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Abstract. The following question is discussed: which locally compact topological
groups have an effective distal action on some compact metrizable space?

0. Introduction
Among the best understood actions of locally compact groups on compact spaces
are the distal ones. By a fundamental theorem of Furstenberg [7] they can be built
up from a one point space by a possibly transfinite sequence of so-called isometric
extensions. In this paper we deal with the question of which groups have an effective
distal action on some compact space. We give a necessary condition in terms of
the existence of certain finite dimensional unitary representations on normal sub-
groups.

As an application of our main theorem we show in § 4 that the discrete 'rational
ax + b- group' does not admit an effective distal action, although most subgroups
do (examples 4.3 and 4.6).

We also prove, in § 3, that a connected locally compact topological group admits
an effective distal action iff it has polynomial growth (theorem 3.5). The necessity
follows from the above condition, and has also been proved in [12]. In order to
prove the sufficiency we show that every connected Lie group of polynomial growth
can be embedded as a closed normal subgroup into a compact extension of a
connected nilpotent Lie group. This result may be of independent interest. It is an
outcome of the author's study of distal automorphism groups of Lie groups [2].

Basic to our approach is the result proved in § 1 that for every isometric extension
X -> Y there is an associated principal fibre bundle E -* Y, which is also an isometric
extension. We obtain our necessary condition for distality by looking at the
homomorphism from the ineffective kernel of Y to the structure group of the
principal fibre bundle E -* Y (see § 2).

There is an analogous theory in the measure theoretic case for ergodic actions
with generalized discrete spectrum, where the analogue of our principal fibre bundle
can simply be described by a cocycle [14]. The result of Moore and Zimmer [12]
says that an almost connected group G admits an ergodic action with generalized
discrete spectrum iff G has polynomial growth. It is the measure theoretic analogue
of our theorem 3.5, one part of which is already in [12].

1. Distal actions and isometric extensions
In this section we recall the basic definitions and results on distal actions. We also
study isometric extensions in some detail and prove the existence of an associated
principal fibre bundle with compact structure group and fibre.
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168 H. Abels

Let G be a locally compact topological group. By a (compact) G-space we mean
a (compact) metric space (X, d) together with a continuous action of G on X, i.e.
a continuous mapping

GxX-*X, (g,x)^gx

with the usual properties. A compact G -space X is called distal if for any two
points x and y, x 5* y, of X there is an e > 0 such that

d(gx, gy) > e for every geG.

A G -space X is called minimal if there are no closed G -invariant subspaces except
0 and X; equivalently, if every G-orbit is dense. A theorem of Ellis [6], [7] says
that in a compact distal G -space all orbit closures are minimal (distal) G -spaces,
thus reducing the study of distal G -spaces to minimal ones.

In order to state the fundamental structure theorem on compact distal G -spaces
we recall Furstenberg's definition of an isometric extension.

Definition 1.1. Let X and Y be compact G-spaces and let v :X-> Y be a G-map.
The map TT is called an isometric extension of Y if there is

(a) a non-empty compact metric space (M, pM), which is homogeneous, i.e. the
group of its isometries acts transitively on M, and

(b) a fibrewise metric p for v, i.e. a continuous map p defined on the fibred
product

X x YX = {(xi, x2): n(xi) = TT(JC2)}

which is, when restricted to any fibre Xy = ir"1(y) a metric on Xy, such that
(c) (Xy, p|xyxxy) is isometric to (M, pM) for every y e Y, and
(d) G leaves the fibrewise metric p invariant, i.e. for x\ and X2 in X with TT(JEI) =

7T (x 2) we have

There is the following fundamental result of Furstenberg [7].

THEOREM 1.2. A non-empty compact minimal G-space X is distal iff there, is an
ordinal a and an inverse system of compact G-spaces X0,/3<a, and surjective
G-maps X0^>Xe; for /3>f3', indexed by the ordinals /3 < a such that the following
conditions hold:

(a) Xa=X and Xo is the one point space, for 0 the least ordinal;
(b) X0+1 -»X@ is an isometric extension for /3 <a;
(c) if j8 < a is a limit ordinal, X0 = lim Xy.

y<0

A system as above is called a quasi-isometric system of order a for X. Given a distal
G-space X, the order of X is the least ordinal a such that there is a quasi-isometric
system of order a for X. In this case we also call X an a-distal G-space.

Furstenberg's theorem reduces the study of compact minimal distal G-spaces to
isometric extensions. We shall study them in some detail. Our main tool is the
associated principal fibre bundle.

Let us recall the notion of the Ellis semigroup. Let AT be a compact space. The
set Xx of all - not necessarily continuous - maps from X to X is a compact
topological space with respect to the topology of pointwise convergence and a
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semigroup with respect to composition of mappings. If X is a compact G -space,
the action gives a continuous homomorphism G -»Xx. The Ellis semigroup, E(X),
is, by definition, the closure in Xx of the image of this homomorphism, i.e. a map
t:X->X is in E(X) iff there is a net g, of elements in G such that

t (x) = lim g, (x) for every x e X.

Obviously E(X) is a compact topological space and one can show it is a subsemi-
group of Xx. But neither are the elements of E(X) continuous maps, nor is the
composition map

E(X)xE(X)-*E(X)

continuous, in general. One has only the following obvious continuity properties.
For fixed t e E(X), the right translation map

E{X)^E(X), s^st,

is continuous. For a fixed map t e E{X) the left translation map

E{X)-*E{X), s^ts,

is continuous, if t is continuous.
Basic to our approach is the following continuity property of isometric extensions

(cf. [10]).

