the other hand, solvability is only a necessary condition for (D, ) being
smoothable. In particular, it does not fully utilize information in Hy. In order to
determine the smoothability of (D, 3(), we will construct the bifurcation tree B and
the natural surjection 73:I' - B from a solution to the characteristic equation and
introduce the intrinsic global compatibility conditions which are compatibility con-
ditions between H)’s and the map 7.

Let p be a rational function on I with everywhere nonzero slopes. For a point p in
T, recall that Tanr (p) is the set of tangent directions emanating from p. By Tanf" (p),
we denote the set of tangent directions in Tanr(p), where p locally increases. We
canonically associate p with a pair (B, 7 ), where B is a metric tree called the bifur-
cation tree with respect to p, and 75:T — B is a canonical projection from I' onto B
(see details of the construction in §4.1). In addition, B has a distinguished point called
the root. Moreover, 7 induces a push forward map 7. from the tangent directions
at all points in I to the tangent directions at all points in B. More precisely, if we let
TanZ; (x) be the set of forward tangent directions at x € B (meaning that the distance
function from the root increases along these directions), then by the construction in
Section 4.1, we have 75, (t) € Tang; (75 (p)) forall p € T and t € Tan} " (p).

Using the above notions, we formulate the intrinsic global compatibility condi-
tions. For a solvable (D, J{) with a solution p, let B be the bifurcation tree and let 7
be the corresponding projection from I' onto B.

Definition 2.11 A collection of non-constant rational functions G = {gp } per € H
is called admissible if it has one of the following equivalent properties.

e There is a function 7: [ I, Tang (x) — x such that G oRed(t) = oz, (¢) forall
te Upel" Tanlp“Jr (p)

* For each pair of tangent directions t; € Tanf"(p;) and t, € Tanf"(p,) such that
ng(p1) = s (p2) and 13, (f) = 1. (f2), we have

gpl(redpl(tl)) = ng (redpz(tZ))-
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We say that (D, H) satisfies the intrinsic global compatibility conditions if H contains
an admissible collection of non-constant rational functions.

2.7 Finite Verification of Intrinsic Global Compatibility Conditions

In this section, we will show that the intrinsic global compatibility conditions can
be verified in finitely many steps, which makes Theorem 2.6 an effective smoothing
criterion.

A point p € T is called an ordinary point of p if its valence is two, the slopes of p
at p in the two tangent directions have the same magnitude and opposite signs, and
the curve C, has genus 0. Denote the set of ordinary points by O,. The points in
€, = I'\ O, and the values in the image of p restricted to &, are called exceptional
points and exceptional values of p, respectively. Note that £, is a finite set.

The intrinsic global compatibility conditions are finitely verifiable since the veri-
fication can be restricted to the set £, of exceptional points, which is finite. This is
because for any ordinary point p € O,, there is only one forward tangent direction ¢
in Tan?" (p), and by Lemma 2.12 we can always find some non-constant g, € H, such
that g, (red,(t)) = c for whatever desirable ¢ € «.

Lemma 2.12 Let C be a curve over k and H the linear subspace of the function field
of C spanned by {1, f}, where f is a non-constant rational function on C.

(i)  Suppose u is a point on C that is not a pole of f. Then for any value ¢ € «, the
space of all rational functions in H taking value c at the point u is a line in H.

(i) Suppose u; and u, are points on C that are not poles of f and f(u1) # f(uz).
Then for any distinct values cy, ¢, € k, we can always find a unique non-constant
g € H such that g(u;) = ¢; and g(uz) = c».

Proof All rational functions in g € H can be expressed as a linear combination of 1
and f,ie, g=a+ Bf € Hfor some a, 8 € x. For (i), the space {g € H | g(u) = ¢} =
{a+ff|a+pBf(u)=cisalinein H. For (ii), the linear equations « + S (u;) = ¢;
and a + Bf(u2) = ¢, have a unique solution for « and f3. [ |

More accurately, we have the following algorithm to determine whether (D, ) is
smoothable (see also Example 5.5).

Algorithm 2.13  Input: A diagrammatic pre-limit g, represented by (D, ).
Output: Whether (D, H) is smoothable.

1 Determine whether (D, 3() is solvable. If not, then (D, H) is not smoothable. If
yes, let &, be the set of exceptional points.

2 Fix a basis {1, f, } of H, for all exceptional points p € £, and consider a collection
of finitely many variables {a,, B, } pee,,-

3 For each pair (f;,1,) such that t; € Tanf' (p1), t, € Tanf (p2), pi.p2 € &,
g (p1) = 18 (p2), and g, (1) = 15 (t2), add a linear restriction

ap, + fp (redy, (1)) Bp, = ap, + fp,(red,, (2))fp,-
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4 (D, H) satisfies the intrinsic global compatibility conditions and thus is smooth-
able if and only if there exists a solution for {a,, B, } yce, satisfying the linear re-
strictions in (3) and B, # 0 for all p € €. In particular, in the case {a;, B, } pee, is
a solution. If welet g, = a, + B, f, for pe €, and g, = f,, for p € O, then {gp } per
is admissible.

3 Morphisms of Saturated Metrized Complexes and Their Relations
to Smoothability

In this section, we give precise definitions of pseudo-harmonic morphisms and har-
monic morphisms of saturated metrized complexes and smoothability of a pre-limit
gllj (Definition 3.8) and study their close relations to smoothable limit glljs (§3.3). We
use notions from the theory of Berkovich analytic spaces with explanations in Appen-
dix A. The reader is urged to use references [6, 8] with an elaborate treatment of this
analytical construction.

3.1 Pseudo-harmonic Morphisms and Harmonic Morphisms

We give a natural extension of the notion of harmonic morphism of metrized com-
plexes from [4,5] to saturated metrized complexes. We start with the notion of pseu-
do-harmonic morphism of saturated metrized complexes.

Let € and ¢’ be saturated metrized complexes. The underlying metric graphs of €
and €' are I and I respectively, and the associated curves of € and € are {Cp} per
and {Cy } gerv, respectively.

Definition 3.1 A pseudo-harmonic morphism between € and ¢’ consists of the data
{¢r, {@p}per}, where ¢r:T' — I’ is a continuous finite surjective piecewise-linear
map with integral slopes (that is called a pseudo-harmonic morphism between T' and
I') and ¢,:C, — C’(/,r (p) s a finite morphism of curves that satisfies the following
compatibility conditions.

* Forall p € T, two tangent directions t;, t, € Tanr (p) are mapped to the same tangent
direction t' € Tany:(¢r(p)) by the induced map of ¢r if and only if the marked
points corresponding to t; and t, are mapped to the marked point corresponding
to the tangent direction t' by ¢,,.

e Forall p € I' and all tangent directions ¢ € Tanr(p), the expansion factor d;(¢r) of
¢r along ¢ coincides with the ramification index of ¢, at the marked point corre-
sponding to the tangent direction ¢. Here the expansion factor d;(¢r) is the abso-
lute value of the slope of ¢r along ¢, i.e., the ratio of the length between ¢r(p) and
¢r(q) over the length between p and g, where q is near p in the direction ¢.

Definition 3.2 A pseudo-harmonic morphism {¢r, {¢,}per} between saturated
metrized complexes € and €’ is called a harmonic morphism at a point p € T if ¢r is
harmonic at p and the degree of ¢r at p € T' is the same as the degree of ¢,. More
explicitly, we say ¢r is harmonic at p if it is a pseudo-harmonic morphism of metric
graphs satisfying the following balancing condition: for any tangent direction t' €
Tanr (¢(p)), the sum of the expansion factors d;(¢r) over all tangent directions ¢ in
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Tanr(p) that map to ¢/, i.e., the integer

>, di(¢r)

teTanr (p)

t>t’

is independent of ¢'; it is called the degree of ¢r at q.

We say ¢r is a harmonic morphism of metric graphs if ¢ is harmonic at each
peT,and {¢r,{¢p}per} is a harmonic morphism of saturated metrized complexes
if {¢r, {¢p}per} is harmonic at each p € T.

Remark 3.3  More precisely, our notion of harmonic morphisms of saturated met-
rized complexes corresponds to the notion of finite harmonic morphisms of metrized
complexes [5].

The notion of harmonic morphism allows us to define the notion of isomorphism
of saturated metrized complexes. Two saturated metrized complexes €, and €, are
isomorphic if there is a harmonic morphism €¢;: ¢; - ¢, and a harmonic morphism
C¢,: €, — €, such that €¢, o €¢p, and €¢; o C¢, are identity maps on ¢; and &5,
respectively.

The following theorem summarizes the lifting results of saturated metrized com-
plexes that is a direct corollary of the lifting theorems for metrized complexes in [5].
See Appendix A.1 for the association of a saturated metrized complex with a skeleton
of a Berkovich analytic curve.

Theorem 3.4  We have the following lifting properties for saturated metrized com-
plexes and harmonic morphisms of saturated metrized complexes.

(i) Let € be a saturated metrized complex of curves over k. There exists a smooth
curve X /K and a skeleton T of the Berkovich analytification X** of X such that €
is isomorphic to the associated saturated metrized complex of X.

(i) If€¢:€ — & is a harmonic morphism of saturated metrized complexes where &'
is isomorphic to the saturated metrized complex associated with a skeleton of the
Berkovich analytification X'*® of a smooth curve X' [K, then there exists a finite
morphism ¢: X — X' of curves over K such that € is isomorphic to the associated
saturated metrized complex of a skeleton of X** and ¢ induces €¢.

Proof For part (i), we can choose a vertex set V of the underlying metric graph I’
of € such that the curves associated with points in £ \ V are all projective lines over
« with two marked points. Let €y be the metrized complex derived from restricting
¢ to V (Remark 2.2). We can lift &, to a smooth curve X over K with skeleton X by
the lifting theorem of metrized complexes. It is then straightforward to verify that €
is isomorphic to the associated saturated metrized complex of .

For part (ii), we choose vertex sets of € and €’ fine enough to derive metrized
complexes €, and €, respectively, such that the harmonic morphism €¢ of saturated
metrized complex can be restricted to harmonic morphism €¢o: €y - & of metrized
complexes. By the lifting theorem of harmonic morphism of metrized complexes, we
can lift €¢y to a finite morphism ¢: X — X’. Then ¢ is induced by ¢. |
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The rest of this subsection contains the notion of pullback of a harmonic morphism
and the notion of modification of saturated metrized complex. This will be used in
the proof of the smoothing criterion (§6).

Remark 3.5 (Pullback divisor and pullback function of a harmonic morphism) Let
€p = (¢r,{¢p}per) be a harmonic morphism between saturated metrized com-
plexes € and €’ whose underlying metric graphs are T and I", respectively. Let p’
be a point in I and u’ be a point in the associated curve Cj, of p’ in €’. Let E,r
be the degree one effective divisor on €’ whose only supporting point is u’. Then
we can naturally associate a pullback divisor €¢*(E,») € Div(€) of E,s defined as
follows: (1) the tropical part of €¢*(E,) is the pullback divisor ¢5((p")) € Div(T)
of the divisor (p’) € Div(I"), (2) the C,-part of €¢*(E,) is the pullback divisor
¢, ((u")) € Div(C,) of the divisor (u") € Div(C},) if p € ¢:'(p'), and (3) the Cp-part
of €¢*(E,/)is0if p ¢ o' (p’). Note that the properties of harmonic morphisms guar-
antee that €¢*(E,) is a well-defined divisor on €. We may sometimes also simply
refer to the pullback divisor of E,- as the pullback divisor of the point #’. Since we
can formally write E,» = (1') (Remark 2.4), we can also formally write

(W)= X ¢5((w)).

pedr'(p’)

Moreover, by letting €¢* preserve linear combinations, we can naturally associate a
pullback divisor €¢*(D’) on € with each divisors D’ on €.

On the other hand, if ' = (f7, {f } prerv) is a rational function on €', then we can
also pullback ' to a rational function €¢*(§') on € in a natural way: the tropical part
of €¢*(§') is the pullback function ¢7(f{,) of f{,, and the C,-part of €¢*(§') is the
pullback function ¢5(f; ) of the rational function fi . It is straightforward to
verify that the principal divisor associated with the pullback function of f' is the same
as the pullback divisor of the principal divisor associated to .

A metric graph T™°9 is called a modification of a metric graph T if T is isometric
to a subgraph of I™°d and the genus of ™9 is the same as the genus of T.

A saturated metrized complex €™°4 is called a modification of a saturated metrized
complex € if (1) the metric graph [™°¢ underlying €™°4 is a modification of the metric
graph T underlying €, (2) g(€™m°9) = ¢(&), and (3) for each point p € T, when p is
also considered as a point in ™4, the curve associated with p in € is identical to the
curve associated with p in €™°4 and the reduction map of € at p is identical to the
reduction map of €™m°4 at p restricted to Tanr(p) (note that in this setting we have
Tanpmos (p) 2 Tanr(p)).

Remark 3.6 If €™°¢ is a modification of € as saturated metrized complexes with
underlying metric graphs I™°¢ and T, respectively then by the retraction map from
™04 to T, a divisor on I'™°? also naturally retracts to a unique divisor on T. In addi-
tion, a divisor on €™m°4 naturally retracts to a divisor on € and any specialization map
of divisors factors through the retraction map of divisors.
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3.2 Smoothability

The following theorem is the analogue of the specialization theorem for saturated
metrized complexes [3, Theorem 5.9].

In Appendix A, we show that for a smooth curve X/K, we can associate a satu-
rated metrized complex €(X) with a Berkovich skeleton 2 of X*", and there exists a
specialization map 7, that takes a divisor on X to a divisor on €(X) and a reduction
map that takes a rational function on X to a rational function on €(X).

Theorem 3.7  Forany g, on X represented by the pair (D, H), where H is an (r+1)-di-
mensional linear space of rational functions on X, the data (1.(D), {H,} per), where
H,, is the image of H under the reduction map at p, is a limit g, on ().

