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Abstract We give a Dirichlet form approach for the construction and analysis of elliptic diffusions in
Ω̄ ⊂ R

n with reflecting boundary condition. The problem is formulated in an L2-setting with respect to
a reference measure µ on Ω̄ having an integrable, dx-almost everywhere (a.e.) positive density � with
respect to the Lebesgue measure. The symmetric Dirichlet forms (E�,a, D(E�,a)) we consider are the
closure of the symmetric bilinear forms

E�,a(f, g) =
n∑

i,j=1

∫
Ω

∂ifaij∂jg dµ, f, g ∈ D,

D = {f ∈ C(Ω̄) | f ∈ W 1,1
loc (Ω), E�,a(f, f) < ∞},

in L2(Ω̄, µ), where a is a symmetric, elliptic, n × n-matrix-valued measurable function on Ω̄. Assuming
that Ω is an open, relatively compact set with boundary ∂Ω of Lebesgue measure zero and that � satisfies
the Hamza condition, we can show that (E�,a, D(E�,a)) is a local, quasi-regular Dirichlet form. Hence, it
has an associated self-adjoint generator (L�,a, D(L�,a)) and diffusion process M�,a (i.e. an associated
strong Markov process with continuous sample paths). Furthermore, since 1 ∈ D(E�,a) (due to the
Neumann boundary condition) and E�,a(1, 1) = 0, we obtain a conservative process M�,a (i.e. M�,a

has infinite lifetime). Additionally, assuming that
√

� ∈ W 1,2(Ω) ∩ C(Ω̄) or that � is bounded, Ω is
convex and {� = 0} has codimension at least 2, we can show that the set {� = 0} has E�,a-capacity zero.
Therefore, in this case we can even construct an associated conservative diffusion process in {� > 0}.
This is essential for our application to continuous N -particle systems with singular interactions. Note
that for the construction of the self-adjoint generator (L�,a, D(L�,a)) and the Markov process M�,a

we do not need to assume any differentiability condition on � and a. We obtain the following explicit
representation of the generator for

√
� ∈ W 1,2(Ω) and a ∈ W 1,∞(Ω):

L�,a =
n∑

i,j=1

∂i(aij∂j) + ∂i(log �)aij∂j .

Note that the drift term can be singular, because we allow � to be zero on a set of Lebesgue measure
zero. Our assumptions in this paper even allow a drift that is not integrable with respect to the Lebesgue
measure.
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1. Introduction

The elliptic diffusions we construct in this paper are associated with symmetric Dirichlet
forms (E�,a, D(E�,a)) which are the closure of the symmetric bilinear forms

E�,a(f, g) =
n∑

i,j=1

∫
Ω

∂ifaij∂jg dµ, f, g ∈ D,

D = {f ∈ C(Ω̄) | f ∈ W 1,1
loc (Ω), E�,a(f, f) < ∞}

⎫⎪⎪⎬⎪⎪⎭ (1.1)

in L2(Ω̄, µ). We assume that the measure µ on Ω̄ ⊂ Rn has an integrable, dx-almost
everywhere (a.e.) positive density � with respect to the Lebesgue measure. Furthermore,
we assume a to be a symmetric, elliptic, n × n-matrix-valued measurable function on Ω̄.
We assume that the set Ω is an open, relatively compact set with boundary ∂Ω of
Lebesgue measure zero. Ω̄ denotes the closure of Ω.

In the special case where a is the identity matrix and � is a constant, the associated
diffusion process is called reflected Brownian motion in Ω̄. It has been constructed and
studied for Ω with Lipschitz boundary by Bass and Hsu [5,6]. (See also [24] for another
approach.)

In the case where

σ =
√

a and b =
( n∑

i=1

∂i(log �)aij

)
1�j�n

(1.2)

are Lipschitz on Ω̄ and Ω is smooth, the process associated with (E�,a, D(E�,a)) has been
obtained as a solution to the corresponding stochastic differential equation by Lions and
Sznitman [17].

Pardaux and Williams [21] investigated two methods for approximating the diffusion
process associated with (E�,a, D(E�,a)). One is a conventional penalty approximation
by diffusions defined on all of Rn. The other uses diffusions confined to Ω̄ by singular
drifts that tend to infinity at the boundary of Ω. Comparing our assumptions with those
in [21], we assume only a stronger ellipticity of a. However, in [21], Pardaux and Williams
assume, in addition to our conditions, that a and � are locally Lipschitz. Furthermore,
they assume that � > 0. We can allow � = 0 in Ω in a set of Lebesgue measure zero. This is
essential for our application to continuous N -particle systems with singular interactions
(see Theorem 5.4 and Remark 5.5). In the case where � is bounded above and below
by positive constants, the diffusions we construct coincide with those obtained in [21]
(see [21, Remark 3.10]).

Our approach is instead as in [2], where Albeverio et al . used Dirichlet form techniques
(see [10,20]) to construct the diffusion corresponding to (E�,a, D(E�,a)) in the case when
Ω = Rn and a is the identity matrix. Our assumptions on � for constructing the diffusion
process corresponding to (E�,a, D(E�,a)) are still more general than those in [2] and are
instead as used in [11], where Fukushima also considered the case Ω = Rn. In the case
that we consider, with a compact Ω̄, however, we have to deal with other difficulties
caused by the boundary (see Remarks 2.7 and 2.17).

https://doi.org/10.1017/S001309150600160X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150600160X


Elliptic diffusions with reflecting boundary condition 339

Furthermore, Trutnau [23] developed a Dirichlet form approach for the construction
and analysis of reflected diffusions at the same time as we did. Among others, Trut-
nau [23] considers Dirichlet forms with the same assumptions on matrix a and density �

as we do. However, the diffusions studied in [23] correspond to Dirichlet forms obtained
as the closure of C∞(Ω̄). For our application to continuous N -particle systems with
singular interactions it is essential to have sufficiently many functions in D(E�,a) (see,
for example, the proofs of Theorem 4.5, Corollary 4.7 and Proposition 5.3). Hence, we
need to choose the Dirichlet form given by the closure of the larger space D ⊃ C∞(Ω̄).
In [23], after constructing the associated diffusion process M�,a by Dirichlet form tech-
niques, a Skorokhod decomposition of M�,a is given. This, in particular, describes M�,a

as a process with reflecting boundary condition. In the case where � is bounded above
and below by positive constants, the diffusions we construct also coincide with those
obtained in [23].

There are further articles on reflected diffusions (see, for example, [7,9,12]) with results
complementary to ours.

Our paper is organized as follows. In § 2 we analyse the symmetric bilinear form (1.1).
Assuming the Hamza condition (see Condition 2.2), we can show in Proposition 2.6 that
(E�,a,D) is closable. Hence, its closure (E�,a, D(E�,a)) has an associated self-adjoint gen-
erator (L�,a, D(L�,a)); see Remark 2.8. Furthermore, we can prove that (E�,a, D(E�,a))
is a conservative, local, quasi-regular Dirichlet form (see Remark 2.7 (iv) and Proposi-
tions 2.11, 2.16 and 2.19). In order to simultaneously have closability, sufficient functions
in D(E�,a) for our application to continuous N -particle systems and quasi-regularity, a
proper choice of Ω and D is crucial (see Remarks 2.7 and 2.17). The main result of
§ 2 is presented in Theorem 2.21, where we prove that (E�,a, D(E�,a)) has an associated
conservative diffusion process M�,a taking values in Ω̄, i.e. an associated strong Markov
process with continuous sample paths and infinite lifetime. Here, quasi-regularity gives
the existence of the process M�,a. Locality (see Proposition 2.19) implies that M�,a has
continuous sample paths. The fact that M�,a is conservative (i.e. has an infinite lifetime)
follows from 1 ∈ D(E�,a) and E�,a(1, 1) = 0. Furthermore, in Theorem 2.21 we prove
that M�,a is the unique diffusion process having µ as symmetrizing measure and which
solves the martingale problem for (L�,a, D(L�,a)).