LEMMA 1.3. Let IT :X -* Y be an isometric extension of compact G-spaces. Let y be
a point of Y and define

Iy={teE(X):t{Xy)<zXy}.

Then for every net f, converging to t in E(X) and every net s, in Ty converging to
s e Iy the net tjStX converges to tsx for every x e Xy.

Proof. Let us clarify a technical point first. We have two metrics defined for pairs
of points jti," x2 of X sitting over the same point of Y, the metric d of X and the
fibrewise metric p. We claim that the corresponding concepts of being at a small
distance coincide, i.e. given e >0 there is a S >0 such that for every pair of points
x\,X2 mX with TT(X\) = TT{X2) &ndd{xi,x2)<S wehavepUi,x2)<e and vice versa.
The proof is a straightforward contradiction argument using compactness.

We now prove the lemma. Since every geG maps fibres of ir into fibres of TT
and leaves the fibrewise metric p invariant, so does every element t e E(X). Hence,
with the notation of the lemma,

p (tiSjX, ttSX ) = p (SjX, SX ) -» 0 .

Hence

because the first summand tends to zero by the remark above and the second one
does since the f, converge to t pointwise.

Let 77 :X -> Y be a surjective G-map of compact G-spaces. Then every element
t e E{X) maps fibres of w to fibres of n, hence induces a map TT+(0 : Y -* Y defined
by
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170 H. Abels

So v induces a homomorphism TT*:E(X)-*E(Y), which is continuous, obviously,
and surjective, since X is compact.

We now define the principal fibre bundle associated to an isometric extension.
Let 7T :X -> Y be a map of compact G-spaces. Define I(y, z) to be the set of maps
/ of the fibre Xy to the fibre Xz induced by elements of E{X), i.e. a map /:Xy -*XZ

belongs to I(y,z) iff there is an element teE(X) such that ir).(t)y = z and the
induced map ty :Xy-*Xz is /. Let us fix a point y0 of Y. Endow

/(y0, y)=LU(yo,y)
y e V

considered as a space of mappings from Xyo to X, with the topology of uniform
convergence. This is our bundle.

PROPOSITION 1.4. Let -rr :X -* Y be an isometric extension of a compact minimal
G-space Y.

(a) / = /(yo, Y) is a compact metric space. The map (5:1 ->Y, given by

is continuous. On I, regarded as a space of mappings from Xyo to X, the topology of
pointwise convergence and of uniform convergence coincide.

(b) (Principal fibre bundle.) I(yo,yo)='-K is a compact topological group. There
is a right action of K on I, given by composition. This action is continuous, free and
its orbits are the fibres of @.

(c) (Action of E(X).) There is a left action of E(X) on I given by composition.
For every y eY the restricted action map

E(X)xI(yo,y)^I(yo,Y)

is continuous. The orbit of any element of I is I.
(d) (Action of G.) There is a left action of G on I, given by composition. This

action is continuous. The map /3 is an isometric extension of Y with fibre K. The
G-space I is a minimal G-space. Its Ellis semigroup is the image of E(X) under the
homomorphism E(X)->Ir given by the action in (c).

(e) (Induced bundle =X.) The map

IxKXyo = I(y0, Y)xI(yMo)Xyo^X, [t,x]^>tx,

is a G-homeomorphism.
(f) (Independence of y0.) Let y i be a point of Y and let t be an element of I (y \, y0).

Then right composition with t defines an E(X)-equivariant homeomorphism
I(yo,Y)^I(yuY).

Proof. Let us write / for /(y0, Y).
(a) A metric on / is defined by

di(ti,t2)= sup d(t1(x),t2(x)).
xeX y Q

By the Ascoli-Arzela theorem, / regarded as a space of maps from Xyo to X, is
compact if it is equicontinuous. But for t e / and JCI, x2 in Xya we have

p(txi,
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which implies equicontinuity by the remark at the beginning of the proof of lemma
1.3 concerning the comparison of p and d. Finally, let Iu and Ip be the set / with
the topology of uniform and pointwise convergence, respectively. The identity map
/„ -*IP is a continuous bijective map from a compact space onto a Hausdorff space,
hence a homeomorphism. So the two topologies coincide on /.

(b) The group of all isometries of (Xyo, p), endowed with the topology of uniform -
or equivalently, pointwise - convergence, is a compact topological group. This is
well known and can also be proved like 1.3, 1.4(a) and 1.9. So /(y0, yo) is a closed
subsemigroup of a compact topological group, hence a topological group. The
continuity of the action of /(yo, yo) on / follows from lemma 1.3, in view of the
fact that uniform convergence and pointwise convergence coincide.

Since Y is a minimal G -space, there are, for every y e Y, elements fx and gi in
E(Y) such that/i(y0) = y and gi(y) = y0- Since TT* :E{X)-*E(Y) issurjective, there
are elements tel(yo, y) and sel(y, y0). Their composite s°tel(yo, yo) has an
inverse. So we may assume that s and t are inverses of each other. So we have
proved two things: every fibre of (3 is non-empty; every element of /(y0, y) has an
inverse in /(y, y0). It is now clear that the action of /(y0, yo) on / is free and that
its orbits are the fibres of /?.