Proof By Lemma A .4, the dimension of the space H is preserved by the specializa-
tion map. From Lemma A.3, we know that for any effective divisor € = (Er, {E } per)
such that E, has support in S, for every p ¢ T, there exists an effective divisor E on
X such that 7, (E) = €. Since (D, H) represents a g/; on X, there must be a rational
function f € H such that D — E + div(f) > 0. We apply the specialization map to
this inequality. Using the property that the specialization map is a homomorphism
between divisor groups that preserves effective divisors, combined with Theorem A.5,
we conclude that 7, (D) — & + div(f) > 0. [ |

The following definition of smoothability of a pre-limit (or limit) g}; represented
by (D, 3) accounts for whether (D, H) can be “lifted” to some g/} represented by
(D, H).

Definition 3.8 A pre-limit g/; (respectively, a limit g/;) represented by (D, H) on a
saturated metrized complex € is said to be smoothable if there exists a smooth proper
curve X over K and a skeleton X of the Berkovich analytification X*" of X such that
¢ is isomorphic to the saturated metrized complex associated with X and there exists
a g/, on X that is represented by (D, H) such that the associated pre-limit g/, (respec-
tively, a limit g;) on € is represented by (D, J().

Remark 3.9 Since K is a large field with value group R, we have no restrictions
on the edge lengths of the underlying metric graph of €, and the above definition of
smoothability is in the most general form.

Remark 3.10 Theorem 3.7 actually tells us that we do not need to distinguish the
notion of a smoothable pre-limit linear series and the notion of a smoothable limit
linear series. The extra restriction on limit linear series over pre-limit linear series is
guaranteed by smoothability.

3.3 Smoothable Pre-Limit ¢g; and Harmonic Morphisms

Let K be any algebraically closed field. Let H be a two-dimensional linear space of
rational functions on a smooth proper curve X over K. Assume constant functions
are contained in H. Then all nonconstant rational functions in H have the same poles
and same order on the poles. We say the degree of H is the degree of any nonconstant
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function in H. Therefore, H defines a morphism ¢: X — P} of the same degree, where
P} has a marked point co such that all nonconstant rational functions f in H factor
through ¢ via a degree one rational function on P}, such that all poles of f map to oo
in P}. Conversely, given a morphism ¢: X — P}, where P} has a marked point oo, we
know that the linear space £((o0)) associated with the divisor (o) is a degree one
two-dimensional linear space of rational functions on P that pulls back to a two-
dimensional linear space H of rational functions on X by ¢ and has the same degree
as ¢. Note that £((o0)) contains constant functions on P} and H contains constant
functions on X.

Suppose €(T) is a genus zero-saturated metrized complex over x with underlying
metric tree T. Then any two distinct effective divisors on €(T) differ by a principal
divisor associated with a degree one rational function on €(T'). Moreover, by embed-
ding T isometrically into the analytification of IP’]IK and using the lifting theorem (The-
orem 3.4), we may consider T as a skeleton of P, whose associated saturated metrized
complex is naturally isomorphic to €(T). In addition, since €(T) is of genus zero,
all divisors and rational functions on €(T) are liftable to Pk with linear equivalence
respected.

Now let € be a saturated metrized complex with underlying metric graph T’

Lemma 3.11 A smoothable pre-limit g, on € is refined limit g7,

Proof A smoothable pre-limit g7; is a limit g/, by Theorem 3.7. We show that a
smoothable limit g’; satisfies the two properties of refined limit g;. For the first prop-
erty of refined limit g}i, we note that the constant function is contained in H where
(D, H) is any smoothing of the limit g7, and it follows from the Poincaré-Lelong
Formula (Theorem A.5). Using the characterization of the image of the specializa-
tion map obtained in Lemma A.3, we deduce that a smoothable limit g satisfies the
second property of a refined limit g7. ]

Remark 3.12  For a smoothable pre-limit g, represented by (D, H) on €, we must
have D and H compatible with each other.

Theorem 3.13 A pre-limit gy represented by (D, 3) on € is smoothable if and only

if there exists a modification €™°% of € and a harmonic morphism

¢¢m°d = (‘Prmod’ {¢P}pel“m°d)
from €4 to q genus zero saturated metrized complex €(T) such that

(i) D is the retract onto € of the pullback divisor on €™ by €™ over a degree one
effective divisor (u") on €(T),

(ii) foreach p €T, if g, is the Cp-part of the pullback function of a rational function
on €(T) of degree < 1 with only one possible pole at u’, then g, € Hy.

Proof First, by Lemma 3.11 and Remark 3.12, we can assume that (D, ) is refined,
and let us first assume (D, H) is base-point free.

If (D,H) is smoothable, there exists a smooth proper curve X over K and a
skeleton (X**, V) of X such that the saturated metrized complex associated with
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(X*", V) is isomorphic to € (we identify them in the following for simplicity of dis-
cussion and thus I' = £(X*", V)). Let (D, H) represent a g on X corresponding to
(D, H) that is also base-point free.

Consider amap ¢: X — P}, defined by H, where P}, is marked with a point cok and
D is the pullback divisor of ¢ over the point cox of Pk.. Then H is the pullback of the
two-dimensional linear space £( (oo )) associated with (cog ) € Div(Pk) by ¢. The
analytification functor induces a map ¢*: X** — Py, , where P, , is the Berkovich
analytification of P},. We restrict the map ¢*" to the skeleton I' to obtain a surjective
map ¢r:T — T, where T is a skeleton of P, . Let I™°¢ be (¢*")~!(T), which is a
skeleton of X such that I'™°¢ 2 T, Restricting the map ¢*" to the skeleton I™°¢, we get
amap Grmea: I — T, Let €M°d be a saturated metrized complex associated with
X with skeleton I™°¢, Let ¢(T) be a saturated metrized complex associated to Pherk
with skeleton T

The reduction to €™°¢ of H and the reduction to &(T) of £((ook)) define maps
$p:Cp — C;brmod(P) for all p € I'™°¢ that respect ¢. Then the data (¢r, {$,} per) sat-
isfies the compatibility conditions of a pseudo-harmonic morphism (Definition 3.1),
and the data (¢rmed, {¢p } permoa) satisfies the conditions of a harmonic morphism
(Definition 3.2). Furthermore, the specialization of D to ¢™°¢ is the pullback divi-
sor D™ by (Prmea, {¢p} permoa) over a degree one effective divisor, denoted by (u”),
that is the specialization of the divisor (cox) € Div(Pk) to €(T). In addition, D is
the specialization of D to € that is also the retract of D™°¢ to €. On the other hand,
since H is the pullback of £((ook)) by ¢ and the space of rational functions ' on
&(T) of degree < 1 with the only possible pole at u’ is exactly the reduction to €(T)
of £( (oK )), the Cp-part of the pullback function of f* must be an element of H,, the
reduction of H at C,.

Conversely, suppose that there is a harmonic morphism €¢™°¢ = (¢r, {¢, } permod)
between saturated metrized complexes €™°¢ that is a modification of € and a genus
zero metrized complex €(T). Let D be the retract onto € of the pullback divisor D™4
over a point u’ € C;, in €(T) by €¢™°4, For each p’ € T, restricted to the Cy,-parts,
the rational functions §' on €(T') of degree < 1 with the only possible pole at u" make
up a two-dimensional linear space H’, of rational functions on C’,. Pulling back H’,
for all p’ € T by €¢™°¢, we obtain two-dimensional linear spaces H,, forall p € T. In
this way, we get the data (D, ) where H = {H,}.

By the lifting theorem (Theorem 3.4), we can lift €¢™°4: ¢™°4 — ¢(T) to a finite
morphism ¢: X — P} of K-curves. Mark a point in P}, by cox whose reduction to
&(T)isu’. Let D be the pullback divisor of ¢ over the point cog and H be the pullback
of the two-dimensional linear space £((oox)) associated with the divisor (oog) by
¢. Then the lifting theorem also guarantees that (D, ) can be smoothed to (D, H).

Suppose that (D, H) has base points uy, ..., u, with orders ay, ..., an,, respec-
tively. Then D’ = D - 37, a;(u;) is base-point free. Since (D, H) is smoothable
if and only if (D', H) is smoothable, the smoothing criterion on (D', ) can be ex-
tended to the smoothing criterion on (D, H). ]
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4 Bifurcation Trees and Partition Trees

In this section, we investigate in detail the definitions and properties of bifurcation
trees and partition trees, which are notions employed in the smoothing criterion.
A solvable diagrammatic pre-limit g, has a solution p to its characteristic equation
(unique up to addition by a constant function) from which we can canonically con-
struct a rooted metric tree called the bifurcation tree B and a projection ng: T - B
for p (§4.1). Partition trees are derived from the bifurcation tree B by suitably glu-
ing the branches of B (§4.2). In particular, any metric tree T underlying the genus-0
metrized complex €(T') in the commutative diagram in Section 1 must be a partition
tree. The treatment will be expanded in Sections 5 and 6 leading to the proof of the
smoothing criterion.

4.1 Bifurcation Trees

Let p be arational function on I with everywhere nonzero slopes and let p':= p—min p
be the normalized function of p with minimum value zero. For a real number ¢ and
* € {>,<,<,>,=}, the set S¢, is defined as {p € T | p(p) * c}. Denote the set of
connected components of S5, by Comp(S%,).

For each value ¢ € Im p, the connected components of SZ, are called closed super-
level components at ¢, and the connected components of SY,. are called open superlevel
components at c.

Remark 4.1 Here we summarize some facts about closed and open superlevel com-
ponents that are immediate from their definition.

e For ¢ € Imp, for any open superlevel component 8 € Comp(SZ,), there exists a
unique closed superlevel component a € Comp(S%,) such that a 2 S.

* For each ¢, ¢’ € Imp such that ¢ < c and a € Comp(S%,), there exists a unique
element a’ € Comp(S? ) such that «’ 2 a.

. 14 . . . .

Comp(SmePEr o p)) is a singleton whose element is the whole metric graph T

P
2c

e For a; € Comp(S
that there exists a3 € Comp(S’; o) With &z 2 a1 U ;. In particular, ¢; < min(cy, ¢2)
and «; is the unique smallest closed superlevel component containing a; U a;.

) and a; € Comp(S%,,), there exists a largest c; € Im p such

We define the notion of bifurcation tree associated with p as follows (see also Ex-
ample 4.8).

Definition 4.2  Consider a rational function p with everywhere nonzero slopes. The
bifurcation tree B with respect to p is a rooted metric tree constructed in the following
way.

* By abuse of notation, we also use B to represent the set of points of B. We identify
the set of points of B with the set of all closed superlevel components of p by the
bijection i5: B — 1 i , Comp(SE,).

* We assign a metric structure dg to B. For x;,x; € B, let x; v x, be the (unique)
element in B such that 15 (x; v x) is the smallest closed superlevel component that
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contains 3 (x1) U t5(x2). Suppose i (x1) € Comp(S,, ), 15 (x2) € Comp(S5,),

and 153 (x; vV xp) € Comp(S’;CS). Then we let dg (x1, x2) = ¢1 + ¢ — 2¢3.
* The root r(B) of B corresponds to the unique closed superlevel component at

minper p(p), which is the whole metric graph T.

For x € B, if 15 (x) € Comp(S%,), where ¢ € Im p, we let df (x) = c and d, (x) =
¢ — minper p(p). Note that d, (r(B)) = minper p(p), d3 (r(B)) = 0, and d, (x) =
dg (r(B), x). We now show that B is well defined as a metric tree with an associated
partial order.

Proposition 4.3 B constructed in Definition 4.2 is a rooted metric tree.

Proof Here we give a proof following a general construction of parametrized rooted
trees and rooted R-trees as discussed in [7, Appendix B5]. We will show that B can
be constructed as a tree by gluing subsets of B that are isometric to line segments and
then dg is a well-defined metric on B.

We first note that a partial order can be associated with B, i.e., for two points x
and x’, we say x > x" if 13(x) 2 15(x’). Clearly df (x) < df(x) if x > x". By
Remark 4.1, this partial order is well defined and it is easy to verify that B is a join-
semilattice under the join operation v where for any two elements x and x" in B, xvx’
corresponds to the smallest closed superlevel component that contains 15 (x)Uts (x")
as in Definition 4.2. Note that x > x” whenever x v x” = x, and r(B) is the unique
maximal element. For x;, x, € B, suppose that x; > x,, which means x; v x, = x;. Let
d%(xl) = ¢;and d% (x2) = c;. By definition, we have d (x1, x2) = ¢c1+¢c2—2¢1 = ¢2—¢1.
We claim that X = {x € B | x; > x > x,} is isometric to a closed segment of length
¢, — ¢1. First, note that d (x) € [c,c;] for any x € X. Now for each ¢ € [c1, ],
there exists a unique x € B such that df} (x) = c and x > x,, i.e., 1 (x) is the unique
closed superlevel component in Comp(S%,) that contains 15 (x,) (Remark 4.1). On
the other hand, we must have x; > x at the same time and thus x € X. Therefore, by
sending c to x, we can define a bijection ¢: [c1, c;] = X. It remains to show that ¢ isan
isometry. Actually, by an analogous argument as above, we see that for any yy, y, € X,
we either have y; 2 y, or y, > yyand dg(y1, ¥2) =dy — dy if y1 > ¥, and d% (n)=d;
and df (y2) = d,. It follows that ¢ is an isometry. Here, we write [x;, x,] to represent
X as a closed line segment, and let (x, x2] = [x1, x2] N {x1}, [%1, x2) = [*1, 2]~ {x2},
and (x1,x2) = [x1, %3] ~ {x1, %2}

Since p is a rational function with everywhere nonzero slopes, there are only
finitely many points xi, . .., x,, in I at which p takes local maximum values. Let

X;={xeBlx2x} fori=1,...,m.