Since M�,a solves the martingale problem for (L�,a, D(L�,a)), it can be considered as
the solution of a stochastic differential equation. Our existence result in Theorem 2.21,
however, is so general that we do not even have an explicit formula for its generator,
(L�,a, D(L�,a)). Under the additional condition

√
� ∈ W 1,2(Ω), a ∈ W 1,∞(Ω) and with

Ω having Lipschitz boundary, in Theorem 3.2 we prove that

DN := {f ∈ W 2,∞(Ω) | ∂aνf(x) = 0 for all x ∈ ∂Ω} ⊂ D(L�,a),

where ν denotes the outer normal with respect to ∂Ω and aν is the linear transformation
of ν under a. Furthermore, for all f ∈ DN, we derive the representation

L�,af =
n∑

i,j=1

∂i(aij∂j)f + ∂i(ln �)aij∂jf. (1.3)
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Note that elements from DN have the Neumann boundary condition. We assume that Ω

has Lipschitz boundary, so that the representation given in (1.3) holds for a larger class
of functions from D(L�,a). For functions with compact support in Ω, we obtain the rep-
resentation in (1.3) without assuming that Ω has Lipschitz boundary (see Remark 3.4).
Now, using Itô’s formula, we find that the process M�,a solves the stochastic differential
equation

dXt = b(Xt) dt +
√

2a(Xt) dBt inside Ω, with reflecting boundary condition, (1.4)

for E�,a-quasi all initial conditions in X0 ∈ Ω̄. Here, a solution is understood in the sense
of the associated martingale problem and (Bt)t�0 is a vector-valued Brownian motion.
The function b is defined as in (1.2).

In § 4 we analyse (E�,a, D(E�,a)) from the potential theoretical point of view. Assuming
that

√
� ∈ W 1,2(Ω) ∩ C(Ω̄) or that � is bounded, Ω is convex and {� = 0} has at least

codimension 2, in Theorem 4.5 we can prove that the set {� = 0} has E�,a-capacity zero.
Thus, we can restrict the Dirichlet form (E�,a, D(E�,a)) to {� > 0} as a conservative, local,
quasi-regular Dirichlet form (see Corollary 4.7). This gives us an associated conservative
diffusion process in {� > 0} (see Corollary 4.8).

Finally, as an application we construct a solution to the N -particle stochastic dynamics
in Λ ⊂ Rd. This dynamic takes values in the space of N -point configurations in Λ,

Γ
(N)
Λ := {γ ⊂ Λ | #(γ) = N},

and solves weakly the following N -system of stochastic differential equations:

dx(t) = −
∑

y(t) �=x(t), y(t)∈X(t)

∇φ(x(t) − y(t)) dt +
√

2 dBx0(t) inside Γ
(N)
Λ ,

with reflecting boundary condition. (1.5)

Here x(t) ∈ X(t) ∈ Γ
(N)
Λ and (Bx0)x0∈γ0 are N independent Brownian motions starting

in x0. We prove in Theorem 5.4 the existence of a weak solution to (1.5) for all initial
conditions γ0 ∈ Γ

(N)
Λ except for a set of capacity zero. Our assumptions on the interaction

potential allow singular interactions. In the case when d = 1 we assume the interaction
potential φ to be either strongly repulsive (SRP) and bounded below (BB), or repulsive
(RP) and weakly differentiable (DL2). In the case when d � 2 we must assume the
interaction potential φ to be either repulsive (RP) and bounded below (BB), or just
bounded; see below for a precise definition of (SRP), (RP), (BB) and (DL2). In our
construction, we first consider the corresponding Dirichlet form (EΛ,N , D(EΛ,N )) on ΛN ⊂
Rn, n = Nd. The measure µ in this case is the canonical Gibbs measure corresponding
to N interacting particles in Λ. Then due to (RP), or in the case of a bounded potential
by capacity estimates provided in [22], we find that the set of diagonals Dg in ΛN has
EΛ,N -capacity zero (see Remark 5.5). Hence, via the symmetry mapping

sym(N)
Λ : ΛN \ Dg → Γ

(N)
Λ ,

sym(N)
Λ (x1, . . . , xN ) = {x1, . . . , xN},

we can construct a solution to (1.5).
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The following list of main results summarizes the progress achieved in this paper.

(i) We construct conservative diffusion processes with reflecting boundary condition
under very mild assumptions on the drift part and diffusion part (see Theo-
rem 2.21).

(ii) We provide an explicit representation of the generator for functions with Neumann
boundary condition (see Theorem 3.2); this representation enables us, via the mar-
tingale problem, to identify the processes we construct as weak solutions to the
stochastic differential equation (1.4).

(iii) We show that the set on which the density � of the symmetrizing measure µ is zero
has capacity zero (see Theorem 4.5). As a corollary, we can construct the associated
process on {� > 0} (see Corollary 4.8).

(iv) We construct the N -particle, finite volume stochastic dynamics with reflecting
boundary condition for singular interactions (see Theorem 5.4).

We consider this paper as a basis for several other articles. For example, it provides
the N -particle dynamics in a finite volume for singular interactions, which is essential
for proving an N/V -limit for infinite particle, infinite volume stochastic dynamics in
continuous particle systems (see [16]). Furthermore, in [8,15] we analyse strong Feller
properties and determine the spectral gap of the generators of the diffusions that we
construct here.

It might be possible to construct N -particle dynamics for singular interactions by first
regularizing the potential, using existing theory on stochastic differential equations to
construct the corresponding approximating process and then attempting to take a weak
limit. But then the question of whether the weak limit solves the associated martingale
problem is still open. This property is important for the considerations in [16] and follows
directly from the Dirichlet form approach. Furthermore, for the considerations in [16] a
Lyons–Zheng decomposition (see [18,19]) of the N -particle dynamics into a forward and
backward martingale is needed. The existence of such a decomposition is only guaranteed
for processes associated with Dirichlet forms.

The reflecting boundary conditions are needed to obtain a process with an infinite
lifetime. Note that Dirichlet form techniques allow such general boundaries (i.e. more
general than Lipschitz) that even the notion of a reflection might not be well defined.
Hence, for such boundaries we have a reflection at the boundary in a generalized sense.

2. Dirichlet forms

We start with the symmetric bilinear form

E�,a(f, g) =
n∑

i,j=1

∫
Ω

∂ifaij∂jg dµ
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on L2(Ω̄, µ). Throughout the paper we assume a to be a symmetric, n×n-matrix-valued
measurable function that is uniformly globally strictly elliptic on Ω, i.e. there exists κ > 0
such that

κ−1
n∑

i=1

ξ2
i �

n∑
i,j=1

aij(x)ξiξj � κ

n∑
i=1

ξ2
i for all ξ = (ξ1, . . . , ξn) ∈ Rn, µ-a.e. x ∈ Ω.

We assume Ω to be an open, relatively compact set with boundary ∂Ω of Lebesgue
measure zero. We assume the measure µ to have an integrable, dx-a.e. positive density
with respect to the Lebesgue measure, i.e. µ = � dx, where � > 0 dx-a.e. on Ω̄ and
� ∈ L1(Ω̄, dx). As a domain of E�,a we consider

D = {f ∈ C(Ω̄) | f ∈ W 1,1
loc (Ω), E�,a(f, f) < ∞}.

Here W 1,1
loc (Ω) denotes the Sobolev space of weakly differentiable, locally integrable func-

tions on Ω.

2.1. Closability of the bilinear form (E�,a, D)

We start by recalling some basic facts on bilinear forms. For a detailed study see, for
example, [10,20].

Definition 2.1. A bilinear form (E , D) on L2(Ω̄, µ) is said to be

(i) closed if the space D is dense in L2(Ω̄, µ) and complete with respect to the inner
product

E1(f, g) = E(f, g) + (f, g)L2(Ω̄,µ),

where
(f, g)L2(Ω̄,µ) =

∫
Ω̄

f(x)g(x)µ(dx);

(ii) closable if the condition

if fk ∈ D, E(fk − fl, fk − fl) → 0 as k, l → ∞
and (fk, fk)L2(Ω̄,µ) → 0 as k → ∞, then E(fk, fk) → 0 as k → ∞

is satisfied.

In our considerations, the natural question of the conditions under which the form
(E�,a,D) is closable arises. A discussion of this problem can be found, for example,
in [11]. To prove closability of such a form, we have to set some additional restrictions
on the density, �. We define

R�(Ω) :=
{

x ∈ Ω

∣∣∣∣ ∫
{y∈Ω | |x−y|�ε}

�−1(y) dy < ∞ for some ε > 0
}

.

Condition 2.2 (Hamza condition).

� = 0 dx-a.e. on Ω \ R�(Ω).
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Remark 2.3. R�(Ω) is open and � > 0 dx-a.e. on R�(Ω). Obviously, R�(Ω) is the
largest open set in Ω such that �−1 ∈ L1

loc(R�(Ω), dx) (see, for example, [20, Chapter 2]).