Note that the proof of these two claims is easier in the case where Y is a distal
G-space, since then E(X) and E(Y) are groups, by a theorem of Ellis.

(c) To prove continuity of E(X) x/(y0, y)-»/, take an element u e/(y0, y). The
map

Lu:I{yo,yo)-+I(yo,y), s^>u°s,
is a bijective continuous map of compact spaces, by (b), hence a homeomorphism.
Now let usi be a net in /(yo, y) converging to us, and let f, be a net in E(X)
converging to t, then the net s, in /(y0, yo) converges to s. Let v be an element of
E(X) that restricts to u e /(y0, y )• Then t,v -* tv, by continuity of right translations
in E{X), and finally

tiiusi) = (t(v)si -»{tv)s = t(us)

by lemma 1.3, which proves continuity of E(X)xI(yo,y)->I.
The £(AT)-orbit of any element ?e/(y0, yi) contains the identity element e of

/(yo, yo), since t has an inverse in /(yi, y0) represented by some element of E(X).
But the E(Ar)-orbit of e el(yo, y0) is /, by definition. So the E(A>orbit of t is /,
since E{X) is a semigroup.

(d) The action map

GxI^I, (g,t) + g°t,

is continuous. A fibrewise metric for /3 is given by

u h)= sup p(ti(x),t2(x)),

if /3(fi) = /3(f2)- Continuity of p follows from the remark in the proof of lemma 1.3
comparing p and d.

Corresponding to the action of E(X) on / we have a semigroup homomorphism
E(X)-*l'. It is continuous with respect to the topology of pointwise convergence
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172 H. Abels

on /, by (c). So its image E is compact and G is dense in E, since it is dense in
E(X). This implies E(I) = E by definition of the Ellis semigroup.

/ is a minimal G -space, since the E -orbit of every point of / is all of /.
(e) We have first to explain the notation / xKXyo. The compact topological group

K has a right continuous action on / by (b), and a left continuous action on Xyo

by definition, hence a diagonal action on / x Xyo. Its orbit space is denoted / xKXyo.
The orbit of (t, x) e / x Xyo is denoted [r, JC]. We have

[t,x] = [tk~\kx]

for fee AT.
The map IxXyo-*X is surjective, since for every ye Y there is an element

fe/(y0, y) which is an invertible isometry Xyo-*Xy, in particular surjective. If
t\Xi = t2x2 for two elements tu t2 in / and two points JCI, x2 in Xyo, we have

so t\ and t2 m a p Xyo to the s a m e fibre of n, Xy say. T h e n t2
x °ti = k is in / ( y 0 , yo)

and we have

hence

[tu xi] = [t2 • k, xi] = [t2, kxi] = [t2, x2].

So the map / xK Xyo -* X is a bijective continuous map of compact Hausdorff spaces,
hence a homeomorphism.

(f) Right translations in E{X) are continuous. This gives continuity of

/(yo, Y) + Iiyu Y), s~s°t,

with respect to the topology of pointwise convergence. The same argument with
t 1 gives the continuous inverse mapping. •

Remark 1.5. In the course of the proof we have obtained the following two
statements: for every two points y0, yi of Y the set 7(y0, yi) is not empty; every
element of /(yo, yi) has an inverse in I(yu y0). We can consider Y as the set of
objects of a category J whose set of morphisms from y0 to yi is /(yo, yi)- In the
language of category theory the above two statements are equivalent with the
following one: ^ is a connected groupoid. Is it a topological groupoid in a natural
way? If Mor (J) is given the identification topology from

E(X)xY

then the composition map JxY$-*y is not continuous, in general, because
composition in E(X) is not continuous, in general. We only have continuity of

J(yi, y)x/(yo,y1)-»/(yo, Y),

as a consequence of lemma 1.3.

Remark 1.6. The starting point for our result 1.4 was [10]. Knapp's result is
formulated in the language of function algebras; ours is more general, since we do
not suppose Y to be distal.
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Remark 1.7. One could also define a principal fibre bundle B associated to IT :X -* Y
by defining

B= U {isometriesM-»Xy}.
yeY

Its structure group is the full group of isometries of M. This definition has the
advantage of avoiding the Ellis semigroup, but the disadvantage of depending on
the fibrewise metric p and having an unnecessarily big structure group. It gives a
less naturally associated principal fibre bundle.

Remark 1.8. The 'principal fibre bundle' I-* Y is not locally trivial, in general ([15,
ex. 4.4, p. 390]). It is locally trivial if its structure group K is a Lie group, by the
slice theorem (c.f. [5]). Fortunately, we do not need local triviality, but only
continuity of the quotient in denominator and numerator, as follows.

COROLLARY 1.9. Let /3 : / -> Y be the principal fibre bundle as in proposition 1.4.
Let K =/(y0, yo) be its structure group. Then the mapping

is continuous.
Proof. The elements t\ and t2 belong to the same fibre /(yo, y) of /. So t\x exists
and is an element of /(y, y0) and the composite map ti1 °t2 is in K -I{y0, y0). So
the above map is well defined. To prove its continuity, look at the map

By 1.4(b) it is a continuous bijection of compact spaces, hence a homeomorphism.
The map under consideration is the inverse homeomorphism followed by projection
onto the ./if-component.

2. The space of finite dimensional unitary representations
In this section we shall prove our necessary condition for the existence of an
effective distal action. To do this we shall need some notations and definitions.