Then X; = [r(B),x;]. Note that we must have B = U, X;. Let us reconstruct B
by gluing X; one by one. First let us glue X; and X,. Note that x; v x, > x1, x2, and
thus x; v x, € X; N X,. This means that X; n X, = [r(B),x; vV x;] and X; U X, =
[r(B),x1 vV x2] LI(x1 Vv x2, %] LI (%1 V %2, x2]. Note that it follows that X; U X, is a
(topological) tree. Let us do this construction in general. Suppose we have derived
X" =X, u---UX;asatree already. Consider Y = {x;;; vx;|j=1...,i}. Clearly Y
is a subset of X;,;, which means Y is totally ordered. Let y be the minimum element
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of Y. Then X' n X;4; = [r(B),y],and Xj U U X;41 = X' U X1 = X' Ly, %111,
which is also a tree. Thus B is a tree.

It remains to show that d3 is a metric on the whole tree B. We verify from the
definition that for each x1, x, € B, ds (x1, x2) = dg (x1, 1V x3) + dg (x2, X1 V x,). For
each x3 € B, consider x; V3 and x, vx3. Without loss of generality, we can assume: (1)
x1VXx3 > XoVx3 or (2) x1Vx3 = x,Vx3. For case (1), we have x1 VX, Vxs = x1Vx) = x1VXs,
and thus

dp(x1, %) =dp(x1,x1V X3V x3) +dp(x1 VX3 Vx3,% Vx3) +dp(x3V x3, %)
< (drg(xl,xl VX Vx3)+de(x VvV Vxs,xaVas)+ds(x; vx3,x3))
+ (dgg(xz V X3, %) + dn(x; vx3,x3))
=dp(x1,x3) + dp(x2,%3),

where equality holds if and only if x5 > x,. For case (2), we have x; vx, vxs = x1 VX3 =
X3 V X3 2 X1 V X3, and thus

dp(x1,x2) =dp(x1, %1V x3) +dp(x2, %1V x2)
< (dg(xl,xl Vxy)+dp(x1Vxy,xiVxaVas)+de(xs,x ViV x3))
+ (dg(xz,xl V) +dp(x1Vxy,x1VayVas)+de(xs,x ViV x3))
=dg(x1,x3) +ds(x3,%3),

where equality holds if and only if x3 = x; v x,. Therefore, the triangle equality is
satisfied and d is a metric. [ |

Remark 4.4 Intheabove proof, note that the leaves of B other than r(‘B) are in one-
to-one correspondence with those closed superlevel sets which are singletons, and in
one-to-one correspondence with local maximum points of p (which we may also call
sink points of p). Denote the set of leaves of B by Leaf(B). We call a point x of B
with | Tan% (x)| > 2 a bifurcation point of B and denote the set of bifurcation points by
Bif (B). Then (B) nBif(B) = &, and Leaf (B) uBif (B) is the set of points of valence
other than 2 in B together with r(B). Note that we have either r(B) € Leaf(B) or
r(B) € Bif (B). We call the image of d’; restricted to the minimal vertex set of B the
set of bifurcation values, denoted by Bif ,. Then Bif,, is finite and we have Bif, ¢ &,,
where &, is the set of exceptional points of p.

For a point p in T, recall that Tanf." (p) is the set of tangent directions in Tanr (p)
emanating from p where p locally increases. Similarly, we let Tanf ™ (p) be the set of
tangent directions where p locally decreases. Then Tanr (p) = Tanf" (p) [1 Tanf (p).

Let T be a metric tree rooted at r(T'). For a point x in T, we say a tangent direction
t € Tang(x) is a forward (respectively, backward) tangent direction at x if the distance
function from the root increases (respectively, decreases) along ¢. Denote by Tan; (x)
(respectively, Tang(x)) the set of forward (respectively, backward) tangent directions
at x. Note that Tan7(x) is empty if x is the root of T and a singleton otherwise.

We state without proofs of Lemma 4.5 and Lemma 4.6, which follow naturally from
the construction of the bifurcation tree B with respect to p. Lemma 4.5 states that p
factors through d%, by the canonical projection 75:T — B. Lemma 4.6 states that
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the set of forward tangent directions on B can be identified with the set of all open
superlevel components of p.

Lemma 4.5 For p €T, there is a unique closed superlevel component « at p(p) that
contains p. Sending p to 13 (), induces a canonical projection ng:T — B. Moreover,
the map m is continuous, piecewise-linear, surjective, and satisfies p = df, o 3.

Lemma 4.6  There is a canonical bijection

in: 11 Tanjs(x) > 11 Comp(SL.).

xeB celm p

In particular, Tan; (x) is in bijection with {B € Comp(Sfd,, (x)) |Bcin(x)}.
B

Remark 4.7 The projection mg naturally induces a pushforward map

mp«: | [ Tanr(p) » [ ] Tanz (x).

pel xeB

In particular, if t € Tan? (p), then 75, (t) is the unique element in Tang (7(p));
if t € Tan?" (p), then 75, (t) € Tang (75 (p)) and more precisely is (5. (1)) is
the unique open superlevel component of p with p on its boundary and ¢ pointing
inwards. Note that 73, is surjective.

Example 4.8 In Figure 2, suppose {01, 02, p1, P2, P3»> 1. 92> g3} is a vertex set of T
(upper panel) and all edges have length 1. Then a global diagram on T with all multi-
plicities being 1 along directions marked by the arrows is solvable and we suppose a so-
lution is p with the corresponding bifurcation tree B and the canonical projection 7.
In particular, as shown by the vertical dashed lines, the point x is the root of the bifur-
cation tree corresponding to the unique closed superlevel set at min,cr (p) (the whole
metric graph T'), which is also the image of 0, and 0, under ng; y; = n5(p;), corre-
sponds to the closed superlevel component {p; }; y» = n(p2) = 75 (ps3) corresponds
to the closed superlevel component that is the union of all closed edges connecting p,,
P3» q1- q2-and g3; for i =1,2,3, z; = g (q;) corresponds to closed superlevel compo-
nent {q;}. Notethatz; vz, =z1Vz3 =2z3Vzz = yoand y1 vz = y1Vzp = )1 V23 = X.
Thenfori, j=1,2,3andi # j,wehaveds (zi,zj) = ds(zi, y2) +ds(zj, y2) =1+1=2
and ds(z;, y1) = dg(zi,x) + ds(y1,x) = 2 +1 = 3. In addition, the tangent direc-
tion from y, to z; corresponds to the open superlevel component (p2, q:1] U (p3, q1],
the tangent direction from y, to z, corresponds to the open superlevel component
(p2-92] Y (p3, g2], and the tangent direction from y, to z3 corresponds to the open
superlevel component (p», q3] U (p3,g3]. Moreover, Leaf(B) = {y1,21,22,23} and
Bif (B) = {x, y»}.

4.2 Partition Trees

We now generalize the notion of bifurcation trees to objects called partition trees.
Partition trees are the elements in the spaces A%?H, Ag?}c, A(D3,)}C’ and Ag’)}( treated

in Section 5.
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y4

Figure 2: An illustration of a bifurcation tree B of I and the canonical projection 3.

For each rooted metric tree T with root r(T), we can define a distance function
d3:T — R that takes a point x € T to the distance between r(7T) and x. Note that
this is consistent with the definition of d%, where B is some bifurcation tree B with
respect to p introduced in the previous subsection.

Definition 4.9 Let p:T — R be a rational function on I with everywhere nonzero
slopes. We call (T, 75), or simply T, a partition tree with respect to p if T is a rooted
metric tree and 7r5: ' — 7 is a continuous finite surjection (finite means all fibers are
finite) such that p = d o 7y, where p = p — minper p(p). We let A, be the set of all
partition trees with respect to p.

Example 4.10  Let B be the bifurcation tree with respect to p and 7 the canonical
projection from I' onto B. Then (B, 73 ) € A,, following from Lemma 4.5 directly.

Example 4.11 The segment Im p can be considered as a metric graph with root
minper p(p). Clearly (Imp, p) € A,.

The following proposition says that all partition trees can be constructed by gluing
the bifurcation tree properly.

Proposition 4.12  Let p:T — R be a rational function on a metric graph T with ev-
erywhere nonzero slopes and let B be the bifurcation tree with respect to p. Let p =
p — minper p(p). Let T be a rooted metric tree and let mg:T — T be a continuous fi-
nite surjection. Then (T,my) € A, if and only if there exists a continuous surjection
0%:B — T such that the following diagram commutes.
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Proof If the diagram commutes, then (T, 75) € A, by the definition of partition
trees. Now suppose (T,75) € A,. Then p = d} o 7y and we just need to find the
canonical projection ®2 from B to T such that 75 = @2 o 75 and d§ = d 0 @2.

For a point x € B, let ¢ = d% (x). Note that 15 (x) € Comp(S%,) and by definition
of 3, we have 73 (x) = din(x), where di(x) is the set of boundary points of
155(x). We claim that for any two points p, q € dip(x), we have n5(p) = n3(q).
Note that d3 (7(p)) = d2(77(g)) = B(p) = P(q) = ¢, since F = d o5 = d% o 7.
Let Y = {y € T | d}(y) > c}and 9Y = {y € T | d3(y) = c}. Note that each
connected component of Y has exactly one boundary point in 0Y, since T is a metric
tree. Clearly ns(p), n7(q) € dY and 75 (15(x)) € Y. Since i5(x) is connected
and 7 is continuous, 75 (15 (x)) must be connected, which is only possible when
n5 (1 (x)) is contained in one connected component of Y. This implies 75 (p) =
n5(q).

Define ®2 (x) to be this point 73(p) = 75(q) € T. The above argument shows
that ®2 is well defined. The continuity of ®2 and commutativity of the diagram also
naturally follow. ]

Remark 4.13 Consider the bifurcation tree B and a partition tree T with respect
to p. The canonical projection ®F induces a partition P, of (d )™ (c) forany c € Imp
as follows: x; ~ x; in P, ifand only if ®2 (x;) = ®2(x;). (See Appendix B for further
discussions.)

Remark 4.14 Like the pushforward 7. induced by the canonical projection 73,
we also have the pushforward map 73 [Iper Tanr (p) — Iyer Tang(x) such that
(i) if t € Tanf (p), then 7y, (t) is the unique element in Tany (75 (p)); (ii) if ¢ €
Tan{"(p), then 75, (t) € Tank (77 (p)).

Example 4.15 In Figure 3, we show an example of partition tree T based on the
bifurcation tree B constructed in Example 4.8. In particular, T is constructed by glu-
ing edges y,z; and y,z, of B (the grey edges) isometrically into edge y5y;, of T. As
a result, 779 maps all the edges of I' connecting p, and p; with q; and g5 to the edge
Yadta-
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Figure 3: An illustration of a projection 7y from I to a partition tree T

5 Obstructions of Smoothability and Spaces AfDl)’%, A%?ﬂ, Agj?g{
and A(g’)ﬂ of Partition Trees

5.1 An Example of a Non-Solvable Limit g,

In this subsection, we will show that the additional restriction on limit g} over pre-
limit g, does not guarantee solvability by presenting an example of non-solvable
limit g%

Consider the global diagram on a cycle as shown in Figure 4 with multiplicity 1
on each edge. The metric graph I has the lengths: ¢,, ., = €y, ve> vivs = Cvpvss
Cyvs = Ly and &, 0 = &, ,,. At every point p € I the algebraic curve C, is
a projective line over k. Let the two outgoing tangent directions #{, and t{, at v
be locally equivalent, let the two outgoing tangent directions ¢3 ; and ¢3 , at v3 be in
different local equivalence classes, let the two incoming tangent directions t} ; and t} ,
at v, be locally equivalent, and let the two incoming tangent directions ¢} ; and t} ,
at v4 be locally equivalent. For all p € T \ {v1,v5,v3,v4}, there is only one incoming
tangent direction t; and one outgoing tangent direction t; at p, while t;, and fy are in
different local equivalence classes. We verify that this global diagram is not solvable.

On the other hand, from this global diagram, we can construct a diagrammatic pre-
limit g}, represented by (D, J() in the following way. Let Dr = 2(v;) + (v3). Let D,, =
(21,1) + (x1,2), where x;; and x; 5 are two distinct non-marked points in C,,, D,, =
(x3), where x3 is a non-marked point on C,, and D, = 0 forall p € T~ {v;, v3}. Using
the approach shown in Remark 2.5, we can construct H,, conversely using the local
diagrams at p induced from the global diagram. More precisely, let f,, be a rational
function on C,, whose associated divisor is (red,, (t{,))+(red,, (7 ,))—(x1,1) = (x1,2),
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Figure 4: An example of a diagrammatic limit g}; such that the characteristic equation associated
with the global diagram does not have a solution.

let fv(:) be a rational function on C,, whose associated divisor is (red,, (3 ,)) — (x3),

let f,,(32) be a rational function on C,, whose associated divisor is (red,, (¢35 ,)) — (x3),
let f,, be a rational function on C,, whose associated divisor is

(x21) + (x2,2) = (redy, (£5,1)) = (redy, (1,)),

where x, ; and x; ; are two non-marked points in C,,, and let f,, be arational function
on C,, whose associated divisor is (x4,1)+(x4,2) — (red,, (t4 ,)) — (red,, (£} ,)), where
x4,1 and x4 ; are two non-marked points in C,,. Forall p € T'\ {v1,v,,v3,v4}, let f, be
a rational function on C, whose associated divisor is (red,(t5)) - (red,(t})). Then
we let H,, be a linear space of rational functlons on C, witha ba51s {Lfp} for allpel
(for 1p =3, we choose fv, to be either fv 1,(3 ), noting that the rational functions
L fv3 ,and ﬁ,3 are linear dependent).

We claim that (D, ) constructed this way represents a limit g}. To this end, we
must show that for every effective divisor € = (u,z,,) of degree one on the saturated
metrized complex where u € T and z, € C,, there exists a rational function g =
(grs{gp}per) such that g, € H, and D + div(g) - € > 0.

We first specify gr. We describe gr in terms of a series of chip-firing moves: (1) if
u liesin [vy, vg] or [v1, v |, we can fire both chips from v; until one of the chips hits u;
(2) if u lies in [v,, vg] or [va, v3], we first fire both chips from v; until one of the chips
hits vg and then fire the chip at v5 and vg simultaneously until one of the chips hits u;
(3) if u lies in [v4,vs] or [v4, v3], we fire first both chips from v; until a chip hits vs
and then fire the chips at v3 and v5 simultaneously until one of the chips hits u.