Remark 2.4. Note that, due to the assumption that � > 0 dx-a.e. on Ω̄ and Condi-
tion 2.2, we obtain that Ω \ R�(Ω) is of Lebesgue measure zero.

The next lemma will give us an estimate which is essential for proving closability of
(E�,a,D). For a proof see [20, Chapter II, Lemma 2.2].

Lemma 2.5. Let Condition 2.2 be satisfied, let ϕ ∈ C∞
0 (R�(Ω)) and let f ∈ L2(Ω̄, µ).

There then exists C1(ϕ) < ∞ such that∣∣∣∣ ∫
R�(Ω)

fϕ dx

∣∣∣∣ � C1(ϕ) · ‖f‖L2(Ω̄,µ).

Proposition 2.6. Consider the measure µ = � dx with density function � and suppose
that Condition 2.2 is satisfied. Then the symmetric bilinear form

E�,a(f, g) =
n∑

i,j=1

∫
Ω

∂ifaij∂jg dµ

with domain
D = {f ∈ C(Ω̄) | f ∈ W 1,1

loc (Ω), E�,a(f, f) < ∞}

is closable on L2(Ω̄, µ). We denote the closure by (E�,a, D(E�,a)).

Proof. Because of the ellipticity of a, we can restrict ourselves to the case where a

equals the identity on Rn. Throughout the paper we write E�,a = E�, if a equals the
identity matrix. Let (fk)k∈N be a Cauchy sequence in D with respect to E�, i.e.

E�(fk − fl, fk − fl) → 0 as k, l → ∞.

Suppose, furthermore, that fk → 0 in L2(Ω̄, µ), i.e.

(fk, fk)L2(Ω̄,µ) → 0 as k → ∞.

We must check whether E�(fk, fk) → 0 as k → ∞ (see Definition 2.1 (ii)).
We know that, for fixed i ∈ {1, . . . , n}, (∂ifk)k∈N converges to some hi in L2(Ω̄, µ),

since (∂ifk)k∈N is a Cauchy sequence in L2(Ω̄, µ) and (L2(Ω̄, µ), ‖ · ‖L2(Ω̄,µ)) is complete.
Now we use Lemma 2.5 for ϕ ∈ C∞

0 (R�(Ω)) to obtain∣∣∣∣ ∫
R�(Ω)

hiϕ dx −
∫

R�(Ω)
∂ifkϕ dx

∣∣∣∣ �
∫

R�(Ω)
|∂ifk − hi| |ϕ| dx

� C1(ϕ)‖∂ifk − hi‖L2(Ω̄,µ) → 0 as k → ∞.

Thus, ∫
R�(Ω)

hiϕ dx = lim
k→∞

∫
R�(Ω)

∂ifkϕ dx.
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This, together with an integration by parts, Hölder’s inequality and the fact that

(fk, fk)L2(Ω̄,µ) → 0 as k → ∞

implies that∫
R�(Ω)

hiϕ dx = lim
k→∞

∫
R�(Ω)

∂ifkϕ dx = − lim
k→∞

∫
R�(Ω)

fk∂iϕ dx = 0.

Hence, hi is the zero element in the space L2(R�(�), µ). Thus, hi is the zero element
in the space L2(Ω̄, µ), since ∂Ω has Lebesgue measure zero and � = 0 on Ω \ R�(Ω) by
Condition 2.2. Thus, we have proven that E�(fk, fk) → 0 as k → ∞. �

Remark 2.7.

(i) Note that the proof of Proposition 2.6 is based on the fact that ∂Ω has Lebesgue
measure zero.

(ii) From the proof of Proposition 2.6 we can easily conclude that E�,a with the larger
domain

D̃(E�,a) := {f ∈ L2(Ω̄, µ) | f ∈ W 1,1
loc (R�(Ω)), E�,a(f, f) < ∞}

is closed. In general, however, it is not clear whether D = C(Ω̄) ∩ D̃(E�,a) is dense
in D̃(E�,a) with respect to

√
E�,a
1 . This property is needed to show quasi-regularity

(see § 2.3), which is essential for our construction of the associated Markov process
in Theorem 2.21.

(iii) On the other hand, for our application to continuous N -particle systems, suffi-
ciently many functions in the domain of E�,a are needed. For example, choosing
D = C1(Ω̄), it is not clear whether the corresponding closure would have sufficiently
many functions for proving that the set {� = 0} has capacity zero; see the proof
of Theorem 4.5. This theorem in fact is essential for our application to continuous
N -particle systems (see Remark 5.5).

(iv) Since 1 ∈ D and E�,a(1, 1) = 0, the bilinear form (E�,a, D(E�,a)) is conservative.
In the case where (E�,a, D(E�,a)) has an associated diffusion process M�,a (see
Theorem 2.21), this implies that M�,a has infinite lifetime.

Notation.

Recall that Ω\R�(Ω) has Lebesgue measure zero. Thus, after the considerations above
we set ∇f := (∂1f, . . . , ∂nf) := (h1, . . . , hn) for all f ∈ D(E�,a).

Remark 2.8. By the Friedrichs representation theorem (see, for example, [3, Theo-
rem 4]) we obtain the existence of the self-adjoint generator (L�,a, D(L�,a)) corresponding
to (E�,a, D(E�,a)), i.e. D(L�,a) ⊂ D(E�,a) and

E�,a(f, g) = −
∫

Ω

L�,afg dµ for all f ∈ D(L�,a), g ∈ D(E�,a).
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Of course, (L�,a, D(L�,a)) generates a strongly continuous contraction semi-group

(T �,a
t )t�0 := (exp(tL�,a))t�0

(see, for example, [11,20]).

2.2. Markov property of (E�, D(E�))

Definition 2.9. A symmetric closed bilinear form (E , D(E)) on L2(Ω̄, µ) is called
Markovian if one has

f ∈ D(E) implies f+ ∧ 1 ∈ D(E) and E(f+ ∧ 1, f+ ∧ 1) � E(f, f),

where f+ := max{0, f} and f ∧ 1 := min{1, f}.

Remark 2.10. One can easily show that, for each ε > 0, there exists a real function
ϕε(t), t ∈ R, such that

ϕε(t) = t for all t ∈ [0, 1],

−ε � ϕε(t) � 1 + ε for all t ∈ R,

0 � ϕε(s) − ϕε(t) � s − t, t < s.

Then it is sufficient to check that

f ∈ D(E) implies ϕε(f) ∈ D(E) and E(ϕε(f), ϕε(f)) � E(f, f),

to obtain that (E , D(E)) is Markovian (see, for example, [20, Chapter 1, § 4]).

Proposition 2.11. Suppose that Condition 2.2 is satisfied. Then (E�,a, D(E�,a)) is
Markovian. A Markovian form is also called a Dirichlet form.

Before we can prove the above proposition we need the following result from the theory
of Sobolev spaces. For a proof we refer the reader to [14, Lemma 7.5].

Lemma 2.12. Let f ∈ C1(R), f ′ ∈ L∞(R) and u ∈ W 1,1
loc (Ω). Then f(u) ∈ W 1,1

loc (Ω)
and

∂i(f(u)) = f ′(u)∂iu.

Proof of Proposition 2.11. As before, by the ellipticity of a it is sufficient to consider
the case where a equals the identity matrix. Let ϕε be as in Remark 2.10 and let us
take f ∈ D(E�). At first we consider ϕε(f) as a function in L2(Ω̄, µ). Then we take
(fk)k∈N ⊂ D such that fk → f in (D(E�),

√
E�
1 ) and additionally fk → f µ-a.e. as

k → ∞. Obviously, ϕε(fk) ∈ C(Ω̄) for all k ∈ N. Since ϕε ∈ C1(R), ϕ′
ε ∈ L∞(R) and

fk ∈ W 1,1
loc (Ω), we have ϕε(fk) ∈ W 1,1

loc (Ω) and ∂i(ϕε(fk)) = ϕ′
ε(fk)∂ifk for all k ∈ N, by

Lemma 2.12. Furthermore, we have

‖∂i(ϕε(fk))‖L2(Ω̄,µ) = ‖ϕ′
ε(fk)∂ifk‖L2(Ω̄,µ) � ‖∂ifk‖L2(Ω̄,µ) < ∞,
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by the properties of ϕε, and therefore ϕε(fk) ∈ D(E�) for all k ∈ N. Clearly, ϕε(fk) →
ϕε(f) in L2(Ω̄, µ) as k → ∞, since

‖ϕε(fk) − ϕε(f)‖L2(Ω̄,µ) � ‖fk − f‖L2(Ω̄,µ),

again by the properties of ϕε. Next we show that (ϕε(fk))k∈N is a Cauchy sequence in
(D(E�),

√
E�
1 ). Therefore, we consider

E�
1 (ϕε(fk) − ϕε(fl), ϕε(fk) − ϕε(fl)) = E�(ϕε(fk) − ϕε(fl), ϕε(fk) − ϕε(fl))

+ (ϕε(fk) − ϕε(fl), ϕε(fk) − ϕε(fl))L2(Ω̄,µ)

Since ϕε(fk) → ϕε(f) in L2(Ω̄, µ) we have

(ϕε(fk) − ϕε(fl), ϕε(fk) − ϕε(fl))L2(Ω̄,µ) → 0 as k, l → ∞.