Let H be a locally compact cr-compact topological group. The space Repn(//)
of continuous homomorphisms from H into the group Un of complex unitary
n x n -matrices will be endowed with the topology of uniform convergence on
compact subsets. The disjoint union

Repfin (H) = (J Rep,, (H)

of open subsets Rep,, (H) will be called the space of continuous finite dimensional
unitary representations of H; we call them just representations, for short. Since H
is cr-compact, Repfln (H) is a metrizable space. The group Un acts on Rep,, (H) by
following a representation by conjugation with an element of £/„. Its orbit space

Cl RePn (//) = RePn (H)/Un

is called the space of equivalence classes of representations of dimension n. The
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equivalence class of </> e Repn (H) is denoted [<£]. The disjoint union Cl Repfin (//)
of open subsets Cl Repn (H) is called the space of equivalence classes of (continuous
finite dimensional unitary) representations of H.

Let A be a locally compact topological group. Suppose we are given a continuous
action of A on H, such that every element aeA induces a topological automorphism
of H. Then A acts in a natural way continuously on the various spaces of representa-
tions of H, and A x [/„ acts on Repn (//).

We are particularly interested in the following properties of a representation <f>.

LEMMA 2.1. For a representation 4> of' H the following statements are equivalent:
(a) the closure Acf> of the A-orbit of<t> in Repfin (H) is a compact minimal A-space;
(b) the closure A[4>] of the A-orbit of [cf>] in Cl Repfin (//) is a compact minimal

A-space.
(c) The set

is a compact minimal A x Un-space contained in Rep,, (//), if <$> has dimension n.

The same equivalences hold with 'compact minimal' replaced by 'compact minimal
distal' in all statements. A representation with the above properties will be called
A-minimal and A-distal, respectively.

Proof. Let us first prove the lemma for the 'compact minimal' statements. Since
obviously (a) implies (b) and (b) implies (c), we have only to prove that (c) implies
(a). Let We A<f>. We have to show that 4> e A f . By (c) there is an element ueUn

such that

where Iu is conjugation of Un by u. Since AW <=A<f>, this implies

So u belongs to the closed subsemigroup

S = {ueUn:

of Un. But every closed subsemigroup of a compact topological group is a group,
hence /UA^ = AV, implying A~¥ = A~4>.

In order to prove the equivalences for 'compact minimal distal' we just invoke
theorems on distal spaces. By a result of Ellis, the equivariant image of a compact
distal A-space is compact distal, proving (a) implies (b). It is straightforward that
(b) implies (c); compactness follows from the fact that the map

is the natural map of a space onto its orbit space by the action of a compact
group, hence a proper map. If (c) holds, the space in (c) is a distal A-space, hence
every orbit closure is a minimal distal A-space, by another result of Ellis,
implying (a). •

The following lemmas reduce the question of minimality and distality to irreducible
representations.
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LEMMA 2.2. Let 4> e Reps,, (H) be A-minimal. Then we have

for every V e A<\>. Hence if <j> is irreducible, so is ty.

Proof. For every a e A we have

So W(H)<=(t>(H) for every WeA<f>. By minimality ( ^ e A f , hence the inverse
inclusion. The last sentence follows from the fact that <t> is irreducible iff the identity
is the only projection operator of the representation space commuting with <£(//),
or equivalently, with <f>(H). •

LEMMA 2.3. A representation <f> e Repfin (H) is A-minimal (A-distal) iff all of its
irreducible components are.

Proof. Let <t>:H-*Un be a representation. Let Pu...,Pr be a maximal set of
mutually orthogonal projection operators of C" commuting with <£(//). The projec-
tions commute with ^(H) for every t e A < ^ , since ^ ( / / ) c <£(//). So restricting
the representations ^ € A<f> — X to the image of Pt defines a continuous A-map

Hence if <f> is A-minimal (A-distal), so are the <£,-. The converse follows from the
fact that the direct sum of representations defines a continuous A-map

Repfin (H) x Repfin (H) -* Repfin (//). D

Suppose G is a locally compact cr-compact topological group and AT is a closed
normal subgroup. The inner automorphisms of G restricted to N give an action
of G on N. So it makes sense to talk about G -distal representations of N.

Definition 2.4. A locally compact cr-compact topological group G is called gen-
eralized maximally almost periodic, abbreviated to GMAP, if every closed normal
subgroup N of G has a non-trivial G- distal representation. For a closed normal
subgroup N of G define

where <t> runs over all G- distal representations of N.

Let us call a transfinite sequence {Np\ 0</8 < a } , a some ordinal, of closed normal
subgroups Np of G a GMAP-sequence (of length a) if the following conditions hold:

(a) N0 = G,
(b) Afe+i=>IVJjG),
(c) for every limit ordinal /3 = sup {y: y < /8} we have

Ne => n Ny.

Obviously, G is GMAP iff there is an ordinal a and a GMAP-sequence {Np: 0 < /? <
a} with Na ={e}. In fact, for every locally compact cr-compact topological group
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G there is one fastest decreasing GMAP-sequence, defined by:

N0 = G, Np+1=Nf\
and

if |8=sup{y:y<0}.

If G is second countable, this sequence becomes constant from some countable
ordinal a on. The terminology is justified by the following remark. G is maximally
almost periodic iff G(G) = {e}, i.e. iff there is a CrA/AP-sequence of length 1.

One of our main results is the following theorem.