Now let us specify g,. (1) First, let g, = f, — fu(2.). Then g, has the same poles
as f, and has a zero at z,,. (2) For all the points p € I such that gr is locally constant
we let g, be a constant. (3) If the slope of gr along t3  is nonzero, let g, = fl,3 If the
slope of gr along t3 , is nonzero, let g, = f‘,3 (4) For all remaining points p € T, we

let gp = fp-
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For this choice of g, we have D — &€ + div(g) > 0. Therefore, (D, H) represents a
non-solvable limit g}, and we have the following proposition.

Proposition 5.1  There exists a non-smoothable diagrammatic limit g'. In particular,
there exists a diagrammatic limit g that is not solvable.

5.2 Four Levels of Obstructions to Pre-limit g, Being Smoothable

The following two subsections are a preparation for the proof of the smoothing crite-
rion in Section 6.

We say a diagrammatic pre-limit g}; represented by (D, () satisfies a Level-I re-
striction if it is solvable, and in the following we will introduce Level-11, Level-III, and
Level-1V restrictions that form additional obstructions of (D, H) to being smooth-
able.

Now assume that (D, J{) is solvable with a solution p and corresponding bifurca-
tion tree B. Recall that (D, H) satisfies the intrinsic global compatibility conditions
if and only if J( contains an admissible collection {g, } er of non-constant rational
functions g, € Hp.

Definition 5.2 A bifurcation partition system { Py }ccs on the bifurcation tree B is
a collection of partitions P, of TanZ; (x) for all points x € B.

Note that there are only finitely many possible bifurcation partition systems on
B, since Tanj (x) is a singleton for all but finitely many points x € B, and for the
exceptions, Py is a partition of a finite set.

Remark 5.3  Suppose J{ contains an admissible collection G = {g,}per of non-
constant rational functions g, € H, (Definition 2.11). This means that for each x € B,
if Tan% (x) = {t1,...,t,}, then we can assign values cj,...,c, € K t0 f1,. .., by, Te-
spectively, such that GoRed(t) = ¢; fori =1,...,nandeach t € 3/, (¢;). Canonically,
we can associate a bifurcation partition system { Py } v with G by letting ¢; and tjbe
equivalent in P, ifand onlyif¢; = ¢ j- Moreover, we say { Py} e is globally compatible
with H (or (D, H) even if this compatibility does not depend on D) if I contains
an admissible G = {g, } er such that {P, } yes is exactly the bifurcation partition sys-
tem associated with G. (In this case, to be more specific, we sometimes say {Px bren is
globally compatible with J{ via G.) In addition, the intrinsic global compatibility con-
ditions on (D, H) can be restated equivalently as that there exists some bifurcation
partition system globally compatible with (D, ).

We define Level-11, Level-II1, and Level-IV restrictions as follows.

(1) We say that a bifurcation partition system {f’x} xeB is Level-II compatible (re-
spectively, Level-III compatible) with (D, ) if it satisfies the following property: for
each point p € T, the tangent directions #; and t, in Tanf (p) are equivalent in the
local diagram at p (we also say t; and t, are locally equivalent), if (respectively, if and
only if) 775, (t1) and 7. (t2) are equivalent in P, (p)-
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(2) We also call a bifurcation partition system Level-IV compatible with (D, H)
if it is globally compatible with (D, ).

(3) We say that (D, H) satisfies Level-II (respectively, Level-IIT and Level-1V) re-
strictions if there exists a bifurcation partition system which is Level-II (respectively,
Level-IIT and Level-IV) compatible with (D, H). Note that by the smoothing crite-
rion, Theorem 2.6 actually means that (D, H) is smoothable if and only if Level-IV
compatibility is satisfied.

The motivation for introducing the two intermediate compatibility levels (Level-
IT and Level-III) will be addressed in more detail in our subsequent work. Note that
Level-IT and Level-III compatibilities can be determined purely combinatorially given
the local diagrams induced by K.

We denote the set of all bifurcation partition systems on B by BPEDI?:H, and the
sets of bifurcation partition systems Level-11I, Level-III, and Level-IV compatible with

(D,H) by BP,(DZ))H, BP(;))}C and BP,_(DAI’)G{, respectively.

Lemma 5.4 Level-IV = Level-1Il = Level-Il = Level-1 and BP{)), 2 BPY), >
BP$), 2 BPSY, .

Proof To see this, note that we only need to verify thatLevel-IV implies Level-III.
Note that an equivalent way to say that a bifurcation partition system {Py},cp is
globally (Level-IV) compatible with 3 via {g,}yer € H is as follows: for each pair
of tangent directions #; € Tan?" (p;) and t, € Tan?" (p;) such that 5 (p1) = 75 (p2),
we have the equivalence of the statements (1) g,, (redp,(#1)) = gp,(red,,(t2)), and
(2) g+ (t) and 7., (t,) are in the same equivalence class in Py, where x = 713 (p;) =
7 (p2). Then, by specializing to cases p; = p,, we conclude that Level-IV implies
Level-III. .

Example 5.5 Consider a saturated metrized complex € = (T, {C } per ), where the
underlying metric graph I' is as shown in Figure 2 and all C,, are projective lines over
C. Suppose that (D, K) is a solvable diagrammatic limit g} with solution p, where
the corresponding bifurcation tree B and the canonical projection 7g: T — B are as
in Figure 2 (see Example 4.8). For each p € T, fix a basis {1, f, } of H, where f, is a
non-constant rational function.

Here we apply Algorithm 2.13 to check the smoothability of (D, ), i.e., whether
I contains an admissible G = {g, } per. Note that by the algorithm, we only need to
check the finite set of exceptional points (see definition in §2.7), which in this case is
the vertex set, i.e., €, = {01, 02, p1, P2, P3,q1> 42, 43 }- For adjacent p,q € €,, we let
tpq represent the tangent direction in Tanr (p) emanating from p towards q and then
red, (t,4) is the marked point on C, associated with ¢,,. Note that

x=np(01) =m5(02), y=ns(p1), y2=nn(p2)=rns(ps)
z21=18(q1), z2=7m5(q2), 2z3=715(q3),
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and

teys = B« (toypy) = T8« (toyp ) try, = T8 (toyp,) = T8« (toyps )5
oz = T8 (tpyqr) = B4 (Epsg, ) tyozs = T8« (Epagr) = T8 (£psgy )
tyozs = T8 (tpygs) = B (Lpyqs)-
Consider a collection of finitely many variables {a,, B, } yee,. Then the algorithm

reduces the intrinsic global compatibility conditions to the solvability of the following
linear equations of variables {a,, B, } pee,,-

®o, + fo,(redo, (to,p,))Bor = &0, + fo, (redo, (to,p,)) Bos>
Jor(redo, (to,p,)) = fo, (redo, (to,p,))

ap, + fpa (redp, (£p,0,))Bp. = &ps + fps (redp, (£p,4,))Bps»

p, + fpa(redy, (£p,4,))Bpy = @p, + fp, (redy, (£p,4,)) B,

ap, + fpa (redp, (£p,g.)) Bpa = py + fpa (redp, (tp.q:)) Bps-

Now suppose

Joi(redo, (fo,p,)) =1,
Jo, (redo, (to,p,)) =2, fo,(redo, (to,p,)) = fo, (redo, (fo,ps)) =1,
Jpa(redp, (tp10,)) = fpa (redp, (1p,q,)) =1, fp,(redp, (£p,q,)) = =2,
Jpa(redp, (tp:0,)) = fpa (redp, (£p10.)) =2, fpu(redy, (£p,q,)) = -1

Then the above system of linear equations is solvable, and thus (D, H) is smoothable
by Algorithm 2.13. In particular, we have a solution a,, = 0, 5, =2, &, =0, 85, = 1,
&p, =2, Bp, =L ap, =1, By, = 1. Therefore, if we let go, = 2,5 8o, = fo,5 &1 = fpi>
gpz =2 +fP2’ gpa =1 +fP3’ ng = fql’ ng = fqv g% = qu’ and gP = fP for allp ¢ 8P’
then G = {g, } per is admissible.

Moreover, let P be the unique bifurcation partition system that has a partition
Htey ) {txy, }Fatxand {{t,,z,, t},2, }» {t),z, } } at y2, and let P’ be the unique bifur-
cation partition system that has a partition {{t,,, }, {tx,,}} at x and

{{t}'zzl}’ {t;\’zzz}’ {t)’zza}}

at y,. Then P is the bifurcation partition system associated with G, BPg ’)}C = BP%))H =
2
{P},and BPY, = {®,Q}.

5.3 The Spaces A(Dl))%, A(If,)%, Ag?%, and A(ﬁ))}c of Partition Trees

Suppose that (D, H) represents a solvable diagrammatic pre-limit g}, with a solution
p and the corresponding bifurcation tree B. As we have defined four levels of compati-
bilities between bifurcation partition systems and (D, ) in the previous subsection,
here we define four levels of compatibilities between bifurcation trees and (D, H),
and construct the spaces A(Dl? 900 Ag?ﬂ{, Ag’)g{, and Ag?ﬂ{ of partition trees as fol-
lows.

https://doi.org/10.4153/CJM-2017-027-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-027-2

658 Y. Luo and M. Manjunath

(1) Let A(Dl)’g{ = A, (We let A,%?_% = ¢ when (D, H) is non-solvable.) In other

words, A(gl),:}c is the space of all possible partition trees with respect to a solution
p of the global diagram defined by (D, ().

(2) We say that a partition tree T is Level-II (respectively, Level-III) compatible with
(D, ) if for every point p € T and each pair of tangent directions 1, f, €
Tanf (p), we have that t; is locally equivalent to ¢, if (respectively, if and only
if) 3. (1) = m7.(t2).

(3) We say that a partition tree 7 is globally (or Level-IV) compatible with (D, H)
if there exists a collection G = {g,} per of non-constant functions g, € H, such
that one of the following equivalent statements are satisfied.

(a) Thereisafunction &[],y Tand(x) — x such that &, restricted to Tan-(x), is
injective for each x € T, and GoRed(t) = §omg.(¢) forallt € [T ,cr Tanf" (p).

(b) Whenever #; € Tanf" (p;) and t, € Tan?" (p,), where 3 (p1) = 3 (p2), we
have g, (redy, (1)) = gp,(red,, (t2)) if and only if 73, (t;) = w74 (t2).

In this sense, to be more specific, we also say that T and (D, H) are globally

compatible via {g, } per-

(4) Denote by A,(DZ’)H, Ag’)g{ and Ag’)ﬂ the spaces of partition trees Level-II, Level-
I11, and Level-IV compatible with (D, J(), respectively.

(5) Asin Lemma 5.4, one can easily see that A%?g{ 2 Ag?}( 2 Ag,)}c ) A,S;l))}f. An

example of A(Dl),%, Ag,)%, Ag,)}c’ and AgD4 ,)}c for simple metric graphs is shown in

Example B.4 in the Appendix.

There is a natural map ¢*: Af(Dl))gLf - BP%)) g¢ such that for every x € B, every two
forward tangent directions ; and ¢, in TanZ; (x) are equivalent in ¢ (7 if and only
if they are pushed forward to the same tangent direction in Tan (©7 (x)) by ©2.

On the other hand, given a bifurcation partition system {13x }xeB, We want to con-
struct a partition tree. For a small enough & (precisely, we can let § be less than the
minimal distance between two distinct exceptional values of p), we derive a metric in
the following way: for each point x € Bif (B) and each equivalence class E € Tanj; (x)
in P, of TanZ; (x), we isometrically glue all the segments of length & with one endpoint
being x and the other being in a forward tangent direction of B in E. Then it can eas-
ily be seen that T is a partition tree induced by the gluing and ¢ (T) = { Py }xen. We
call the partition tree constructed in this way the §-glued partition tree with respect
to {Py }xen. An example is shown in Figure 5, where a 8-glued partition tree in the
right panel is derived from the bifurcation tree in Figure 2 and a bifurcation partition
system in the left panel.

Proposition 5.6 ¢ is a surjection from A(Dl?f}f to BP(DI?}C. In addition, the images of
@2 restricted to A,(Dz’)%, A,(DS,)%, and A(;))}C are BP%?}C, BPg’)}f, and BPg’)}f, respectively.

Proof The surjectivity of ¢* follows from the construction of the §-glued partition

tree with respect to any bifurcation partition system.
Now let us show that the image of ¢* restricted to Ag )j{ is contained in BPg)%,

and the image of ¢* restricted to Ag’)ﬂ is contained in BPS?%. Suppose T is Level-II
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0-glued partition tree

Figure 5: An illustration of a §-glued partition tree.

(respectively, Level-IIT) compatible with (D, ). For all p € T and each pair t;, ¢, €
Tanf{"(p), we have 5, (1), m5.(t2) € Tang (5 (p)). Also, ms.(t) ~ w5 (t2) in
¢*(7) if and only if g, (1) = 77+ (t2), since m factors through 75. Therefore, we
derive that #; and , in Tanf"(p) are locally equivalent if (respectively, if and only
if) g, (1) ~ T3« (t2) in ™ (T). Therefore, ™ (T) is a bifurcation partition system
Level-II (respectively, Level-III) compatible with (D, ).

Next we will show that the image of ¢ restricted to AL )g{ is contained in BP(4)
Let T be a partition tree globally compatible with (D, J() via {g, } per € I Then one
can see that ¢ (7) will be a bifurcation partition system globally compatible with
(D, H) via {gp } per-

Conversely, we will show that the images of ¢ restricted to Ag)%, Ag)%,
A(D)‘}( contain BP(DZ)H, BP(3)}C, and BP(D 50> respectively. To this end, we show that

and

a J-glued partltlon tree with respect to a bifurcation partition system in BP(D)%,

(BP(3) , and BPD ¢> Tespectively), is an element in Ag)ﬁ, (A(3) , and A%)ﬂ, re-

spectively). The first two cases for BP(Z) and BP{’ )9{ are straightforward by defini-
tions.