Thus, it remains to consider

n∑
i=1

∫
Ω

(∂i(ϕε(fk) − ϕε(fl)))2 dµ

=
n∑

i=1

∫
Ω

(ϕ′
ε(fk)∂ifk − ϕ′

ε(fl)∂ifl)2 dµ (by applying Lemma 2.12)

=
n∑

i=1

∫
Ω

(ϕ′
ε(fk)(∂ifk − ∂ifl) + (ϕ′

ε(fk) − ϕ′
ε(fl))(∂ifl − ∂if + ∂if))2 dµ

� 3(‖ϕ′
ε(fk)‖2

sup‖∇fk − ∇fl‖2
L2(Ω̄,µ) + ‖(ϕ′

ε(fk) − ϕ′
ε(fl))∇f‖2

L2(Ω̄,µ)

+ ‖(ϕ′
ε(fk) − ϕ′

ε(fl))‖2
sup‖∇fl − ∇f‖2

L2(Ω̄,µ))

� 3(‖∇fk − ∇fl‖2
L2(Ω̄,µ) + 4‖∇fl − ∇f‖2

L2(Ω̄,µ)

+ 2‖(ϕ′
ε(fk) − ϕ′

ε(f))∇f‖2
L2(Ω̄,µ) + 2‖(ϕ′

ε(f) − ϕ′
ε(fl))∇f‖2

L2(Ω̄,µ)).

Since |(ϕ′
ε(fk) − ϕ′

ε(f))∇f | and |(ϕ′
ε(f) − ϕ′

ε(fl))∇f | are bounded by g := 2|∇f | ∈
L2(Ω̄, µ) and ϕ′

ε(fk) → ϕ′
ε(f) µ-a.e. as k → ∞, by using Lebesgue’s dominated conver-

gence theorem we have that

‖(ϕ′
ε(fk) − ϕ′

ε(f))∇f‖L2(Ω̄,µ) + ‖(ϕ′
ε(f) − ϕ′

ε(fl))∇f‖L2(Ω̄,µ) → 0 as k, l → ∞. (2.1)

Thus, (2.1) together with fk → f in (D(E�),
√

E�
1 ) implies that

E�
1 (ϕε(fk) − ϕε(fl), ϕε(fk) − ϕε(fl)) → 0 as k, l → ∞.

Hence, (ϕε(fk))k∈N is a Cauchy sequence in D(E�) with respect to
√

E�
1 . Thus, it is

convergent in D(E�) and

ϕε(f) = lim
k→∞

ϕε(fk) ∈ D(E�).

https://doi.org/10.1017/S001309150600160X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150600160X


Elliptic diffusions with reflecting boundary condition 347

Furthermore,

E�(ϕε(f), ϕε(f)) = lim
k→∞

E�(ϕε(fk), ϕε(fk))

= lim
k→∞

n∑
i=1

∫
Ω

(∂iϕε(fk))2 dµ

= lim
k→∞

n∑
i=1

∫
Ω

|ϕ′
ε(fk)|2︸ ︷︷ ︸

�1

(∂ifk)2 dµ

� lim
k→∞

n∑
i=1

∫
Ω

(∂ifk)2 dµ

= E�(f, f).

Thus, (E�, D(E�)) is Markovian. �

2.3. Quasi-regularity of the Dirichlet form (E�,a, D(E�,a))

To get started with quasi-regularity, we have to introduce some notions from analytic
potential theory of Dirichlet forms. A detailed discussion of the theory needed in this
section can be found in [20, Chapter III]. In this section (E , D(E)) denotes a Dirichlet
form on L2(Ω̄, µ).

Definition 2.13.

(i) An increasing sequence (Fk)k∈N of closed subsets of Ω̄ is called an E-nest if⋃
k�1 D(E)Fk

is dense in D(E) with respect to
√

E1, where

D(E)Fk
:= {u ∈ D(E) | u = 0 µ-a.e. on Ω̄ \ Fk}.

(ii) A subset N ⊂ Ω is called E-exceptional if N ⊂
⋂

k�1(Ω̄ \ Fk) for some E-nest
(Fk)k∈N. We say that a property of points in Ω holds E-quasi-everywhere (E-q.e.)
if the property holds outside some E-exceptional set.

Next we introduce the notion of quasi-continuity.

Definition 2.14. An E-q.e. defined function f on Ω̄ is called E-quasi continuous if
there exists an E-nest (Fk)k∈N such that

f ∈ C({Fk}) :=
{

f : A → R

∣∣∣∣ ⋃
k�1

Fk ⊂ A ⊂ Ω̄, f |Fk
is continuous for every k ∈ N

}
.

We can now define quasi-regularity, as follows.

Definition 2.15. A Dirichlet form (E , D(E)) on L2(Ω̄, µ) is called quasi-regular if
there exists

(i) an E-nest (Fk)k∈N consisting of compact sets,

(ii) an
√

E1-dense subset of D(E) whose elements have E-quasi-continuous µ-versions,
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(iii) a sequence of functions ul ∈ D(E), l ∈ N, having E-quasi-continuous µ-versions ũl,
l ∈ N, and an E-exceptional set N ⊂ Ω̄ such that {ũl | l ∈ N} separates the points
of Ω̄ \ N .

We can now state the main result of this section.

Proposition 2.16. Suppose that Condition 2.2 is satisfied. Then (E�,a, D(E�,a)) is
quasi-regular.

Proof. Let us check whether Definition 2.15 (i)–(iii) hold. Obviously, (Fk)k∈N,
Fk = Ω̄, k ∈ N, is an E�,a-nest consisting of compact sets. Since D(E�,a) is the com-
pletion of D with respect to

√
E�,a
1 , we see that D ⊂ C(Ω̄) is dense in D(E�,a) with

respect to
√

E�,a
1 and thus property (ii) is proved.

It remains to find a sequence of functions {ul ∈ D, l ∈ N} which separates points in Ω̄.
Clearly, the countable set of polynomials with rational coefficients is a subset of D and,
of course, separates points on Ω̄. �

Remark 2.17. In the proof of Proposition 2.16 we see that it is very useful to have
compact Ω̄. In this case we can simply choose (Fk)k∈N as the E�,a-nest consisting of
compact sets Fk = Ω̄ for all k ∈ N. Moreover, one can show that, when replacing Ω̄ by
an open subset of Rn, the corresponding Dirichlet form is not quasi-regular, even in the
case when � = 1 and a is the identity matrix (see [10, Example 1.2.3]). Furthermore,
from the proof of Proposition 2.16 we can easily conclude that (E�,a, D(E�,a)) is even
regular (see, for example, [10]).

2.4. Locality of the quasi-regular Dirichlet form (E�,a, D(E�,a))

A useful property of a Dirichlet form is its so-called locality.

Definition 2.18. A Dirichlet form (E , D(E)) is said to be local if E(u, v) = 0 for all
u, v ∈ D(E) with supp(u) ∩ supp(v) = ∅ and supp(u), supp(v) are compact.

Proposition 2.19. Suppose that Condition 2.2 is satisfied. Then (E�,a, D(E�,a)) is
local.

Proof. By [20, Chapter V, Example 1.12 (ii)] it is sufficient to show that D is closed
under multiplication and that for the weak gradient we have a product rule. Let f, g ∈ D.
Then obviously f · g is continuous on Ω̄. Furthermore, since f and g are bounded with
weak derivatives in L1

loc(Ω, dx), f · g is also weakly differentiable and ∇(f · g) is in
L1

loc(Ω, dx). Furthermore, the product rule holds and

∇(f · g) = ∇f · g + f · ∇g, f, g ∈ D.