THEOREM 2.5. Every locally compact cr-compact topological group admitting an
effective distal action on some compact metric space is generalized maximally almost
periodic.

Proof. Let X be a compact metric space with a minimal effective distal action of
G. Let {Xp}pSa be the transfinite series of extensions of Furstenberg's structure
theorem (see 1.2). Let TV be a closed normal subgroup of G. Let /S be the least
ordinal such that N acts non-trivially on Xp. The ordinal /? is not a limit ordinal,
because if N acts trivially on Xy, y < (3, it also acts trivially on

Xa = inv lim Xy.

So (3 = y +1 and we have an isometric extension v :Xy+i->Xy of distal G-spaces
such that N acts trivially on Xy, but non-trivially on Xy+i. By proposition 1.4 there
is a principal G -fibre bundle

I^Y: = Xy

with compact structure group K. The left action of G on / is distal. It commutes
with the right action of K on /. Let noeN and xoeXy+i be such that noxo^xo.
Define y0 = ir(x0)- Let

a:N+I{yo,yo) = K

be the continuous homomorphism given by restricting the maps of AT to the fibre
ir~1(yo). We have o-(nQ) ^ e. Let p :K -> Un be a representation of K such that

We show that (f>: = p °a is a G -distal representation of N thus proving the theorem.
We do this by defining a continuous G-map

n (N) such that <$>(yo) = <t>.

Using the notations of proposition 1.4, define <&(t) e Repn (N) by

<S>(t)(a) = <f>(r1at) f o r r e / = /(y0,y).

The map

IxN^K, (t,a)->t~'iat = r\at),

is continuous, since by 1.4(d) the map

Nxl->I, (a,t)-+at,
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is continuous and by 1.9 the map

IXyl^K, {ti,t2)-*hxt2,

is continuous. So <I> is continuous in both variables, hence gives a continuous map
<£: / -» Repn (JV), which is a G -map by a straightforward computation. •

This is the only place where we make an application of the principal bundle./-» Y
with G -action constructed in § 1. We do not make full use of the bundle structure,
we just look at the representation classes of the ineffective kernel N of Y given
by the bundle.

For arbitrary G there is no effective distal action of G, but there is a smallest
ineffective kernel for distal actions of G, as follows.

LEMMA 2.6. Let G be a locally compact second countable topological group and let
N be the intersection of the ineffective kernels of all distal actions of G. Then G
admits a minimal distal action on a compact metric space, which has a point with
isotropy group precisely N.

Proof. We may assume N = {e}. For every distal G-space X and every point x eX
the complement of the isotropy group

Gx={geG:gx=x}

is an open subset of G. The union of these G\GX is G\{e}. Since G is second
countable, a countable subcover of G\{e] exists; hence there is a countable set
(AT,, xi) of pointed distal G-spaces such that

The compact metric space Y = Y[Xt is distal and the closure of the G-orbit of
y = (*,•),• e Y has the required properties. •

Theorem 2.5 implies under these circumstances the following corollary.

COROLLARY 2.7. With the hypotheses and notations of the lemma, there is a countable
ordinal a and a GMAP-sequence {N0: 0 < /3 < a} for G such that Na c M.

Proof. By theorem 2.5 and the remarks following definition 2.4 there is a countable
ordinal a and a GMAP-sequence {M0: 0<(3 < a} for G/N such that Ma = {e}. The
sequence {Np: 0 </3 ^ a } of inverse images of M& under the natural map G -» G/N
is a GMAP-sequence for G.

3. Applications for connected groups
Let us suppose all locally compact topological groups occurring are second count-
able. In this section we first give some general properties of GMAP-groups, then
we show that for almost connected G the properties GMAP, polynomial growth
and existence of an effective distal action are equivalent. In the next section we
discuss the example of the rational ax +b -group.

PROPOSITION 3.1. Let G be GMAP. Then for every element g^e of G the closure
of the conjugacy class of g does not contain the identity element e.
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Proof. Suppose there is an element g # e of G and a net {g,} in G such that g/gg,1

converges to e. Let N be the smallest closed normal subgroup of G containing g.
There is a G-distal representation 4> of N such that g is not in the kernel of <f>.
Since G<f> is compact we may assume that the net g,<£ converges to some representa-
tion ^ of N. Then 4>(g) = {gi<t>)(giggT1) converges to ^(e) , hence (f>(g) = yir{e), a
contradiction. Note that we have made use of the compactness of G<f> only. •

This proposition implies, by [13], [2], one of the main results of [12].

COROLLARY 3.2. Suppose G is an almost connected locally compact second countable
topological group. If G acts effectively and distally on some compact space then G
has polynomial growth.

We shall prove the converse below. We now show unimodularity of GA/AP-groups.

LEMMA 3.3. Let H be a locally compact topological group. Let the group A act on
H by automorphisms. If the A-compact representations of H separate the points of
H, then every left Haar measure of H is a right Haar measure and is A-invariant.

Proof. The inner automorphisms of H and the automorphisms of H induced by
elements of A together give an action of A K H on H, for which there is a separating
family of A K //-compact representations by lemma 2.1. So it suffices to prove the
invariance of a, say left, Haar measure ju. with respect to this group of auto-
morphisms, which we call A again.

Let U be a compact neighbourhood of e in H. Suppose there is an element aeA
with y,(aU)>n(U). Let V be a (small) neighbourhood of e in H. Then there is
anneN such that ix(anV)>ix{U), hence a"V<£ U. Let n eN be minimal with the
property anV<£ U. Then a"V c aU. Let

L=aU\U.