Now let {P, }ien € BP ¢ be the bifurcation partition system associated with an
admissible {g,} per € H and let T be its corresponding §-glued partition tree. We
claim that T € Ag))%. To show this, we want to turn {gp } per into {g,} per € I and
define a function &:[] .y Tand(x) — & such that T and (D, H) are compatible via
{8p}per-

1 Assign values g,(red,(t)) to 3. (t) forall p € £, and t € Tanf " (p)

2 Assign values in « for the remaining elements in . Tan¥ (x) such that for each
x € T, & restricted to Tan¥ (x) is injective.

3 Letg, =gpforallpeé,.

4 For an ordinary point p € O, there is a unique forward tangent direction (denoted
by t) at p. Therefore, we can always find a non-constant rational function gj, € H,
such that g, (red,(t)) = {(n7.(t)) (Lemma 2.12).
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By the above construction, T is globally compatible with (D, () via {g}} per,

: (4)
which means T € A,D,ﬂ. |

Remark 5.7 We will employ the surjectivity of the map ¢* | RO A(; )g{ - BP(;)}C
D,H ’ ’

in the proof of the smoothing criterion in the next section.

6 Proof of the Smoothing Criterion

We restate the smoothing criterion combining the two versions as follows.

Theorem 6.1  Given a saturated metrized complex € and a pre-limit g, represented
by (D, H), the following statements are equivalent.

(i) (D, H) is smoothable.
(i) (D, H) is solvable and Ag’)ﬂ is nonempty.
(ii) (D, H) is solvable and satisfies the intrinsic global compatibility conditions.

Proof (ii) is equivalent to saying that there exists a partition tree globally compatible
with (D, H), and (iii) is equivalent to saying that there exists a bifurcation partition
system globally compatible with (D, ). Then the equivalence of (ii) and (iii) follows
from Proposition 5.6.

(i) = (ii). Let (D, H) represent a smoothable pre-limit g, on €. Then by Theo-
rem 3.13, we know that there exists a harmonic morphism

Cﬁbm(’d = (¢rm°d > {‘/’p }pel"md )

of degree deg(D) from a modification €™°¢ of € to a genus zero saturated metrized

complex €( T) such that (1) D is the retraction to € of a divisor D™°¢ on €¢™°4, which
is a pullback divisor by €¢™°¢ of an effective degree one divisor on €(T), and (2) ¢ »
coincides with the morphism from C, to PP}, defined by H,. Here the underlying
metric graphs of €, €™°4, and €(T) are denoted by T, I'™°4, and T, respectively. Now
it remains to show that T must be an element in Ag,)%.

Denote by r(T) the root of T which is the image of DI"°? (the tropical part of
Dmod) under ¢rmoa. Then r(T) and the map ¢r: T — T that is the restriction to T of the
harmonic morphism @pmea: I™°4 — T induces a global diagram on T in the following
way. For any point p € I' and any tangent direction ¢ € Tanr(p), the multiplicity
my(p, t) is the expansion factor with sign “~” if the pushforward of ¢ by ¢r coincides
with the tangent direction on T along the unique path from ¢r(p) to r(T), and with
sign “+” otherwise.

On the other hand, we also construct local diagrams from (D, H) (Remark 2.5).
In particular, the multiplicity m,(p, t) in the local diagram at point p associated with
(D, H) equals the ramification index of ¢, at red, (t) with an appropriate sign. By
the compatibility property of the harmonic morphisms, we know that the ramifica-
tion index of ¢, at the marked point red,(¢) on C, corresponding to t equals the
expansion factor of ¢r at ¢. Therefore m;(p, t) = my(p, t), which means (D, H) is
diagrammatic and solvable with a solution d%. o ¢r, where d. is the distance from
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points on T to the root point r(T). Hence, (T, ¢r) is an element of A%?}c- In ad-
dition, the compatibility property of the harmonic morphisms also guarantees that
(T, ¢r) must be in Ag,)}c‘

(ii) = (i). Let (T, mr) € Ag?% be globally compatible with (D, H). To show that
(D, KH) is smoothable, using Theorem 3.13, we need to find some harmonic morphism
compatible with (D, H). More precisely, we want to construct a modification €™°¢
of € with underlying metric graph T™°¢ such that (1) ¢rmea: [™°¢ — T is a harmonic
morphism (between metric graphs) whose restriction to I' is 777, and (2) ¢rmea can be
lifted to a harmonic morphism €¢™°¢ from €4 to a genus zero saturated metrized
complex €(T) whose underlying metric tree is T. In Section 3.1, we also introduced
the notion of a pseudo-harmonic morphism, which does not require the balancing
condition as for harmonic morphisms. In the rest of the proof, we will show that we
can first find a compatible pseudoharmonic morphism from € to a genus zero sat-
urated metrized complex €(T). Then we will show that we can always extend this
pseudo-harmonic morphism to a desired harmonic morphism by generating a suit-
able modification €™°¢ of €, while we single out the statement and proof in Proposi-
tion 6.2 together with Example 6.3 to aid our exposition.

Assume {g, } per is a collection of rational functions g, € H, on C, that makes
(D,H) and (T, nr) compatible. There is a function & . Tan}(x) — & such that
¢ is injective restricted to Tan7(x) for each x € T, and g, o red, = & o 7y, for all
p eT. Letg,:Cy — Koo be the function on C, extending g, to its poles, and let

&l er Tang(x) — koo be the extension of £ such that for each x € T, & maps the
incoming tangent direction at x to oo in Koo Then we also have g, o red, = Eo ..

Since K is isomorphic to a projective line over x, we can build a genus zero
metrized complex €(T) from T (for all x € T, the curve C’, associated with x is a
projective line) by letting y, o £, be the reduction map at x € T, where &, is the
function £ restricted to Tany(x) and yy: ke — C/, is the isomorphism between #o,
and C,.

Now let ¢ = yr,(p) © §,- Then (77, {¢} per) is a pseudo-harmonic morphism
from € to €(T), since the compatibility conditions of a pseudo-harmonic morphism
(Definition 3.1) are guaranteed by the solvability of (D, H) and the relation

$poredy = Yur(p) © 8y 0 1edp = Yur(p) © Snp(p) © M1

where y,,(p) © E,,T( p) is the reduction map at 7r7(p) by the construction of €(T).
By Proposition 6.2, we can extend the pseudo-harmonic morphism (77, {$, } per)
to a harmonic morphism (¢™°, {¢,} yermed ) from a modification €™°4 of € to €(T).
|

Proposition 6.2 Let € be a pseudo-harmonic morphism from a saturated metrized
complex € to a saturated metrized complex €(T) of genus zero. If €¢ is harmonic at
all but finitely many points in its underlying metric graph, then there is a modification
emed of ¢ and a harmonic morphism €¢™°¢ from €™°d to €(T) such that €¢ is the
restriction of €¢™°9 to €.
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Proof Assume that the underlying metric graphs of € and €(T) are I'and T, respec-
tively, and the associated curves of € and €(T) are {C, } per and { C, } xeT, respectively.
Let €¢ = (¢r,{¢p}per), where ¢p:T — T is the associated pseudo-harmonic mor-
phism of metric graphs and ¢,:C, — C:br( ») is the associated finite morphism of

curves at p. We will derive a modification €™°¢ of € in the following way.

Consider a point g € I'. For each tangent direction ¢ € Tany(¢r(q)) at ¢r(q)
on T, let u € C; be a non-marked point of C, that is an element in the fiber
¢;1(red¢r(q)(t’)). Suppose the ramification index of ¢4 at u is m.

Let T’ be the connected component of T'\ {¢r(q)} corresponding to the tangent
direction t at ¢r(q). Let Ty, ..., T,, be m copies of T'. For i =1,..., m, let x; be the
open end of T] corresponding to the open end ¢r(q) of T’ and let y; be the point
in T/ with a small distance I to x; (I is less than the minimum distance of branching
points of T" to ¢r(q)).

Now we want to attach to I an extra branch I}, with respect to u. Then by equipping
I, with projective lines, we will get a modification of € with respect to u.

We construct I, from T}, . . ., T, by first identifying the segments (x;, y; ] and then
shrinking the glued segment by a factor of m. Denote by (x, y] the corresponding
segment in I', with x being its open end. Then by this construction, the length of (x, y]
isI/mand T, \ (x, y] is a disjoint union of T/ \ (x;, y;]. Forgetting the compactness
restriction of a metric graph, we also call T/, T}, and I}, metric graphs. Then there
is a natural harmonic morphism ¢r from I}, to T’, where the balancing condition
(Definition 3.2) is automatically satisfied by the construction of T,.

Let €(T") be €(T) restricted to T'. We can construct a saturated metrized com-
plex €(T}) with underlying metric graph I, by associating each point p € I, with a
projective line C,,. Let x” = ¢r: (p). The reduction map red, at p is derived as follows.

* If p € (x, y), then there are two tangent directions ¢, and ¢, in Tanr/ (p) and two
tangent directions #; and t} in Tany(x") where #; and t, are pullbacks of #] and t} by
¢r:. Let ¢,: C, — Cy, be a degree m morphism from C, to Cy, (the curve associated
with ¢r(p) in €(T")) such that there are two points v; and v, in C, with ramifi-
cation index m over the marked points red,- (#]) and red,(#;) in C;,, respectively.
Let the marked point red, (t;) associated with ¢, be v and the marked point red, (,)
associated with t, be v,.

* If p = y, then there are m +1 tangent directions t, . . ., 41 in Tany, (p) and two
tangent directions #; and #} in Tany- (x"). We can assume that ¢; is the tangent direc-
tion corresponding to the edge between x” and the open end of T”, #; is the pullback of
tyby ¢r,and {t,. .., tmy1} is the pullback of t; by ¢r:. Let ¢,: C;, — C’, be a degree
m morphism from C, to C’, such that there is a point v; € C, with ramification in-

dex m over the marked point red, () and there are distinct points v5, ..., V41 € Cp
with ramification index 1 over the marked point red,(¢}). Then we let the marked
point red, (t;) associated with t; be v; for i =1,...,m +1.

* If p € I, N (x, y], then Tany/ (x") pulls back bijectively to Tanr: (p) by ¢r:. We let
¢p:Cp = C, be an isomorphism. For every pair of corresponding tangent directions
tp € Tanp (p) and ¢, € Tanys(x"), we let the marked point red, (,) associated with

t, be (/51_,1 (redy (txr)).
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Note that in all cases above, the morphism ¢,:C, — C, always exists, since C,
and Cj, are projective lines. We conclude that (¢rs, {¢,} per:) is a harmonic mor-
phism from €(T}) to €(T"), since ¢/ is a harmonic morphism of metric graphs and
the compatibility conditions of Definition 3.1 are automatically satisfied by the above
construction of €(T}).

Now we get a modification of I' with respect to u by attaching the open end of
the extra branch I} to T at ¢, and a modification of € with respect to u by adding u
as a marked point of C, and attaching €(T},) to €. Moreover, the pseudo-harmonic
morphisms ¢r and €¢ also naturally extend to these modifications of T and €, re-
spectively, with respect to u, which are harmonic at all the points in the extra branch
I} (not necessarily at g).

Recall that u is a non-marked point of C, that at the same time is an element of
¢, (redy, (4)(t')), where t' is a tangent direction at ¢r(q) on T. Therefore, we can
get modifications of I' and € with respect to g by performing modifications of I' and
¢ on all possible u in this sense at the same time. Moreover, the pseudo-harmonic
morphisms ¢r and €¢ also naturally extend respectively to these modifications of
I' and € with respect to g, which are harmonic at the point g and all the points in
the extra branches. Note that if €¢ is already harmonic at g, then no modification is
performed.

The final modifications of T and €, denoted by I™°¢ and €™°4, respectively, are
derived by performing modifications of I and € at the same time to all g € I' at which
€¢ is not harmonic. In this way, we get a harmonic morphism €¢™m4: ¢md — ¢(T)
as required. ]

Example 6.3 In Figure 6, we show how a modification is performed at point o,
in Figure 3 of Example 4.15. The image of 0; under 7 is x’. First note that there is
only one outgoing edge 0, p; from o; with expansion factor 1 of the map 7. Suppose
that the degree of the nonconstant rational function g,, € H,, is 3. Suppose that the
forward tangent direction from x’ to y] corresponds to ¢; € x and the forward tangent
direction from x’ to y} corresponds to ¢, € «. Suppose that g;'(¢1) = {u1, u, u3} and
u is the reduction of the tangent direction from o; to p;. Then two copies of x’ y] will
be attached to o; as extra branches corresponding to u, and us, respectively. Suppose
that g;'(c;) = {v1,v2}, while the ramification index of v; is 1 and the ramification
index of v, is 2. Let T’ be the subgraph of T connecting x’, z{,, and zj. Then one copy
of T' is attached to o; as the extra branch corresponding to v;. Accordingly, the extra
branch corresponding to v, is made from two copies T] and T, of T’ by first gluing
from the open ends of T} and T, along small segments of the same length and then
shrinking the glued segment by a factor of 2.

7 Applications

We apply the smoothing criterion to the saturated metrized complex versions of cer-
tain types of curves: curves of compact type studied by Eisenbud and Harris, nodal
curves with dual graphs made of separate loops and curves considered by Harris and
Mumford to characterize gonality stratification. We also extend the smoothing crite-
rion to metrized complexes by showing a concrete example.
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Figure 6: A modification performed at point 0, based on the projection map 75 in Example 4.15
and the local data in H,,.

7.1 Saturated Metrized Complexes of Compact Type

We show that every diagrammatic pre-limit g}; on a saturated metrized complex of
compact type, i.e., whose underlying metric graph is a metric tree, is smoothable. This
theorem is an analogue of [16, Proposition 3.1 ] by Eisenbud and Harris for curves of
compact type.

Theorem 7.1  Every diagrammatic pre-limit g, represented by (D, ) on a saturated
metrized complex € of compact type is smoothable.