Obviously, ∇(f · g) ∈ L2(Ω̄, µ) and therefore E�,a(f · g, f · g) < ∞, by ellipticity of a. �

Let us summarize the properties of the bilinear form (E�,a, D(E�,a)).

Corollary 2.20. Suppose that Condition 2.2 is satisfied. Then (E�,a, D(E�,a)) is a
conservative, local, quasi-regular Dirichlet form.

https://doi.org/10.1017/S001309150600160X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150600160X


Elliptic diffusions with reflecting boundary condition 349

Proof. This follows directly from Propositions 2.6, 2.11, 2.16 and 2.19 and Remark
2.7 (iv). �

With these properties we are given an associated Markov process.

Theorem 2.21. Suppose that Condition 2.2 is satisfied. We then have the following
results.

(i) There exists a conservative diffusion process (i.e. a Markov process with continuous
sample paths and infinite lifetime)

M�,a = (Ω,F , (Ft)t�0, (Θt)t�0, (Xt)t�0, (P �,a
x )x∈Ω̄)

with state space Ω̄ which is properly associated with (E�,a, D(E�,a)), i.e. for all
(µ-versions of) f ∈ L2(Ω̄, µ) and all t > 0 the function

x �→
∫

Ω

f(Xt) dP �,a
x , x ∈ Ω̄,

is an E�,a-quasi-continuous version of T �,af . M�,a is unique up to µ-equivalence. In
particular, M�,a is µ-symmetric (i.e.

∫
gT �,a

t f dµ =
∫

fT �,a
t g dµ for all f, g : Ω̄ →

[0,∞) measurable) and has µ as an invariant measure.

(ii) The diffusion process M�,a is, up to µ-equivalence, the unique diffusion pro-
cess having µ as symmetrizing measure and solving the martingale problem for
(L�,a, D(L�,a)), i.e. for all g ∈ D(L�,a),

g(Xt) − g(X0) −
∫ t

0
L�,ag(Xs) ds, t � 0,

is an Ft-martingale under P �,a
x (hence starting in x) for E�-quasi all x ∈ Ω̄.

In the above theorem M�,a is canonical, i.e. Ω = C([0,∞) → Ω̄), Xt(ω) = ω(t),
ω ∈ Ω. The filtration (Ft)t�0 is the natural ‘minimum completed admissible filtration’
(see [13, Chapter A.2] or [20, Chapter IV]) obtained from the σ-algebras

σ{ω(s) | 0 � s � t, ω ∈ Ω}, t � 0.

F := F∞ :=
∨

t∈[0,∞) Ft is the smallest σ-algebra containing all Ft, and (Θt)t�0 are the
corresponding natural time shifts. For a detailed discussion of these objects we refer the
reader to [20].

Proof. (i) The proof follows directly from [20, Chapter V, Theorem 1.11], since we
have already shown that (E�,a, D(E�,a)) is a conservative, local, quasi-regular Dirichlet
form on L2(Ω̄, µ).

(ii) Since (E�,a, D(E�,a)) is a quasi-regular Dirichlet form, the statement follows from [1,
Theorem 3.4 (i)]. �
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3. The generator of the Dirichlet form (E�,a, D(E�,a))

In the previous section we showed that (E�,a, D(E�,a)) is a Dirichlet form. Thus, the
existence of the associated generator (L�,a, D(L�,a)) is already clear (see Remark 2.8). In
this section we derive an explicit representation of L�,a for certain subsets of its domain
D(L�,a). This representation will be obtained by using the Gaussian integral formula
(see, for example, [4, § A6.8, Item (1)]). However, before doing so, we must impose some
additional restrictions on the density function � and matrix a.

Condition 3.1. We assume that
√

� ∈ W 1,2(Ω) and a ∈ W 1,∞(Ω).

Here W 1,2(Ω) is the Sobolev space of weakly differentiable, square-integrable functions
and Wm,∞(Ω), m ∈ N, is the Sobolev space of m-times weakly differentiable, essentially
bounded functions on Ω. By Sobolev’s embedding theorem (see, for example, [4, § 8.13]),
we have Wm,∞(Ω) ⊂ C1(Ω̄) for m > 1.

Theorem 3.2. Let Ω have a Lipschitz boundary and let Conditions 2.2 and 3.1 be
satisfied. Then

DN := {f ∈ W 2,∞(Ω) | ∂aνf(x) = 0 for all x ∈ ∂Ω} ⊂ D(L�,a)

and we have the representation

L�,af =
n∑

i,j=1

∂i(aij∂jf) + ∂i(ln �)aij∂jf (3.1)

(here ν denotes the outer normal with respect to ∂Ω and aν is the linear transformation
of ν under a).

Remark 3.3. Now, using Itô’s formula, from Theorems 2.21 (ii) and 3.2 we can con-
clude that the process M�,a solves the stochastic differential equation

dXt = b(Xt) dt +
√

2a(Xt) dBt, with reflecting boundary condition,

inside Ω, for E�,a-quasi all initial conditions X0 ∈ Ω̄. Here, a solution is understood in
the sense of the associated martingale problem, (Bt)t�0 is a vector-valued Brownian
motion and

b =
( n∑

i=1

∂i(log �)aij

)
1�j�n

.

Proof of Theorem 3.2. In [20, Proposition 2.16] a characterization of the domain
of the operator L�,a is given. Namely,

D(L�,a) =
{

u ∈ D(E�,a)
∣∣∣∣ v �→ E�,a(u, v)

is continuous with respect to
√

(· , ·)L2(Ω̄,µ) on D(E�,a)
}

.
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Therefore, we have to check that the linear operator

Af : D(E�,a) → R, g �→
∫

Ω

n∑
i,j=1

∂ifaij∂jg dµ

is continuous with respect to the norm of L2(Ω̄, µ) for f ∈ DN. Since we can write
∇� = ∇(

√
� · √

�) and � satisfies Condition 3.1, by the product rule for Sobolev functions
we have that � ∈ W 1,1(Ω). Since f ∈ W 2,∞(Ω) and a ∈ W 1,∞(Ω), this implies that
u := �gaij∂jf ∈ W 1,1(Ω) for all g ∈ D and i, j ∈ {1, . . . , n}. Thus, we can apply the
Gaussian integral formula (see, for example, [4, § A6.8, Item (1)]), and obtain∫

Ω

∂iu dx =
∫

∂Ω

uνi dHn−1,

where Hn−1 is the (n−1)-dimensional Hausdorff measure on ∂Ω and ν the outer normal
with respect to ∂Ω. Hence,

n∑
i,j=1

∫
Ω

∂i(�gaij∂jf) dx = 0, (3.2)

because
n∑

i,j=1

∫
∂Ω

(�gaij∂jf)νi dHn−1 =
∫

∂Ω

( n∑
i,j=1

∂jfaijνi

)
g� dHn−1

=
∫

∂Ω

∂aνfg�dHn−1 = 0.

Applying the product rule for Sobolev functions to (3.2) and rearranging terms, we obtain

n∑
i,j=1

∫
Ω

∂jfaij∂ig dµ = −
n∑

i,j=1

∫
Ω

(∂i(aij∂jf) + ∂i��−1aij∂jf)g dµ. (3.3)

Since D is dense in D(E�,a) with respect to
√

E�,a
1 and ∂i��−1 ∈ L2(Ω̄, µ), we can extend

(3.3) to all g ∈ D(E�,a). To show continuity let us estimate∣∣∣∣ n∑
i,j=1

∫
Ω

∂ifaij∂jg dµ

∣∣∣∣
� κ

n∑
i,j=1

(√∫
Ω

(∂i∂jf)2 dµ +

√∫
Ω

(∂i��−1∂jf)2 dµ

)√∫
Ω

g2 dµ

= κ

n∑
i,j=1

(√∫
Ω

(∂i∂jf)2 dµ +

√∫
Ω

(
∂i�√

�
∂jf

)2

dx

)√∫
Ω

g2 dµ

= κ

n∑
i,j=1

(√∫
Ω

(∂i∂jf)2 dµ + 2

√∫
Ω

(∂i
√

�∂jf)2 dx

)√∫
Ω

g2 dµ, (3.4)
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where we have used the ellipticity of a. Due to our assumptions on � and f , the integrals
in (3.4) are finite. Hence, for f ∈ DN the operator Af is continuous and

E�,a(f, g) =
n∑

i,j=1

∫
Ω

∂ifaij∂jg � dx =
n∑

i,j=1

∫
Ω

−(∂i(aij∂jf) + ∂i��−1aij∂jf)g dµ

for all f ∈ DN and g ∈ D(E�,a). Therefore, for all f ∈ DN, the generator L�,a is given by

L�,af =
n∑

i,j=1

∂i(aij∂jf) + ∂i��−1aij∂jf.