If we let V run through a neighbourhood base of e, we obtain a net vt of elements
converging to e and n, e l\l with

an'Vi = lieL.

We may assume that the net /, converges to some element / in the compact set L.
Now let <f> be an A-compact representation in Repfin (//). We may assume that
a~ni4> converges to some Ve Repfin (//). Then

<t>{l) = lim <f>{an'Vi) = lim ( a " » ( « , - ) = V(e).

So / is contained in the intersection of the kernels of all A-compact representations
of //, hence / = e, a contradiction. •

COROLLARY 3.4. Every GMAP-group is unimodular.

Proof. By induction on the length a of a GMAP-sequence {Ne: 0</3 <a} for our
group G with Na={e}.

If G/Na is unimodular and G acts in a unimodular fashion on Na/Na+i, then
G/Na + i is unimodular. This is the inductive step for a -* a +1. If a is a limit ordinal

a =sup{/3: 0<a} and f~) Np =JVQ ={e};
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suppose there is an element g e G that does not leave a left Haar measure of G
invariant. Let V be a compact symmetric neighbourhood of e in G containing g. Set

L=V3\V.

The descending sequence LDNp of compact subsets of L has zero intersection,
hence there is a /3 < a with

hence

So

g(Ne n
and the same for g"1. Hence Np D V is a compact g-invariant neighbourhood of e
in Np, so g leaves every Haar measure of Np invariant. By the inductive hypothesis
G/Np is unimodular, hence g leaves every Haar measure of G invariant, a
contradiction. •

Starting from this corollary one can obtain a different proof of corollary 3.2, basically
by making use of the facts that the real ax + b -group and a similar 3-dimensional
group are not unimodular and every connected Lie group that is not polynomially
growing contains one of these groups, locally.

The converse of corollary 3.2 is true, too. Since this fact is not proved in [12],
not even claimed, we shall give a proof.

THEOREM 3.5. An almost connected locally compact second countable topological
group admits an effective distal action iff it is polynomially growing.

The proof of the theorem depends on the following two results, the first of which
may be of independent interest (cf. Auslander's semisimple splitting [3]).

THEOREM 3.6. Every polynomially growing connected Lie group G can be embedded
as a closed normal subgroup into a connected Lie group, which has a closed connected
normal nilpotent subgroup with compact factor group.

The 'almost nilpotent' extension of G we construct is actually a semidirect product
of G with a torus.

Proof. Let G be a connected Lie group of polynomial growth. The adjoint action
of G on its Lie algebra g defines a homomorphism

Let A be the algebraic hull of Ad (G) in Gl($). The group G acts on itself by inner
automorphisms, thus giving a homomorphism

Ad(G)-»Aut(G).

The first and main step of the proof is to show that this homomorphism extends
to an analytic homomorphism A -> Aut (G). Let G be the simply connected covering
group of G, let

exp: 9 -* G
be its exponential map. Let D be the kernel of G-+G. Identifying Aut(G) with
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Aut (9) we have to show that A leaves D invariant. Let K be the maximal compact
connected subgroup of the centre of G, let i be its Lie algebra and let K be the
corresponding subgroup of G, a closed central vector subgroup of G. Since G has
polynomial growth, the adjoint action of G on y is distal ([13]) and by [2, lemma
2.6] A leaves D • K invariant. Since Ad (G) is connected and distal, its algebraic
hull A is connected (and distal) by [1, 2.7]. So for every deD the continuous
homomorphism

takes values in K. By construction, <j>d vanishes on Ad (G). But A/Ad (G)~ is
compact by [1, theorem 3], so the image of 4>d is a compact subgroup of the vector
group K, hence trivial. That is, A fixes D, hence A acts on G.

Now A = UK.L, where U is the normal subgroup of unipotent elements of A
and L is a maximal compact subgroup of A ([1], 2.5]). Let Z be the connected
component of the centre of L c Aut (G) and define

We claim that H is the desired supergroup of G. To see this first look at H\ = A x Z,
where Z c A acts on A by conjugation. The radical of H\ is U • Z~AZ and

is compact semisimple. Let

Then D is a compact connected central subgroup of Hi, hence U • D is a closed
connected nilpotent normal subgroup of f .̂

Let us come back to H = Gx Z. The adjoint representation of G together with
the identity on Z gives a homomorphism

Let B be its kernel. B is the centre of G. So the algebraic hull A of Ad G acts
trivially on its Lie algebra 6, hence on its connected component Bo- Furthermore
A leaves the characteristic subgroup B of G invariant, so A acts on the discrete
group B/Bo. This action is trivial, since A is connected. So

{e}cBocB

is an A -invariant filtration such that A acts trivially on its quotients. This implies
that Bo is central in H and B/Bo is central in H/Bo- In particular M = <f>~1(U • D)
is a nilpotent closed normal subgroup of H. We claim that H/Mo is compact.