Proof The underlying metric graph I' of € is a tree. Therefore (D, H) must be solv-
able. Let p be a solution to (D, J{) and €, be the set of exceptional points of p (§2.7).
Then we can subdivide T into segments Ly, ..., L, by &, (the end points of L; are
exceptional points). The restrictions of (D, H) to each L; must be smoothable since
the intrinsic global compatibility conditions will be trivial. This theorem then follows
directly from Proposition 7.2. ]

Consider a diagrammatic pre-limit g}, represented by (D, () on a saturated met-
rized complex € whose underlying metric graph is I'. Let I’ be a connected closed
metric subgraph of I'. A saturated metrized complex €’ is said to be the restriction
of € to I' if the underlying metric graph of €’ is I, the associated curves of €’ and
¢ at p are identical for all p € I, and the reduction maps of €’ and € at p restricted
to Tany (p) are identical for all p € I' (note that Tany(p) & Tanr(p) when pisa
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boundary point of I' in T). Moreover, a diagrammatic pre-limit g}, represented by
(D', H") on € is said to be the restriction of (D, H) to I’ (or €’) if the following are
satisfied.

. H;) (the C,-part of H') is identical to H,, (the Cp,-part of () for all p € T".

. D;, (the C,-part of D’) is identical to D, (the C,-part of D) for all p € I’ \ oI" (here
oI stands for the boundary of I in T).

* Forall p € oI, D}, is modified from D), as

D, = D;, + > (-m(p,t))(redy(t)),
telnr (p)NInp/ (p)

where m(p, t) is the multiplicity of ¢ (which is negative if ¢ € Inp(p)) in the local
diagram induced by J{ at p. Note that this modification guarantees the compat-
ibility between D, and H, which further implies that (D', }{") is diagrammatic
(Definition 2.10).

Proposition 7.2  Let I and I, be connected metric subgraphs of a metric graph I such
thatT = Iy U T, and Iy N I, is a singleton. For a saturated metrized complex € whose
underlying metric graph is T, let (D, ) represent a diagrammatic pre-limit g on €.
Let (D1, H,) and (Dy, Hy) be the restrictions of (D, H) to Iy and T, respectively. Then
(D, H) is smoothable if and only if (D1, H;) and (D4, H,) are both smoothable.

Proof LetI3}nT, = {q}. Let €; and €&, be the restrictions of € to I} and I3, re-
spectively. Then (D, JH;) is on €; and (D,, ;) is on €,. It follows easily from
the smoothing criterion that (D, 3) being smoothable implies that (D;, H;) and
(D2, Hy) are both smoothable.

Now suppose that (D, ;) and (D,, H,) are both smoothable and we claim that
(D, H) is smoothable. This means (D;,H;) and (D,, H,) are solvable, and since
F=huLand 1 nT; = {q}, (D, H) must be solvable. Thus we may assume p is a
solution to the global diagram of (D, J), while the restriction of p to I} (respectively,
I), denoted by p; (respectively, p,), is a solution to the global diagram of (D;, H;)
(respectively, (Dy, H,)). Let B, By, and B, be the bifurcation trees with respect to p,
p1, and p,, respectively.

By the smoothm% criterion, JH; contains an admissible collection { fp } < of ra-
tional functions f e H, and J(, contains an admissible collection { fp } per, Of
rational functions fp € Hp.

Note that B; and B, are subtrees of B and B; u B, = B. Let r(B), r(B;), and
r(B) be the roots of B, By, and By, respectively. Clearly r(B) must be either r(B;)
or r(B,). Without loss of generality, we assume r(B) = r(B;). Let y = g (q) and
L be the closed segment connecting r(B,) and y in B. Then one can observe that

BB, = L. We construct a desirable admissible { f, } er € H by clutching { fISI) }pery
and {f;z) } per, as follows.

(1) ForxeB;~L,letP, = P)Sl).
(2) Forx € By~ L, let P, ﬁ(z)
(3) Forp e Ty~ mz (L), let £, = £
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(4) Forp e\ mg (L), let f, = f(z)
(5) Forx €L, cons1der all the forward tangent directions in

1 1
Tang (x) = {t() ...,t,(c)}

and all the forward tangent directions in Tanp_(x) = {tl(z), R tfz)}. Then by
the smoothing criterion on (D, H;) and (D,, H,), we can assign values

) 1) ¢

€ e Gy

to tl(l), cees t,(cl), respectively, and values cl(z), @ exkto tl(z), cees tl(z) respec-

tively such that
(a) f(l)(red (1)) = cfl) foralli=1,..., k whenever p € 73 (x) and

teTanf* (p) Nz (1),

(b) flgz)(red () = c(z) forall j = 1,...,] whenever p € 73 (x) and t €
Tanf>* (p) n 50, ( 5”).
When x € L\ {y}, we have

w5 (x) = 73, (%) U 5, (%),
ng (x)nng (x) =,
Tang (x) = Tang (x) U Tang (x),

and Tang (x) N Tang, (x) is a singleton. Without loss of generality, we let ¢; =

tl(l) = tl(z) be the forward tangent direction common to both Tanj (x) and

Tanj, (x), which means that i3, (t;) and I's,(t;) are the open superlevel com-
ponents (for I} and [, respectively) containing q and 15 (¢1) = i, (1) Uiz, (#).
So we can let f, = ;1) - cl(l) for all p € 73 (x) and f, = ;2) - cl(z) for all
p € g (x). In this way of clutching, we conclude the following.
(@) fp(redy(t)) = c(l) (1) forall i = 1,...,k whenever p € 7 (x) and t €
Tanf? (p) g, ()
(b) fp(redy(t)) = c(z) (2) forall j = 1,...,1 whenever p € 7 (x) and t €
Tanf>* (p) N ngz*u;”).
(c) In particular, by (a) and (b), f,(red,(t)) = 0 whenever p € 7/ (x) and ¢ €
Tan?* (p) N7z, (). (Note that 73, (1) = 5., (¢ ) vz, (1))
When x = y, we have 713 (x) = 7 (x) u ng (x), 75 (x) N 75 (x) = {q},
Tang (x) = Tang (x) U TanBz(x) and Tang (x) N Tan.Bz(x) = . Since

f(l) f(2) € Hy,

we must have fq(z) =a+ ﬁfq(l) for some «, B € x. So we can let f, = a + ﬁf(l)
forall p € 73 (x) and f, = fp(z) for all p € 73 (x). In this way of clutching, we
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conclude the following.

(@) fp(redy(t)) = a + ﬂc?l) foralli = 1,...,k whenever p € 73 (x) and t €
Tanfy" (p) 0713, (1),

(b) fp(redy(t)) = c](.z) forall j=1,...,1 whenever p € 73 (x) and

e Tanf?* (p) i (£2),
(c) inparticular, (a) and (b) coincideat p = g by our assumption as f,(red,(t)) =
a+ ﬁfq(l)(redq(t)) = ,1(2)(redq(t)) for all t € Tan{'(q) = Tan‘r’lﬁ(q) U
Tanf*"(q).

I;

The above construction guarantees that {f, } per is admissible in J{. Therefore,
(D, H) is smoothable. u

Example 7.3  For a smoothable pre-limit g} represented by (D,J), it is possi-
ble that we can construct different smoothings, or equivalently different pseudo-har-
monic morphisms (see §3.1 for a precise definition) from the saturated metrized com-
plex to a genus 0 metrized complex. Figure 7 is an example for a case of a saturated
metrized complex of compact type whose underlying metric graph is a segment. Fix
a rational function f; € Hj,. Suppose the value of f; on the marked point corre-
sponding to p;po is ¢o and on the marked point corresponding to p;ps is c3. Then
the rational functions in Hj, that take the value ¢, at the marked point correspond-
ing to p,po form a one-dimensional subspace H of Hy,. Let f, € H take the value c;
on the marked point corresponding to p,p4 and let f; € H take a value other than
¢3 on the marked point corresponding to p,p4. Then f; and f, can be used to con-
struct a pseudo-harmonic morphism as in Figure 7(a), while f; and f; can be used to
construct a pseudo-harmonic morphism as in Figure 7(b).

7.2 Saturated Metrized Complexes with Genus-g Underlying Metric Graphs
Containing g Separate Loops

For a generalization of saturated metrized complexes of compact type, we consider a
saturated metrized complex € whose underlying metric graph I' has genus g and con-
tains g separate loops Q, ..., Qg (see Figure 8 for such a metric graph of genus 6).
Here Q; and Q; are separate if the intersection of ; and ; is either empty or just a
singleton. By the smoothing criterion, one prerequisite for being smoothable is solv-
ability, i.e., the integration along each Q; for i = 1,..., g with respect to the global
diagram induced by (D, H) is 0. We let p be a solution to the global diagram and
B be the corresponding bifurcation tree. Consider a loop O € {Q,...,Qg}. We
let QOmin(p) be the set of points where p restricted to Q; achieves minimum. Then
Qmin(p) is a finite set with at least one element, and for each point p € Qmin(p),
there are exactly two forward tangent directions in Tanf, (p) (forward tangent direc-
tions restricted to )). We say p is a closing point if these two tangent directions are
locally equivalent in the local diagram at p induced by H, and say p is an opening
point otherwise. Denote the set of closing points in Quin(p) by Qf,;,(p), and the

min
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(a) Po :qo
P1 p3 ----> qn q34

P2 P4

(b) Po qo
P1 p3 ----> qn qs3
P2

q4

Pa

Figure 7: Examples of pseudo-harmonic morphisms (see §3.1 for a precise definition) that can
be derived from the same (D, J) on a saturated metrized complex of compact type.

Y O,
Q3

0 OF;
Qs

Figure 8: A genus-6 metric graph containing 6 separate loops Qi, ..., Qs. All the loops are
disjoint with each other except that Q; and Q, intersect at a single point.

set of opening points in Q; min (p) by Q5. (p). The following theorem says that de-

termining whether (D, J() is smoothable can be reduced to a purely combinatorial

point-counting problem in Q¢ ; (p) and Q2. (p).

Theorem 7.4 Let € be a saturated metrized complex whose underlying metric graph

I has genus g and contains g separate loops Q, ..., Qg. Let (D, H) represent a solv-

able pre-limit g} on € with a solution p. Then (D, ) is smoothable if and only if the

following are satisfied on each loop Q2 € {Qy,...,Qg}.

(i) If Qmin(p) is a singleton, the unique point p € Quin(p) is a closing point.

(ii) If the cardinality of Qumin(p) is at least 2, then either Q% (p) = @ or Q5. (p)
has the same parity as Quin(p).

https://doi.org/10.4153/CJM-2017-027-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-027-2

Smoothing of Limit Linear Series of Rank One 669

Proof By Proposition 7.2, we can subdivide I' into segments and loops and test whe-
ther (D, H) restricted to each segment or loop is smoothable. The case of segments
can be dealt with analogously as for compact type saturated metrized complexes, and
it only needs to show the case for (D, H) restricted to a single loop Q2. Without loss of
generality, we can assume I' = Q) and apply intrinsic global compatibility conditions
to this specific graph.

Let p be a solution to (D, H) and B be the corresponding bifurcation tree. We
need to test the possibility of constructing an admissible { fj } per € I. Actually, we
will consider cases for all p € 73! (x) for each x € B separately.

First we consider the root y of Q). Note that the closed superlevel component i ( y)
corresponds to y and Qmin(p) = 75 ().

(1) When Quin(p) = {p}, there is only one open superlevel component with the
boundary point p. Therefore, to pass the compatibility test, the two tangent di-
rections in Tanf," (p) must be locally equivalent, which means p must be a closing
point.

(2) When Qunin(p) = {p1>...,px} with k > 2, there are exactly k open superlevel
components f3, ..., B; with the boundary points in Quin(p) (the k open edges
in Q with end points in Qin(p)). We let the end points of 8; be p; and p;.; for
i=1,...,k —1and the end points of 5x be pi and p;.

First note that for any point Qin (p), if the two tangent directions in Tan)" (p)
are not locally equivalent, then for any two arbitrarily chosen distinct values, we
can always find a rational function f, € H), taking these values, respectively, at
the two reduction points in C, corresponding to these two tangent directions
(Lemma 2.12). Assigning values cy, ..., ¢k € K to f1, . .., Bk, respectively, we have
the following cases.

(a) Ifcy, ..., ck are all distinct, then to pass the compatibility test, it is equivalent
to say that the two tangent directions in Tan?)" (p;) foreach i = 1,.. ., k must
not be locally equivalent, i.e., p1,. .., px are all opening points.

(b) If at least one point in Qi (p) is a closing point, we can assume py is a
closing point without loss of generality. Then to pass the compatibility test,
cx must be equal to cx_; and the whole case reduces to dropping py from
Qmin(p) and assigning values ci, ..., cx_1 to B1, ..., Br_1-

It is straightforward to verify that the above arguments afford the conditions (i) and
(ii) stated in the theorem.

It remains to show that the compatibility test can always be passed for those points
xin B~ {y}. Note that each forward tangent direction t € Tan} (x) corresponds to an
open superlevel component i3 (t) of p. If 153 (x) is a singleton {p}, then Tanf, (p) =
Tang (x) = @ and we simply let f, be any non-constant function in Hy,. Otherwise,
if 95 (¢) is the set of boundary points of i3 (), we must have Userant, (x) 01 (t) =
5 (x), which is assumed in the following discussion.

Note that for x € B \ {y}, Tanj (x) is either empty or satisfies the ordering prop-
erty: starting from an arbitrary #; € Tang; (x), there exists an ordering f;, t5, .. ., tj of
all the tangent directions in TanZ; (x) such that (U;'-j diz(tj))Naip(t;) isasingleton
{gi} fori=2,..., k. In other words, we can rebuild the closed superlevel component
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15 (x) from the open superlevel components i (¢) with ¢ € Tan%; (x) one by one by
choosing the attaching point from 73 (x) properly.

Note that at each q;, there exists two forward tangent directions in Tanf " (g;). On
the other hand, if a point p in 73 (x) is not any of the g;, then there is exactly one
forward tangent direction in Tanf " (p).