�

Remark 3.4.

(i) We stress that in DN only the normal derivative of the function f is forced to be
zero at the boundary. The function f itself is allowed to take arbitrary values at
the boundary, i.e. we have Neumann boundary conditions.

(ii) In the proof of Theorem 3.2 we need an L2-bound of ∂i��−1. Note that for
� ∈ L1(Ω̄, dx) (as we assume anyway) an equivalent condition to Condition 3.1
is ∇ ln � ∈ L2(Ω̄, µ).

(iii) Obviously, we get the representation of L�,a as in (3.1) for f ∈ C∞
0 (Ω) without

assuming that Ω has a Lipschitz boundary.

4. Some potential theory of Dirichlet forms and its consequences

In this section we show that the set {� = 0} := {x ∈ Ω̄ | �(x) = 0} has capacity zero. As
a consequence we can construct the associated process in {� > 0} := {x ∈ Ω̄ | �(x) > 0}.
This is very important for our construction of the N -particle stochastic dynamics with
singular interactions (see Remark 5.5).

Definition 4.1. Let (E , D(E)) be a Dirichlet form on L2(Ω̄, µ). The E-capacity
capE(A) of an open set A ⊂ Ω̄ (here, open has to be understood with respect to the
trace topology on Ω̄) with respect to (E , D(E)) is defined by

capE(A) = inf{E1(f, f) | f ∈ D(E), f � 1 µ-a.e. on A},

and for an arbitrary set A ⊂ Ω̄ by

capE(A) = inf{capE(B) | B open, B ⊃ A}.

For later use we state the following lemma, proved in [10, Theorem 3.1.1].

Lemma 4.2. Let Am, m ∈ N, be an increasing sequence of subsets of Ω̄. Then

capE

( ⋃
m∈N

Am

)
= sup

m∈N

capE(Am).
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To make use of capacity estimates provided in [22] we need the next definition and
the following lemma.

Definition 4.3. In our situation a regular Dirichlet form (E , D(E)) with D(E) ⊂
L2(Ω̄, µ) is called strongly regular if the topology induced by the intrinsic metric

d(x, y) := sup
{

u(x) − u(y)
∣∣∣∣ u ∈ D(E) ∩ C(Ω̄)

with
n∑

i,j=1

aij∂iu∂ju � � � a.e. on Ω̄

}
, x, y ∈ Ω̄,

coincides with the topology generated by the Euclidean metric.

Lemma 4.4. (E�,a, D(E�,a)) is strongly regular.

Proof. The intrinsic metric of the underlying Dirichlet form (E�,a, D(E�,a)) is given
by

d(x, y) := sup
{

u(x) − u(y)
∣∣∣∣ u ∈ D(E�,a) ∩ C(Ω̄)

with
n∑

i,j=1

aij∂iu∂ju � � � a.e. on Ω̄

}
for x, y ∈ Ω̄.

By assumption we have � > 0 a.e. on Ω̄. Thus,

d(x, y) = sup
{

u(x) − u(y)
∣∣∣∣ u ∈ D(E�,a) ∩ C(Ω̄) with

n∑
i,j=1

aij∂iu∂ju � 1 a.e. on Ω̄

}
for x, y ∈ Ω̄. Since Ω is convex, it follows easily by the fundamental theorem of calculus
that

dE(x, y) = sup{u(x) − u(y) | u ∈ D(E�,a) ∩ C(Ω̄) with |∇u|2 � 1 a.e. on Ω̄}

for x, y ∈ Ω̄, where dE is the metric induced by the Euclidean norm on Rn. By the
ellipticity of a we have

κ−1|∇u|2 �
n∑

i,j=1

aij ∂iu∂ju � κ|∇u|2 for all u ∈ D(E�,a) ∩ C(Ω̄).

Hence,{
u ∈ D(E�,a) ∩ C(Ω̄)

∣∣∣∣ n∑
i,j=1

aij∂iu∂ju � 1 a.e. on Ω̄

}
⊃ {u ∈ D(E�,a) ∩ C(Ω̄) | κ|∇u|2 � 1 a.e. on Ω̄}

and we obtain
d(x, y) � κ−1/2dE(x, y) for x, y ∈ Ω̄.
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An argument analogous to that above yields d(x, y) � κ1/2dE(x, y) for x, y ∈ Ω̄. There-
fore, the intrinsic metric of the underlying Dirichlet form (E�,a, D(E�,a)) is equiv-
alent to the Euclidean metric. Hence, the topologies generated by them coincide,
i.e. (E�,a, D(E�,a)) is strongly regular. �

We are now ready to state and prove the main result of this section.

Theorem 4.5. Suppose that the density function � satisfies Condition 2.2. Further-
more, assume that one of the following two conditions holds.

(i) � satisfies Condition 3.1 and is continuous on Ω̄.

(ii) Ω is convex and there exists 0 < C < ∞ such that∫
Br({�=0})

�(x) dx � Cr2 as r → 0.

Then
cap�,a({� = 0}) = 0,

where cap�,a := capE�,a .

Proof. In (i) we know that ψ :=
√

� > 0 dx-a.e. and ψ ∈ W 1,2(Ω). For ε > 0 let
ψε := (ψ ∨ ε) ∧ 1 and fε = − log(ψε). Then fε is continuous on Ω̄, ∇fε = −∇ψε/ψε and

(∇fε,∇fε)Rn = (∇ψε,∇ψε)Rnψ−2
ε � (∇ψε,∇ψε)Rn�−1 ∈ L1(Ω̄, dµ),

since ψε ∈ W 1,2(Ω). Thus, fε ∈ D(E�,a). We have

E�,a
1 (fε, fε) =

n∑
i,j=1

∫
Ω

∂ifεaij∂jfε ψ2 dx +
∫

Ω̄

fε
2 dµ

=
n∑

i,j=1

∫
Ω

∂iψεaij∂jψε
ψ2

ψε
2 dx +

∫
Ω̄

log(ψε)2 dµ

� κ

n∑
i=1

∫
Ω

(∂iψε)2 dx +
∫

Ω̄

log(ψε)2 dµ < ∞ (4.1)

(in view of our assumptions on ψ). Let λ > 0. Then

cap�,a({fε > λ}) � E�,a
1

(
1
λ

fε,
1
λ

fε

)
� κ

λ2

( n∑
i=1

∫
Ω

(∂iψε)2 dx +
∫

Ω̄

log(ψε)2 dµ

)
by Definition 4.1 and (4.1). Next we set ε = 1/m, m ∈ N, and consider

Am := {f1/m > λ}.
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We observe that the sequence of sets Am is increasing in m ∈ N. Thus, for A :=
⋃∞

m=1 Am

Lemma 4.2 yields

cap�,a(A) = sup
m∈N

cap�,a(Am) � sup
m∈N

κ

λ2

( n∑
i=1

∫
Ω

(∂iψ1/m)2 dx +
∫

Ω̄

log(ψ1/m)2 dµ

)
.

Since in the above integrals we are dealing with functions pointwisely monotone increasing
in m ∈ N, the supremum coincides with

lim
m→∞

κ

λ2

( n∑
i=1

∫
Ω

(∂iψ1/m)2 dx +
∫

Ω̄

log(ψ1/m)2 dµ

)

=
κ

λ2

( n∑
i=1

∫
Ω

(∂iψ)2 dx +
∫

Ω̄

log(ψ)2ψ2 dx

)
< ∞,

due to our assumptions on ψ. Observe that A = {log(ψ) > λ}. Therefore,

cap�,a({log(ψ) > λ}) � κ

λ2

( n∑
i=1

∫
Ω

(∂iψ)2 dx +
∫

Ω̄

log(ψ)2ψ2 dx

)
.

Thus,

cap�,a({� = 0}) � cap�,a({log(�) > 2λ})

= cap�,a({log(ψ) > λ})

� κ

λ2

( n∑
i=1

∫
Ω

(∂iψ)2 dx +
∫

Ω̄

log(ψ)2ψ2 dx

)
→ 0 as λ → ∞.