Let us write Z2, Z3 for {e} x Z in H and /fi respectively. Note that Z3 normalizes
£/ and D, hence Z2 normalizes M. The subgroup M • Z2ot H is the inverse image

So <£ induces an injective homomorphism

H/MZ2 -> Hx /rad HX=

whose image has L/Z as algebraic hull, since the algebraic hull of Ad G is A. So
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the connected Lie group H/MZ2 has an injective homomorphism into a compact
semisimple Lie group with dense image, hence H/MZ2 is compact semisimple itself
(see lemma 3.7 below). It follows that H modulo the connected component Mo • Z2

of MZ2 is locally isomorphic to a compact semisimple Lie group, hence H/MoZ2

is compact semisimple. •

LEMMA 3.7. Let H be a connected Lie group and let G be a compact connected
semisimple Lie group. Suppose <j>: H -> G is an injective Lie group homomorphism
with dense image. Then <f> is an analytic isomorphism H -» G.

Proof. The closure of the image of the radical of H is a closed connected solvable
normal subgroup of G, hence trivial. So H is semisimple. The Killing form of $
restricted to A via (f> gives a negative definite invariant symmetric bilinear form on
A, so A is the Lie algebra of a compact Lie group ([9, chap. XIII, Theorem 1.1]).
Since A is semisimple, H must be compact. The result follows.

LEMMA 3.8. Every nilpotent connected Lie group has an effective distal action.

Proof. The proof is similar to that of Moore and Zimmer ([12, p. 183 f.]) for the
measure theoretic case, but simpler. Let N = N/D, where N is a simply connected
nilpotent Lie group and D a discrete normal, hence central, subgroup of N We
consider N as an algebraic group with its unique structure as a unipotent real
algebraic group. Let M be the smallest algebraic subgroup of N containing D. If
we denote by exp the exponential map « -* N and by log its inverse, we have

M = exp m,

where m is the smallest vector space containing log D. Since D is free abelian, it
has a basis, {e,}* say. Let £>,• be the group generated by the {e,-: j ^ /} and let M, be
the smallest connected Lie subgroup of N containing £>,. Then by lemma 2.6 it
suffices to show, that N/D • Mi has an effective distal action for every /. So we may
assume that rank D < 1.

If D = {e} consider N = N as a subgroup of the group Nn of upper triangular
real n xn -matrices with ones on the diagonal. Let Tp be the subgroup of Nn of
matrices with integer entries whose off-diagonal entries are divisible by p. The
group Fp is a discrete subgroup of Nn, and Nn acts distally on the compact metric
space NJTP [4]. The ineffective kernel is the intersection of Fp with the centre of
Nn. Since the intersection of all Fp, for p prime, is {e}, Nn has an effective distal
action, by lemma 2.6, hence N has an effective distal action.

If rank D = 1, again consider TV as a subgroup of Nn. Let g be a generator of
D. There is a basis

en,en-u...,ei ofR"

with respect to which N is still triangular with ones on the diagonal and such that
for every / e {1, . . . ,«} we have

(g-Id)ej is zero or is some e, with i<j.

It follows that we may assume that TV is a subgroup of Nn and the elements of D
have integer entries.
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The set D • Tp of products of elements of D and of Tp is a group, since D
normalizes Tp. The group D • Tp contains Tp as a subgroup of finite index, so
Nn/Tp • D is a distal Nn-space and in particular a distal N-space. Let Xp be the
closure of the TV-orbit of x0 = Tp • D in iVn/rp • D. Since the normal subgroup D
of N fixes *o, it acts trivially on Xp, so Xp is a distal A/-space. The ineffective kernel
of Nx0 and hence of Xp is

Since the intersection of the Ap's is trivial, AT has an effective distal action in this
case, too. •

We are now ready to give a proof of theorem 3.5. We have to show that every
polynomially growing locally compact second countable topological group G admits
an effective distal action. In view of lemma 2.6 it suffices to give a proof for Lie
groups, since our group is an inverse limit of polynomially growing Lie groups with
finite component group. Furthermore we may assume that G is connected, because
if Xo is an effective distal G0-space, then

is an effective distal G-space. By theorem 3.6 we may now assume that G has a
closed connected normal nilpotent subgroup N with compact factor group G/N,
since obviously a subgroup of a group admitting an effective distal action itself
does. Finally we may assume that N = G is nilpotent, because if Xo is an effective
distal Af-space, then ind°AT0 is a compact effective distal G-space, since G/N is
compact. For nilpotent N lemma 3.8 proves our claim.

4. Applications for discrete groups
For discrete groups proposition 3.1 and corollary 3.4 give no information, but
theorem 2.5 does; e.g. we have the following result:

COROLLARY 4.1. Let G be a finitely generated discrete group. LetMbe the intersection
of all {normal) subgroups of G of finite index. If M is of finite index in G, then M
is the smallest ineffective kernel of distal actions of G.

Proof. We make use of the results of Malcev [11] that a finitely generated linear
group over the complex numbers is residually finite, i.e. the intersection of all
(normal) subgroups of finite index is {e}. Hence if H is a subgroup of finite index
of our group G and <f> is a finite dimensional representation of H, we have ker <f>=>M,
since H is finitely generated. Now suppose M is of finite index in G. Then for
every GMAP-sequence {Np} of G it follows that Ne =>M. Hence M is contained
in the kernel of any distal action of G. On the other hand, the finite group GjM
has a free isometric action. •

Remark 4.2. E.g. Higman's group [8]

G = (a, b,c,d; aba'1 = b2, bcb^1 = c2, cdc'1 = d2, dad'1 = a2)

is finitely presented, but the only subgroup of G of finite index is G itself, so the
only distal actions of G are the trivial ones.
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The situation for non finitely generated groups is entirely different. E.g. the additive
group Q of rational numbers has no proper subgroup of finite index, but, regarded
as a discrete group, it has a faithful 1-dimensional representation, hence a free
isometric action. More generally, every abelian locally compact second countable
group has a countable separating family of characters, by Pontryagin duality, hence
an isometric free action. On the other hand, not every metabelian discrete group
admits an effective distal action, as the following example shows.