We use the following procedure to assign values to the tangent directions in
Tan3; (x) and find compatible rational functions f, € H, for all points p € 73 (x).

(1) We assign an arbitrary value ¢; € k to t;. For each p € di(#;), we are able to
find a nonconstant rational function f, € H, such that f, (red, (1)) = c1, where t,,
is the unique tangent in Tanf." (p) such that 5. (t1,) = fi.

(2) Now suppose we have already assigned values ci,...,¢; € k to ty,...,t;, re-
spectively, and found rational functions f, € H, for all p € U§:1 dip(tj) such that
for j = 1,...,1, we have f,(red,(t)) = cj as long as t € Tanf " (p) N 73, (¢;). Note
that g;,; is the unique element in both U§:1 dip(tj) and 0z (tis1). Let t,,,, be the
unique tangent direction in Tanlp-+(qi+1) such that ms.(tg,,,) = tiz. Welet ¢y =
fqin(redg,, (t4,,,)), and for each p € 9z (t;11) \ {t4,,,}» we let f, be a nonconstant
rational function in H,, such that f,(red,(t)) = c;.1 where t is the unique tangent
direction in Tanf" (p) N w3, (tis1)-

In this way, we derive a sequence of ¢, ..., cx € k and a family of rational func-
tions {fp } penzi(x)- By our construction, for j=1,...,kandall p 5 (x), we have

fp(red,(t)) = cjaslongas t € Tanf" (p) N7, (¢;). Hence, the compatibility test get
passed atall x € B\ {y}. [ |

Remark 7.5 Here are a few cases of the conditions in the above theorem.

o If#Qmin(p) =1, then #Q¢ .. (p) can only be 1.
o If#Qmin(p) = 2, then #Q¢ ;. (p) can only be 0 or 2.

o If#Qmin(p) = 3, then #Q¢,;, (p) can only be 0, 1, or 3.

min

o If#Qmin(p) = 4, then #Qf ;. (p) can only be 0, 2, or 4.

7.3 Saturated Metrized Complexes of the Harris—-Mumford Type

Here we study saturated metrized complexes arising from the construction of Harris
and Mumford [24, Theorem 5]. These correspond to two types of saturated metrized
complexes.

A Harris-Mumford saturated metrized complex of type I is a saturated metrized
complex € with underlying metric graph T homeomorphic to a topological bouquet
graph obtained by gluing together finitely many (0 is allowed) circles along a single
vertex o (Figure 9) while g(&) = g(C,) + g(T). We call this central vertex o the eye
vertex and C, the eye of €. We also call the middle points of the attached circles petal
vertices. In particular, we have g(T') petal vertices. We call the pair of marked points
on the eye corresponding to the two edges connecting o and p; the p;-marked points
on the eye.

A Harris—-Mumford saturated metrized complex of type 11 is a saturated metrized
complex ¢ with underlying metric graph I' homeomorphic to a topological graph
obtained by gluing together finitely many (0 is allowed) circles along the endpoints
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Type I
v Type II

Figure 9: Example of the underlying metric graphs of Harris—-Mumford saturated metrized
complex of type I and II. For type I, o is the eye vertex, p1, p2, and ps are the three petal ver-
tices. For type I, 0; and o5 are the eye vertices; p1, p2, p3, pa, and ps are the three petal vertices.
Examples of regulated global diagrams are also shown with edge multiplicities marked.

0; and o, of a line segment (Figure 9), while g(€) = g(C,,) + g(Co,) + g(T). We
call the two vertices 0; and o0, the eye vertices and the associated curves C,, and C,,
the eyes of €. Analogously, the middle points of the attached circles are called petal
vertices. We also call the pair of marked points on the eyes corresponding to the two
edges connecting the segment 0,0, and p; the p;-marked points.

For both types, we say a global diagram on T is regulated if edge multiplicities only
possibly change across the eye vertices and the petal vertices (Figure 9). The follow-
ing theorem is an analogue for Harris—Mumford [24, Theorem 5] saturated metrized
complexes.

Theorem 7.6 (i) A Harris-Mumford saturated metrized complex € of type I has
a base-point-free smoothable limit g\, whose global diagram is regulated if and only if
there exists a rational function f of degree d on the eye which has the same value and
ramification indices on each pair of the p;-marked points for all petal vertices p;.

(ii) A Harris-Mumford saturated metrized complex € of type 11 has a base-point-
free smoothable limit gl whose global diagram is regulated if and only if there exist
rational functions f and f, on the two eyes, respectively, such that

(a) for all petal vertices p;, the pair of p;-marked points have the same value and ram-
ification indices for the corresponding f; (j = 1or 2), and

(b) d =dy +d, -1 ,where d, and d, are the degrees of f, and f,, respectively, and both
ramification indices of f and f, at respective marked points corresponding to the
central segment take the same value .

Proof For (i), first let (D, H() represent a base-point-free smoothable limit g}, with
regulated global diagram. Then the only possible global diagrams are those with the
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same multiplicity along each pair of edges connecting the eye vertex o and a petal
vertex. Consider a nonconstant function f in H, where o is the eye vertex. By the
smoothing criterion (version II, Theorem 2.6), f has the same value and ramification
indices on each pair of the p;-marked points for all petal vertices p;. In addition, since
(D, H) is base-point free, f must also have degree d.

On the other hand, if f is a rational function of degree d on the eye C, that has
the same value and ramification indices on each pair of the p;-marked points for
all petal vertices p;, then we can construct a base-point-free smoothable limit g,
represented by (D, H) with regulated global diagram in the following way. First
we let H, be the space of rational functions spanned by a constant function and f.
Since for each petal vertex p;, the distances of the two edges connecting p; and o
are the same and f has the same multiplicities on the pair of p;-marked points, we
can construct a regulated global diagram compatible with the local diagram for H,
(Remark 2.5). Associate projective lines with the points p other than o and we can
always construct a two-dimensional space H,, of rational functions on C, whose lo-
cal diagram is compatible with the global diagram. Now for all p € T, let D, =
Ziemn(p)ym(p, t)(red, (1)) + D} based on the notations in Remark 2.5. By the smooth-
ing criterion, the ({D,} per, {H}per) constructed in this way represents a smooth-
able gl

For (ii), suppose (D, H) represents a base-point-free smoothable limit g}, with reg-
ulated global diagram. Then the only possible global diagrams are those with the same
multiplicity along each pair of edges connecting a petal vertex to its corresponding eye
vertex 0; or 0, and with unchanged multiplicity along 0;0,. Consider non-constant
functions f; € H,, and f, € H,,. Therefore condition (a) is satisfied using a similar ar-
gument as for (i) and the ramification indices of f; and f, at respective marked points
u; and u;, corresponding with the segment 0;0, take the same value, say I. Moreover,
if u; is a pole of f;, then u, is not a pole of f,, and vice versa. Then the total degree
d of (D,H) mustbe d = dy + dy — I, where d; and d, are the degrees of f; and f3,
respectively.

On the other hand, suppose we have rational functions f; on C,, and f; on C,,
satisfying conditions (a) and (b). If none of u; and u, are respectively poles of f; and
fa-welet fi = f{ and f, = 1/(f; — f(u2)). If both u; and u, are respectively poles
of fi and f>, welet fi =1/f] and f, = f;. Now u; is not a pole of f; and u, is a pole
of f,, while both f; and f; satisfy conditions (a) and (b). Moreover, the ramification
index of f; at u; is the same as the ramification index of f, at u,. For i = 1,2, let
H,, be spanned by a constant function and f;. Then we can construct a regulated
global diagram compatible with the local diagrams associated with H,, and H,, and
build a base-point-free smoothable limit g}, on this global diagram following a similar
approach as in (i). ]

7.4 The Smoothing Criterion on Metrized Complexes

Recall that in Remark 2.2, we compared the notion of metrized complex introduced by
Amini and Baker [3] and the notion of saturated metrized complex. Consider a metric
graph I' and a vertex set A of I'. Suppose €4 is a metrized complex with its underlying
metric graph being I' and each point p € A is associated with a curve C,. As for
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pre-limit g7; defined on saturated metrized complexes (Definition 2.5), we say that a
pre-limit g/, on the metrized complex € is represented by the data (D4, H 4 ), where
Dy = (Dr,{Dy} pea) is an effective divisor of degree d on €4 and Hy = {H,} peas
where Hj, is an (r + 1)-dimensional subspace of the function field of C,. (See [3]
for more details about the divisor theory on metrized complexes.) In addition, as
in Definition 3.8, we say (D4, H,) is smoothable if there exists a g/, represented by
(D, H) on a smooth proper curve X/K specialized to (D4, H4) on €4.

Consider a saturated metrized complex € which is a saturation of €4 (Remark 2.2).
We say a divisor D = (Df, {D), } per) on € is a saturation of D4 = (Dr, {D)}pea) on
€4 if Dr = Dy and Dy, = D; for all p € A, and we say H = {H}}per is a saturation
of Hy = {Hp}pea if H, = H), for all p € A. Then naturally we have the following
statement.

Lemma 7.7 A pre-limit g, represented by (D a,H4) on a metrized complex €, is
smoothable if and only if there exists a saturation (D, H) of (D4, Ha) on a saturation
¢ of €4 such that (D, H) is smoothable.

Our smoothing criterion for the rank one case on saturated metrized complexes
can be extended to the case for metrized complexes. The subtlety here is that we need
to consider all possible saturations of (D 4, H 4 ) and each saturation (D, H) affords its
own global diagram that might either be solvable or not solvable. So to say (D, H4)
is smoothable, we should be able to single out a solvable saturation (D, H) that sat-
isfies the intrinsic global compatibility conditions. Fortunately, even though the pro-
cess of determining rank-one smoothability on metrized complexes is usually more
complicated, it is still finitely verifiable, as in the following example.

Example 7.8 Consider a metric banana graph I' of genus 3 as shown in Figure 10
(a). Let A = {p, q} be a vertex set of I and then suppose the four edges L;, L,, L3,
and L4 connecting p and g have the same length 1. Let o be the middle point of L;.
Let €4 be a metrized complex with underlying metric graph being I' and associated
curves being C,, and C, with respect to p and g, respectively. Let (D4, 3, ), where
Da = (Dr,{Dp,D,}) has degree d and H, = {H,, H,} represent a pre-limit g} on
€4. More specifically, we assume that Dr(0) = 3, D, is compatible with H,, D is
compatible with Hy, and Dr(p’) = 0 for every p’ € ' \ {0, p, q}. The local diagrams
at p and q induced by H;, and H, respectively, are also shown in Figure 10 (a), i.e.,
the tangent directions at p corresponding to L;, L, L3, and L4 have multiplicities -1,
2, 1, and 1, respectively, and the tangent directions at g corresponding to Ly, L,, L3,
and L4 have multiplicities -1, 1, 1, and 2, respectively. Let € be a saturation of €4.
Then (D4, H,) is smoothable if and only if there exists a saturation of (D4, H4) on
¢ which is smoothable. Let (D, H) be a diagrammatic saturation of (D4, H,4) on
¢. First we need to determine whether (D, 3() is solvable. Figure 10 (b) shows the
allowable cases of the discrete 1-form w in the global diagram of (D, H) restricted
to the four edges L, L,, L3, and L4. Note that the variation of the multiplicity along
L,, L3, or Ly from p to g must be non-increasing since Dr(p’) = 0 for p’ in the
interior of these edges. In addition, we have the following restrictions for the lengths
of segments with uniform multiplicities: x, + y2 + 22 = X3+ ¥3 = X4 + ya + 24 = 1,
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(b)

Figure 10: An example of the smoothability test on a metrized complex with its underlying
metric graph being a banana graph of genus 3 and its vertex set being the two valence-4 points.

X2,22, X3, ¥3,Xa,24 > 0, and y2, y4 > 0. The case for L, is a little bit special, since Dr
has value 3 at the middle point o of L;. Again, the variation of multiplicity from o to
p or g must be non-increasing. Thus the two tangent directions at o (one from o to p
and the other from o to g) must be outgoing tangent directions in the local diagram
at o0 induced by (D, H). In addition, these two tangent directions must be locally
equivalent if we want (D, H) to be smoothable since 0 must map to the root of the
corresponding bifurcation tree and there is only one forward tangent direction from
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the root (see Figure 10 (c), (d), and (e)). The three possible cases on L; are shown in
Figure 10 (b) and the restrictions are x; + y; = x{ + y; = 1/2, x1, x{ > 0, and y1, y; > 0.

Let fL,» w be the integral of w along L; from p to q. Then (D, H) is solvable if
andonly if [; @ = [ w = [, w = [, . Depending on the cases, [, @ = 0 or
1/2 - 2x; - y1 or 2x" + y' —1/2. Therefore, -1/2 < [} w <1/2. Similarly, -1 < [} @ =
2%+ y2 — 22 < 2, -1 <fL3w =x3—y3<land -2 < fuw = 2x4—ys+z4 <L
Therefore, by adjusting the values of x5, y3, 22, X3, ¥3, X4, Y4, 24, for the three cases
of the global diagram restricted to L; in Figure 10 (b), we can always find a solvable
global diagram and the corresponding (D, ). Moreover, the projection from I to
a bifurcation tree corresponding to each of the three solvable cases are sketched in
Figure 10 (c), (d), and (e), respectively.

For the case in Figure 10 (c), p and g map to the same point that has three forward
tangent directions in the bifurcation tree. Therefore, to determine the smoothability
of a solvable (D, 3) whose projection to its bifurcation tree is as in Figure 10 (c),
the intrinsic global compatibility conditions are trivially satisfied and only need to
be tested for H, and H,. More precisely, suppose H,, has a basis {1, f,}, H, has a
basis {1, f; }, u2, u3, and u4 are the marked points on C,, that are the reductions of the
tangent directions at p corresponding to the edges L,, L3, and Ly, respectively, and v,
v3, and v4 are the marked points on Cy that are the reduction of the tangent directions
at g corresponding with the edges L,, L3, and Ly, respectively. Then by Algorithm 2.13,
(D, H) is smoothable if and only if the linear equations &, + f, (4;) 8, = g+ f3(vi) B4
have a solution for the unknowns &y, ,, &4, B4 such that 8, # 0 and 8, # 0.