In (ii), by Lemma 4.4 we have that (E�,a, D(E�,a)) is strongly regular. By assumption,
the compact set {� = 0} is of µ-measure zero. Thus, we can apply [22, Theorem 3] and
the proof follows. �

Remark 4.6. Some of the ideas for the proof of Theorem 4.5 (i) were obtained from
the proof of [11, Theorem 2].

Let i : {� > 0} → {� > 0} be the identity map. Since {� = 0} = Ω̄ \ {� > 0} has
Lebesgue measure zero, we can consider the isometry i∗ : L2({� > 0}, µ) → L2(Ω̄, µ) by
defining i∗(f) to be the µ-class represented by f̃ ◦ i on {� > 0} for any measurable µ-
version f̃ of f ∈ L2({� > 0}, µ). Obviously, i∗ is surjective and, owing to [20, Chapter VI,
Exercise 1.1],

Ê�,a(f, g) := E�,a(i∗(f), i∗(g)), f, g ∈ D(Ê�,a),

D(Ê�,a) := {f ∈ L2({� > 0}, µ) | f ∈ i∗−1(D(E�,a))}

is a Dirichlet form on L2({� > 0}, µ). (Ê�,a, D(Ê�,a)) is called the image Dirichlet form
of (E�,a, D(E�,a)) under i.
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Corollary 4.7. Under the same assumptions as made in Theorem 4.5, (Ê�,a, D(Ê�,a))
is a conservative, local, quasi-regular Dirichlet form on L2({� > 0}, µ).

Proof. By Theorem 4.5 we know that cap�,a({� = 0}) = 0 and this is equivalent to
the fact that {� = 0} is an E�,a-exceptional set, i.e.

{� = 0} ⊂
⋂
k�1

F c
k for some E�,a-nest (Fk)k�1

(see [3, Proposition 14 (3)]). Thus, (Fk)k∈N is a sequence of compact sets in {� > 0}.
Note that functions from D(Ê�,a) are the restrictions to {� > 0} of functions from
D(E�,a). Since

⋃
k�1 D(E�,a)Fk

is a dense set in D(E�,a),
⋃

k�1 D(Ê�,a)Fk
is a dense set

in D(Ê�,a). Hence, (Ê�,a, D(Ê�,a)) has a compact Ê�,a-nest. Furthermore, the functions
from D restricted to {� > 0} ⊂ Ω̄ again are continuous functions. Now, since D(E�,a) is
the completion of D with respect to

√E�,a
1 in L2(Ω̄, µ) and {� = 0} is of Lebesgue measure

zero, the continuous functions in D(Ê�,a) are dense in D(Ê�,a) with respect to
√Ê�,a

1 .
Clearly, the countable set of polynomials with rational coefficients is separating points
on {� > 0}. Locality and conservativity are implied by locality and conservativity of
(E�,a, D(E�,a)) (see Definition 2.18 and Remark 2.7 (iv)). �

We denote the generator of (Ê�,a, D(Ê�,a)) by (L̂�,a, D(L̂�,a)). The strongly continuous
contraction semigroup generated by (L̂�,a, D(L̂�,a)) is denoted by (T̂ �,a

t)t�0. We then
have the following corollary.

Corollary 4.8. Under the assumptions in Theorem 4.5 there exists a conservative
diffusion process M̂�,a in {� > 0} associated with the Dirichlet form (Ê�,a, D(Ê�,a)).
Furthermore, all statements of Theorem 2.21 hold true if (E�,a, D(E�,a)), (L�,a, D(L�,a)),
(T �,a

t )t�0 and M�,a are replaced by (Ê�,a, D(Ê�,a)), (L̂�,a, D(L̂�,a)), (T̂ �,a
t)t�0 and M̂�,a,

respectively.

5. An application to continuous N-particle systems with
singular interactions

Let d ∈ N. A pair potential (without hard core) is a Borel measurable function φ : Rd →
R ∪ {∞} such that φ(−x) = φ(x) ∈ R for all x ∈ Rd \ {0}. Let us fix our assumptions on
the potential φ.

(RP) Repulsion: there exists a continuous decreasing function Φ : (0,∞) → [0,∞) with
limt→0 Φ(t) = ∞ and R1 > 0 such that

φ(x) � Φ(|x|) for |x| � R1.

Furthermore, the potential is bounded from above on

{x ∈ Rd | κ � |x|} for all κ > 0.
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(SRP) Strong repulsion: there exists R1 > 0 such that

φ(x) � − ln(|x|) for 0 < |x| � R1.

Furthermore, the potential is bounded from above on

{x ∈ Rd | κ � |x|} for all κ > 0.

(BB) Bounded below: there exists 0 � B < ∞ such that

φ(x) � −B for all x ∈ Rd.

(DL2) Differentiability and L2: the function exp(−φ) is weakly differentiable on Rd, φ is
continuous on Rd\{0} and weakly differentiable on Rd. The gradient ∇φ, considered
as a dx-a.e. defined function on Rd, satisfies

∇φ ∈ L2
loc(R

d, exp(−φ) dx).

Remark 5.1. Note that for many typical potentials in statistical physics we have
φ ∈ C∞(Rd \ {0}). For such ‘outside the origin regular’ potentials, condition (DL2)
nevertheless does not exclude a singularity at the point 0 ∈ Rd.

Let N, d ∈ N and Λ ⊂ Rd, such that Ω̄ := ΛN ⊂ RN ·d is the closure of an open,
relatively compact set having boundary ∂(ΛN ) of Lebesgue measure zero. On ΛN , we
consider the density function

�Λ,N (x) =
1

ZΛ,N
exp

(
−

∑
1�i<j�N

φ(xi − xj)
)

, x = (x1, . . . , xN ) ∈ ΛN ,

where

ZΛ,N :=
∫

ΛN

exp
(

−
∑

1�i<j�N

φ(xi − xj)
)

dx⊗N .

Proposition 5.2. If d = 1, we suppose that either

(A) φ satisfies conditions (SRP) and (BB) and Λ is convex, or

(B) φ satisfies conditions (RP) and (DL2).

If d � 2, we suppose that either

(C) φ satisfies conditions (RP) and (BB) and Λ is convex, or

(D) φ is bounded and Λ is convex.

Then in all situations (EΛ,N ,D) is closable. Its closure (EΛ,N , D(EΛ,N )) is a conserva-
tive, local, quasi-regular Dirichlet form on L2(ΛN , µΛ,N ). We denote its generator by
(LΛ,N , D(LΛ,N )).
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Proof. In each situation it is easy to check that Condition 2.2 holds. Thus, the proof
follows from Corollary 2.20. �

As before, Proposition 5.2 now implies the existence of a corresponding conserva-
tive diffusion process in ΛN . ΛN , however, has no direct interpretation as a continuous
N -particle system. This leads us to the configuration space over Rd, which is defined as
the set of all subsets of Rd which are locally finite,

Γ := {γ ⊂ Rd | #(γΛ) < ∞ for each compact Λ ⊂ Rd},

where # denotes the number of elements of a set and γΛ := γ∩Λ. One can identify γ ∈ Γ

with the positive Radon measure
∑

x∈γ εx ∈ M(Rd), where εx is the Dirac measure at x,∑
x∈∅ εx := zero measure and M(Rd) stands for the set of all positive Radon measures

on the Borel σ-algebra B(Rd). Hence, via this identification, Γ can be assigned the vague
topology. We set ΓΛ := {γ ∈ Γ | γ ⊂ Λ}. The space of N -point configurations in Λ is
defined by

Γ
(N)
Λ := {γ ⊂ Λ | #(γ) = N} ⊂ ΓΛ ⊂ Γ.

To define more structure on Γ
(N)
Λ we may use the natural mapping

sym(N) : Λ̃N → Γ
(N)
Λ ,

sym(N)(x1, . . . , xN ) := {x1, . . . , xN},

where
Λ̃N := {(x1, . . . , xN ) ∈ ΛN | xk �= xj if k �= j}.

We assume these mappings in order to generate the topology and corresponding Borel
σ-algebra B(Γ (N)

Λ ) on Γ
(N)
Λ . Obviously, this σ-algebra coincides with the Borel σ-algebra

inherited from Γ equipped with its vague topology. Of course, the product measure dx⊗N

can be considered on Λ̃N . Let dx(N) := dx⊗N ◦ (sym(N))−1 denote the corresponding
measure on Γ

(N)
Λ .

In order to construct the N -particle stochastic dynamics, we are interested in the image
Dirichlet form (E(N)

Λ , D(E(N)
Λ )) of (EΛ,N , D(EΛ,N )) under sym(N). Consider the measure

µ
(N)
Λ := µΛ,N ◦ (sym(N))−1.