EXAMPLE 4.3. The discrete group B of affine maps

Q-»Q, x>~*ax+b

of the rational line, beQ, aeQ*, has no effective distal action. In fact, the smallest
kernel for distal actions is the subgroup N of translations, N = {a = 1}.

Proof. Let M be the intersection of the ineffective kernels of all distal actions of
B. We have M <^N, since B/N — Q* admits an injective homomorphism into U\
denning a free isometric action on U\. To prove the converse it suffices by corollary
2.7 to show that the trivial representation of N is the only B-distal representation
of N. Let <t> e Repn (N) be a B-distal n -dimensional representation. By lemma 2.3
we may assume that <f> is irreducible, so n = 1 and <f> is an element of the dual
group N of N — Q. For an element g of B with

g{x) = -x+b
n

we have

(g°<t>)(y) = <l>(ny), y e Q ,

so all powers <t>", n #0 , neZ , are in the B-orbit of <f>. Since Q is a compact
topological group, it follows that the closure X of the B -orbit contains the trivial
representation <f>°. But if X is a distal B-space, it is minimal, since it is an orbit
closure, hence

so <fr is the trivial representation.

The examples 4.6 below tell us that big subgroups of B admit effective distal
actions. We shall make use of the following lemma, which may be considered as
a partial converse of theorem 2.5.

LEMMA 4.4. Suppose H and N are locally compact groups and suppose H acts
continuously on N by automorphisms. Let G be the split extension G =HnN. For
every H-distal representation (f> of N there is a distal action <i> of G with

Here Ineff (<I>) denotes the ineffective kernel of the action <J>. The lemma implies
the following corollary.

COROLLARY 4.5. / / H admits an effective distal action and N has a separating
family of H-distal representations then G —H^-N admits an effective distal action.
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Proof of lemma. Let us denote the action of H on N by

(h,n)^>hn.

The topological group G is the product space NxH with the multiplication

(«i , hi) • (n2, h2) : = ( « i - % 2 , hih2).

We identify n e AT with (n, e) e C We define an action of G on Um x Repm (AT) by

(n, h)(u, </,) = (((«, ft) ° <£)(«) • «, (n, ft) ° <£)

Here, as usually, G acts on Repm (N) by

((/», ft) o^)(x) = «A((n, ft)"1 • x • (n, ft))

It is straightforward to check that this defines an action of G on

AT = £/mxRepm(H),

which thus becomes an isometric extension of the (non-compact) G -space
Repm (H). Restricting to the part of X over the closure of the orbit of 4> gives the
desired compact distal G-space. D

We are now ready for the examples. Let wp be the p-adic valuation of Q*, defined
by

<>•$-

if a and b are integers not divisible by p.

EXAMPLES 4.6. Again let B be the group of affine maps of the rational line. The
subgroup C of B of maps

Q-»Q, x>->ax+b with(op(a) = 0

admits an effective 2-distal action, but is not maximally almost periodic.

Proof. The group B is the split extension Q * K Q with respect to the action
Q*xQ->Q,

Set
A =kerwp

In order to show that C = A x Q admits an effective distal action, it suffices by
corollary 4.5 to show that Q has a separating family of A-distal characters. We
claim that a character <f> -.Q-+S1 is A-distal, if its values are in the group W of
elements of S1 whose order is a power of p. These characters certainly form a
separating family. For every integer a e A the map x >—*xa is an automorphism of
the finite group

/ W(n) = {x<=C:xp''=e}

of p"'th roots of unity. The map

AnZ->Aut(W(n))

extends to a homomorphism A -* Aut (W(n)), thus giving an action of A on each
W(n), and hence on W, also denoted (a,

A =kerwpcQ*.
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Now let <(> be a character cf> :Q-» W. We have <t>{pm) = 1 for some power pm of
p. It follows that

<f>{pm-n)eW(n).
The character is uniquely determined by the values of pk, k e Z, since

<A(/-fl) = (<Mpfc))a for a e A.
It follows that the group Z>m of characters

is isomorphic to the inverse limit limK W(n) of the system of groups W(n) with maps

The group A acts isometrically on every W(n) hence on their inverse limit. In
particular <f> is contained in a compact isometric A-subspace of Repi (Q), and is a
fortiori an A-distal representation.

It is easy to see that C is not maximally almost periodic. In fact Q is the intersection
of all kernels of (finite dimensional unitary) representations of C. To see this, let
4 e Repn (C). Let K be the closure of the image of <$>. The connected component
Ko of K is a compact connected solvable Lie group, hence abelian, of finite index
in K. Since the only subgroup of Q of finite index is Q itself we have <j> (Q) <= Ko.
For a 6 A, a # 1, we have (p(a")eK0 for some n. Since Ko is abelian, we have

e = <t>(an) • cj>{x) • ct>{a-") • <t>{-x) = <j>{{an -I) • x)

for every x eQ. Since every element of Q can be written in the form {a" -1) • x,
we have

Q c ker <t>.
Conversely, C/Q—A has an injective character. •
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