To determine the smoothability of a solvable (D, ) whose projection to its bi-
furcation tree is as in Figure 10 (d) (respectively, Figure 10 (e)), one only needs to test
the intrinsic global compatibility conditions at p (respectively, at q), which reduces to
saying that (D, ) is smoothable if and only if the three forward tangent directions
at p (respectively, at q) are locally equivalent.

Finally, let us sum up the smoothability test for (D4, H,) based on the above
discussion on all cases of possible saturations of (D 4,HH4) as follows: (D, H,4) is
smoothable if and only if either at one of p and g, the three forward tangent directions
are locally equivalent, or the linear equations a, + f,(u;)Bp = ag + fq(vi)B4 have a
solution for the unknowns a,, B,, a4, B4 such that 8, # 0 and B, # 0.

A Berkovich Skeleta and Saturated Metrized Complexes

A.1 Saturated Metrized Complex associated with a Berkovich Skeleton

We begin by briefly recalling the concept of the skeleton of the Berkovich analytic
curve. A semistable vertex set V of X*" is a finite set of type II points of X*" such that
the complement of V in X*" is a disjoint union of a finite number of open annuli and
an infinite number of open balls. Let Z(X*", V) be the skeleton of X*" with respect
to a semistable vertex set V.

In order to associate a saturated metrized complex €(X) with (X*", V'), we must
associate the following data with it: a metric graph I', a smooth algebraic curve C, for
each point p € T, and for each C,, we must specify a set A, of marked points that are
in bijection with the set of tangent directions at p. The metric graph I underlying the
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saturated metrized complex is defined as being isometric to £(X*", V). We associate
the algebraic curve C,, with each point p € I' as follows: since the value group of K is
R, every point in £(X*", V') is a type II point [8]. Hence, the double residue field has
transcendence degree one over k and is isomorphic to the function field of a smooth
curve over k. This smooth curve is well defined up to isomorphism and we associate
this curve C, with the point p € I'. We define marked points associated with the
algebraic curve C, as follows: let x be the type II point corresponding to p, the set
of tangent directions at any type II point in X®" has a canonical bijection with the
set of discrete valuations of the double residue field at that point [8, Chapter 1]. The
set of discrete valuations of the double residue field is in turn in bijection with the
set of closed points of C,, [8, Chapter 1]. For each tangent direction t € Tanr(p), we
define its marked point as the point in C,, associated with the corresponding tangent
direction in the skeleton X (X®", V). Note that the marked point associated with each
tangent direction is distinct.

Lemma A.1  For any skeleton £(X**, V) of X*", the data €(X) define a saturated
metrized complex. In particular, for all but a finite number of points in T, the curve C,
is a projective line over k.

Proof To show that €(X) is a saturated metrized complex, we must verify that the
curve C,, has genus zero for all but finitely many points of I'. Using [6, (5.45.1)], we
have g(X) = g(T) + X per g(Cp)- Hence, g(C)) = 0 for all but finitely many p. ~ ®

Remark A.2 The semistable vertex sets of X are in one-to-one correspondence with
the semistable models of X. (We refer to [6, §5.14 and §5.29] for a detailed treatment
of the topic.) Via this correspondence, we can associate a saturated metrized com-
plex with a semistable model of X. This saturated metrized complex is the “limit" of
the metrized complexes associated with semistable models obtained by successively
blowing up the special fiber at its nodes.

We define a morphism from 7,:Div(X) — Div(€(X)) called the specialization
map and a map that takes a rational function on X to a rational function on €(X) is
called the reduction map. We follow the analogous construction for metrized com-
plexes by Amini and Baker [3, §4].

A.2 Specialization Map

Suppose that ry: X*" — (X", V) is the retraction map and let {rv s }c[o,1] be the
family of retraction maps associated with the deformation retraction from X*" to
Z(X*,V). In particular, ry; = ry. For a closed point z € X, the point ry(z)
has a unique tangent direction #37 (z) in X*" that lies in the image of the retraction
map ry,s, where s is in an open neighborhood of 1. The map 7, takes z to the point
(rv(z),red,(£7(z)) on €(X), where red,(#}"(z)) is the marked point in C, cor-
responding to the tangent direction 3" (z). We extend this map linearly to define a
specialization map from Div(X) to Div(€(ZX)).
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Lemma A.3  The specialization map 1. is a homomorphism from Div(X) to
Div(€(Z))

that takes effective divisors on Div(X) to effective divisors on Div(&€(X)). The image of
7, is the set of all divisors (Dr,{D,}per) € Div(€(Z)) such that the support of D,, is
contained in the set C, \ Aj, forall p € T.

A.3 Reduction of Rational Functions

Consider a point p € T and let x be the corresponding type (2) point in Z(X*", V).
By f(x), we denote the multiplicative semi-norm defined by x evaluated at f and let
¢ € K* such that |c| = |f(x)|. Let H(x) be the double residue field of x and note
that the field H(x) is isomorphic to the function field of Cp. Suppose that f maps
to f, in H(x). The reduction map takes f to (¢’ f),; we denote (¢™'f), by fx and

the corresponding rational function in C, by f,. Note that f, is only defined up to
multiplication by «* and hence, its divisor is well defined.

Lemma A.4 ([3, Lemma 4.3]) The dimension of any finite-dimensional subspace of
k(X) is preserved by reduction.

Given a rational function f on X, we let fr be a rational function on I' given by the
restriction to the skeleton I' = Z(X*", V) of the function log|f|: X*" - R u {zoo}.
Hence, given a rational function f on X, we associate a rational function

f=(fro {fp}per)

on €(X). The following version of the Poincaré-Lelong Formula for saturated met-
rized complexes establishes a compatibility between the specialization and the reduc-
tion maps.

Theorem A.5 (Poincaré-Lelong Formula) For any non-zero rational function f on
X, suppose that { is the reduction of f on €(Z), so we have 7, (div(f)) = div(f). Hence,
the map 1, takes principal divisors in X to principal divisors in €(Z).

Proof For a point x in the skeleton Z(X*", V'), we partition the set of Tan, of tan-
gent directions at x into the tangent directions in (X", V') and its complement and
denote them by Tan; , and Tan, , respectively. By parts (2) and (5) of the slope for-
mula [6, Theorem 5.69], we note that ord,(f;) = 0 for all but points x € Z(X*", V)
and t € Tan, , except those that lie in the image (under the retraction map) of the
support of div(f). By part (2) of the slope formula, sl;( fr) = ord;(fx ). Hence, div(f)
has support at a finite number of points and its support coincides with the support
of 7, (div(f)). Hence, div(f) is a divisor (not just a pseudo-divisor). Let S be the
union of the support of div(fr) and the points of I' with valence at least three. Thus,
7, (div(f)) and div(f) coincide on points in T \ S. Consider the metrized complex
€(XZ)|S obtained by restricting € to S. More precisely, €(Z)|S is a metrized complex
whose metric graph is I' with the model given by the set S and the algebraic curves C,
for every point in v € S and the marked points exactly as in €(X). By the Poincare-
Lelong formula [3], we have 7. (div(f)) and div(f) coincide on €(X)]S. [ |
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B A%)ﬂf, Ag?g{, Ag?g{, and Ag?}( as Partially Ordered Sets

In this section, we show that a partial order can be naturally imposed on the spaces
A,(Dl?ﬂ, Ag)z,)}c, Ag’)g{, and ASDAL’)}C of partition trees.

Let p be a solution to (D, H) and B be the corresponding partition tree. Recall
that for a partition tree (T, 777) in A%? 5¢ = Ap, we have a canonical projection ®7
from B to T (Proposition 4.12) which induces a partition P, of (d;)™(c) for any
¢ € Im p (Remark 4.13).

For two partition trees (77, 73, ) and (T3, 7, ), we say (T1, ,) < (T2, 7g,), or
simply T; < T, if the partition of (d%)™"(c) induced by T, is a refinement of the
partition induced by TJ; for each ¢ € Imp. Moreover, if T; < T3, there is a natu-
ral map Gg‘zz‘J’l - T with x = yif (02)7(x) ¢ (82)7(y). Clearly, in this
sense, the coarsest partition tree (Im p, p) and the finest partition tree (B, 73 ) are
the maximum and minimum of A, respectively, (recall that as a rooted metric tree,
Im p = [minyer p(p), maxper p(p)] has its root at min,er p(p)).

The following lemma is a natural consequence of the definitions of partition trees
and the maps between them.

Lemma B.1 If T, < T, < T3 as partition trees, the following diagram commutes.

T2
T d/.)‘Tz
T T

® 7; ] 7§
1 P
T['J*1 €] T d’J’

r 71 3 3 2 Im P
M—/ / 2
P

The following lemma says that A,(Dz’)g{ is lower closed.
(2) ' 1) : ’ . .4 (2)
Lemma B.2 IfT € Ay’y, then any element T’ € Ay g with T' < Tis also in A’y

Proof Recall that, by definition, to say T € Ag’)}f is equivalent to saying that for
every point p € T and each pair of tangent directions f, ¢, € Tanf(p), #; is locally
equivalent to t, if w7, (t1) = 7. (£2).

On the other hand, 7’ < 7 means that J” induces finer partitions on forward tan-
gent directions of B than T. Thus if g7, (#1) = 737, (t2), then w7, (81) = 77, (f2)
and we conclude T” € A,(DZ’)H. [ |
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Figure 11: (a) A metric tree I with the projection onto a partition tree. (b) A%{ 4¢ is a union of

three triangles AOPyP;, AOP,P,, and AOPyPs, and the space {T ¢ A%)’}C | T < A} is the
union of triangles AOAgAz, AOAAs, and trapezoid OAgAA;.

Since B is the minimum element of A,(Dl)’g{, we have the following corollary.

Corollary B.3 If Ag?ﬂ is nonempty, then B is an element of Ag?ﬂ.

Example B.4 We consider a simple metric graph I that is a metric tree with root py
and leaves py, p>, and p; and all edge lengths being 1as shown in Figure 11 (a). Let € be
a saturated metrized complex of genus 0 with underlying metric graph I'. Suppose the
global diagram of a base-point-free diagrammatic pre-limit g} (D, ) on € has its
differential form part with multiplicity 1 on each direct edge from py to p; (i = 1,2, 3).
Then each partition tree T in A,(Dl)ﬂ can be derived by the following procedure: (1)
glue the three edges po p1, pop2, and po p3 continuously from p, of length «, and then
(2) choose two edges and continue the gluing on the selected edges for length f3 (as
shown in Figure 11 (a)). Note that we have three cases for step (2) based on which
two edges are selected: Case 1 for pop; and pg p, being selected, Case 2 for pop, and
Pops being selected, and Case 3 for pop; and pop3 being selected. Let x be the total
length glued for pop;, y the total length glued for pgp,, and z the total length glued
for pops. Then we can represent T uniquely by a point with coordinates (x, y, z).
In particular, the coordinates are (a + f3,a + 8, ) for Case 1, (o, + 8, ¢ + f3) for
Case 2,and (a + 3, a, a + B) for Case 3. Therefore Ay, is a union of three triangles
inside a unit cube. As shown in Figure 11 (b), A(Dl?g{ = AOPyP,u AOPyP,u AOPyPs,
where AOPyP; corresponds to Case 1, AOP,y P, corresponds to Case 2 and AOPyPs
corresponds to Case 3. Moreover, let point A with coordinates (a4 + 4, aa + 4, 4)
be a point in A OP,Py. In Figure 11 (b), the space {T ¢ Ag)ﬂ | T < A} is shown as the
darker region (polyhedral complex with vertices O, A, Ay, Ay, A, and As).
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For this simple metric graph, to derive AP Ag ))}f, and A,(S))H, the onlylocal data

D,
needing to be examined are for the curve at po. Note that this also means AS )}( =
Ag’)ﬂ. Denote the outgoing tangent directions at pg by f;, t, and t3, where ¢; is the
tangent direction from pg to p;. We have the following cases under the assumption
that (D, H) is base-point free (the conventional notations of open, closed and half-
open-half-closed intervals are used for those of segments).

Casel: (D,J) has degree 1. Then the local partition at pg is the finest partition
{{t}.{t2}.{ts}}. Wehave AT, = A, = A%, = {0}
Case2: (D,J) has degree 2. Then the local partition at p, is made of a singleton

and a set of two elements.
Subcase 2.1:  Thelocal partition at pg is {{#1, t2}, {¢3} }. Then Ag,)% =[O0, P ]and

3 4
Ay =A%, = (0,P].

Subcase 2.2:  'The local partition at pg is {{t2,¢3},{#:}}. Then A(Dz))}c = [0, P,]
and AS), = A, = (0,Ps].

Subcase 2.3:  The local partition at pg is {{t1,t3},{t2}}. Then Ag,)}c =[O, P5]
and AS), =A%), = (0,P3].
Case3: (D, ) has degree 3. Then all tangent directions at pg are locally equivalent.
We have AS, = AL, and AD = A% =AY, ([0, ] U0, P]ULO, Ps)).

One can consider AEDI?J—( as the compactification of Ag’g{’s in case (3) by Ag’)g{ in
case (1) and (2).

Remark B.5 The spaces A(Dl)’%, A,(DZ’)}C, Ag’)}c, and Ag’)}( have much richer struc-
tures, e.g., lattice structure, metric, and convexity, which will be presented in our
follow-up work. Moreover, we expect that the space A(ﬁ ))}( has an interpretation in
terms of a skeleton of the analytification of the following moduli space of maps: the
moduli space of all maps of the form X — P}, where X is the smooth curve in the
commutative diagram 1.2. Results of this flavor have been obtained by Cavalieri et al.
[13] for spaces of admissible covers and for moduli spaces of curves by Abramovich
et al. [1]. As we vary over all limits g}, on the saturated metrized complex €, the space

Uo,30) Ag?% parameterizes the space of metric trees underlying all smoothings of
limit g} in €.
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