µ
(N)
Λ is the canonical N -particle Gibbs measure in Λ with empty boundary conditions on

(Γ (N)
Λ ,B(Γ (N)

Λ )). Define an isometry

(sym(N))∗ : L2(Γ (N)
Λ , µ

(N)
Λ ) → L2(ΛN , µΛ,N )

by setting (sym(N))∗F to be the µΛ,N -class represented by F̃ ◦ sym(N)
Λ on Λ̃N for any

µ
(N)
Λ -version F̃ of F ∈ L2(Γ (N)

Λ , µ
(N)
Λ ) (note that the set of diagonals Dg := ΛN \ Λ̃N has

µΛ,N -measure zero).
Note that the subspace

L2
sym(ΛN , µΛ,N ) := (sym(N))∗(L2(Γ (N)

Λ , µ
(N)
Λ )) ⊂ L2(ΛN , µΛ,N )
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is the closed subspace of symmetric functions from L2(ΛN , µΛ,N ). Using this mapping one
can define a bilinear form (E(N)

Λ , D(E(N)
Λ )) as the image bilinear form of (EΛ,N , D(EΛ,N ))

under sym(N):

E(N)
Λ (F, G) := EΛ,N ((sym(N))∗F, (sym(N))∗G), F, G ∈ D(E(N)

Λ ),

where
D(E(N)

Λ ) := ((sym(N))∗)−1(D(EΛ,N ) ∩ L2
sym(µΛ,N )).

Proposition 5.3. If d = 1, we suppose that either

(A) φ satisfies conditions (SRP) and (BB) and Λ is convex, or

(B) φ satisfies conditions (RP) and (DL2).

If d � 2, we suppose that either

(C) φ satisfies conditions (RP) and (BB) and Λ is convex, or

(D) φ is bounded and Λ is convex.

Then in all situations the bilinear form (E(N)
Λ , D(E(N)

Λ )) is a conservative, local, quasi-
regular Dirichlet form on L2(Γ (N)

Λ , µ
(N)
Λ ). Its generator is given by

L
(N)
Λ = ((sym(N))∗)−1 ◦ LΛ,N ◦ (sym(N))∗,

D(L(N)
Λ ) = ((sym(N))∗)−1(D(LΛ,N ) ∩ L2

sym(µΛ,N )).

Of course, (L(N)
Λ , D(L(N)

Λ )) generates a strongly continuous contraction semi-group

T
(N)
Λ (t) := exp(tL(N)

Λ ), t � 0.

Proof. In situations (A) and (C) we have Dg = {�Λ,N = 0} due to conditions (SRP)
and (RP), respectively. Since Dg has codimension at least d, Theorem 4.5 (ii) is satisfied
and capEΛ,N

(Dg) = 0. In situation (B) we also have Dg = {�Λ,N = 0} due to condition
(RP). Thus, capEΛ,N

(Dg) = 0, because Theorem 4.5 (i) is satisfied. This can be seen by
using Remark 3.4 (ii) and a Sobolev embedding. In situation (D) we have {�Λ,N = 0} = ∅,
since φ is bounded. Dg = ΛN \ Λ̃N is of codimension at least d. (E�Λ,N , D(E�Λ,N )) is
strongly regular (as shown in the proof of Lemma 4.4). Thus, due to [22, Theorem 3]
we have that ΛN \ Λ̃N is of capacity zero with respect to (E�Λ,N , D(E�Λ,N )). Therefore,
as in the proof of Corollary 4.7, we obtain that (E(N)

Λ ,D(E(N)
Λ )) is a conservative, local,

quasi-regular Dirichlet form on L2(Γ (N)
Λ , µ

(N)
Λ ). We merely take sym(N) and (sym(N))∗

instead of the mappings i and i∗, respectively, and use the fact that the isometry

(sym(N))∗ : L2(Γ (N)
Λ , µ

(N)
Λ ) → L2

sym(ΛN , µΛ,N )

is surjective. �
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Theorem 5.4. If d = 1, we suppose that either

(A) φ satisfies conditions (SRP) and (BB) and Λ is convex, or

(B) φ satisfies conditions (RP) and (DL2).

If d � 2, we suppose that either

(C) φ to satisfies conditions (RP) and (BB) and Λ is convex, or

(D) φ is bounded and Λ is convex.

Then, in all situations, we have the following.

(i) There exists a conservative diffusion process (i.e. a strong Markov process with
continuous sample paths and infinite lifetime)

M
(N)
Λ = (Ω(N)

Λ ,F
(N)
Λ , (F (N)

Λ (t))t�0, (Θ
(N)
Λ (t))t�0, (X(t))t�0, (P

(N)
Λ (x))

x∈Γ
(N)
Λ

)

in Γ
(N)
Λ which is properly associated with (E(N)

Λ , D(E(N)
Λ )), i.e. for all (µ(N)

Λ -versions
of) F ∈ L2(Γ (N)

Λ , µ
(N)
Λ ) and all t > 0 the function

x �→
∫

Ω
(N)
Λ

F (X(t)) dP
(N)
Λ (x), x ∈ Γ

(N)
Λ ,

is an E(N)
Λ -quasi-continuous version of T

(N)
Λ (t)F . M

(N)
Λ is unique up to µ

(N)
Λ -equiva-

lence. In particular, M
(N)
Λ is µ

(N)
Λ -symmetric and has µ

(N)
Λ as an invariant measure.

(ii) The diffusion process M
(N)
Λ is, up to µ

(N)
Λ -equivalence, the unique diffusion process

which has µ
(N)
Λ as symmetrizing measure and which solves the martingale problem

for (L(N)
Λ , D(L(N)

Λ )), i.e. for all G ∈ D(L(N)
Λ ),

G(X(t)) − G(X(0)) −
∫ t

0
L

(N)
Λ G(X(s)) ds, t � 0,

is an F
(N)
Λ (t)-martingale under P

(N)
Λ (x) (hence starting in x) for E(N)

Λ -quasi all x ∈
Γ

(N)
Λ .

In the above theorem M
(N)
Λ is canonical, i.e.

Ω
(N)
Λ = C([0,∞) → Γ

(N)
Λ ), X(t)(ω) = ω(t), ω ∈ Ω

(N)
Λ .

The filtration (F (N)
Λ (t))t�0 is the natural ‘minimum completed admissible filtration’ (see

[13, Chapter A.2] or [20, Chapter IV]) obtained from the σ-algebras

σ{ω(s) | 0 � s � t, ω ∈ Ω
(N)
Λ }, t � 0.

F
(N)
Λ := F

(N)
Λ (∞) :=

∨
t∈[0,∞) F

(N)
Λ (t) is the smallest σ-algebra containing all F

(N)
Λ (t)

and (Θ(N)
Λ (t))t�0 are the corresponding natural time shifts. For a detailed discussions of

these objects we refer the reader to [20].
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Proof. Due to Proposition 5.3, the proof is the same as that of Theorem 2.21. �

Remark 5.5. Notice that the fact that capEΛ,N
(Dg) = 0, i.e. the EΛ,N -capacity of the

set of diagonals in ΛN is zero, is essential for proving Proposition 5.3, which in turn yields
Theorem 5.4. In situations (A)–(C) this is due to the fact that the interaction potential
φ is repulsive (see conditions (RP) or (SRP)). Thus, from conditions (RP) or (SRP) we
obtain that the N -particle stochastic dynamics M

(N)
Λ in Λ stays in the configuration

space Γ
(N)
Λ of single configurations, i.e. we never have more then one particle in one

position. In other words, the repulsive interaction potential φ prevents particles from
interpenetrating each another. In situation (D) we obtain capEΛ,N

(Dg) = 0 by the fact
that the diagonals have codimension at least 2. This, of course, is only true for d � 2.

Another way to construct the process M
(N)
Λ is to use first Corollary 4.8 to con-

struct the corresponding process in {�Λ,N > 0} = ΛN \ Dg = Λ̃N and then the map-
ping sym(N) : Λ̃N → Γ

(N)
Λ to construct M

(N)
Λ as the image process under sym(N). This

approach also needs capEΛ,N
(Dg) = 0, which in this situation yields that the process in

ΛN does not hit the diagonals Dg ⊂ ΛN . This is of essential importance, since otherwise
it would not be possible to apply the mapping sym(N), which is only defined outside the
diagonals.
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